Device and process for measuring the mutual orientation of hollow cylinder and an assigned cut edge

Information

  • Patent Grant
  • 6516533
  • Patent Number
    6,516,533
  • Date Filed
    Monday, October 2, 2000
    24 years ago
  • Date Issued
    Tuesday, February 11, 2003
    21 years ago
Abstract
A method and apparatus for measuring the mutual orientation of an optionally oriented hollow cylinder and a cut end of a body containing the hollow cylinder by employing a high-precision laser gyroscope. In using this method, the orientation measurements can be obtained in a more economical and time efficient manner than those employed using conventional methods. The method involves first placing a laser gyroscope on the inside wall of a hollow cylinder and electronically registering the three-dimensional orientation of said laser gyroscope according to at least two angular coordinates relative to a laboratory system; storing the three-dimensional orientation as a first measurement result; placing the laser gyroscope directly on the cut end, or indirectly on the cut end by resting it on a support mechanism that rests on the cut end; electronically registering the three-dimensional orientation of said laser gyroscope according to at least two angular coordinates relative to a laboratory system; storing the three-dimensional orientation as a second measurement result; comparing said first and second measurement results to obtain a value of a phase displacement angle; and displaying the value of the determined phase displacement angle. The device is especially suited for checking the orientation of cylinder heads and cylinder bore axes of large-volume diesel engines.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The invention relates to a device and process for measuring the mutual orientation of a hollow cylinder and a cut edge assigned to it.




2. Description of Related Art




Conventionally, there has been a problem with measuring the mutual orientation of a hollow cylinder and its assigned cut edge, for example, in the checking of a cylinder of an internal combustion engine, especially in large-volume diesel engines. Typical dimensions of the cylinders of these engines are in the decimeter to meter range. High-precision acquisition of the relative position between the cylinder wall and the cut edge which is defined by the end surface of one such hollow cylinder is difficult and expensive for small wall thicknesses of the pertinent solid material.




SUMMARY OF THE INVENTION




The primary object of the invention is to devise a measurement process and a measurement device with which measurements of the aforementioned type can be taken in a very short time, and which can also be taken with a three-dimensional optional orientation of the hollow cylinder.




This object is achieved by the features of the described herein.




The invention is based on the finding that measurements of the aforementioned type are in principle angle measurements for which instead of mechanical measurement means better those based on electronics should be used.




In accordance with the invention, the noted measurement problem is solved by a high-precision optical gyroscope being used, preferably in the form of a so-called laser gyroscope with currently unsurpassed precision. It is recommended that a tri-axial gyroscope of this type be provided, although for simpler measurement tasks of this type, also bi-axially acting gyroscopes can be used.




The invention will be better understood and the above objects will be become more apparent from the following detailed description of preferred embodiments of the invention, with reference to the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a first perspective view of a hollow cylinder and attached measurement instrument in a first measurement phase;





FIG. 2

is a second perspective view of a hollow cylinder and attached measurement instrument in a second measurement phase;





FIG. 3

is a perspective view of another embodiment in which a measurement instrument provided with measurement blades; and





FIG. 4

is a plan view of the measurement instrument of

FIG. 3

having measurement blades which contact the inside surface of the hollow cylinder and in which the measurement instrument is placed directly on the cut edge.











DETAILED DESCRIPTION OF THE INVENTION




As illustrated in

FIG. 1

, a hollow cylinder


20


is located in a block


10


of solid material. An assigned top cut end


30


is defined by the periphery


22


of the hollow cylinder. The surface normal to this cut end


30


extends such that it is aligned parallel to the lengthwise axis of the hollow cylinder


20


with maximum possible precision. Checking of this circumstance is simple when employing the process according to the present invention with the aid of a laser gyroscope, and requires only a minimum of time. For example, a typical time savings of between 95% to 99% is obtained when compared to conventional measurement processes.




As further illustrated in

FIG. 1

, in a first measurement step a laser gyroscope


40


is attached from the inside to the jacket surface of the hollow cylinder


20


and by initiating a (first) measurement its orientation in space is fixed. Registration of the orientation values can take place in the laser gyroscope


40


itself, or in a computer


50


which simultaneously supplies power to the laser gyroscope


40


via line


52


. In any case, provisions are made for the acquired measured values to be output at a later time, for example, by visual display or electronic data transmission. The first step is advantageously repeated several times to increase the measurement accuracy, especially at different points of the hollow cylinder jacket.




In a second step, the laser gyroscope


40


is subsequently removed from the hollow cylinder. In a third optional step, a support


60


including a cover plate having parallel planar surfaces, is placed on the top cut end


30


. The support


60


, being produced with high precision, is preferably produced of a glass ceramic having a very low coefficient of thermal expansion, but may also be produced from mirror glass. In addition, a bottom plate


70


of the same material is attached to the support


60


, but has only centering functions that enable central insertion of the support


60


on the terminal edge


22


of the hollow cylinder


20


.




As illustrated in

FIG. 2

, in a fourth step, the laser gyroscope


40


is placed with its bottom surface resting precisely on the support


60


, or it is positioned directly on the top cut end


30


if spatial conditions allow this in view of the required precision. In addition, in a fifth step, a (second) measurement by the laser gyroscope


40


is initiated.




When the wall around the hollow cylinder


20


is thick enough, the laser gyroscope


40


can be positioned directly on the top cut edge


30


as described below relative to

FIG. 3

without the aid of a support


60


as previously described above relative to the optional third step, and in this way, the measurement process of the invention is obviously further simplified.




In a sixth step, the first and second measured values obtained in this way are compared to one another. The computer


50


can almost immediately compute and signal whether and in what directions a phase displacement angle of the top cut end


30


(for example, a cylinder head surface) is present relative to the lengthwise axis of the hollow cylinder defined by the wall of the hollow cylinder


20


. These measurement results can be displayed with the required precision with an accuracy far better than one tenth of a degree.





FIG. 3

illustrates an embodiment in which the laser gyroscope


40


is provided with measurement blades


41


,


42


,


43


to provide greater measurement accuracy. In operation, the distal end of each respective measurement blade


41


,


42


,


43


contacts a hollow or plane surface, for example, the jacket surface of the hollow cylinder


20


and the top cut edge


30


.

FIG. 4

illustrates a step whereby the laser gyroscope


40


is attached to the inner jacket surface of the hollow cylinder


20


to initiate a (first) measurement. The phantom outlined gyroscope illustrates a step whereby the laser gyroscope


40


is removed from the inner jacket surface of the hollow cylinder


20


and is subsequently placed directly on the top cut end


30


in a manner such that the measurement blades


41


,


42


,


43


contact the surface of the top cut end


30


.




While the present invention has been described in connection with what is considered the most practical and preferred embodiment, it is understood that this invention is not limited to the disclosed embodiment but is intended to cover various arrangements included within the scope of the broadest reasonably interpretations and equivalent arrangements. For example, the present invention can also be used to check cut lines or end surfaces on other hollow cylinders with large dimensions.



Claims
  • 1. A process for measuring the mutual orientation of a hollow cylinder and a cut end of a body in which the hollow cylinder is formed, said process comprising the steps of:placing a laser gyroscope on an inner wall of a hollow cylinder; electronically registering the three-dimensional orientation of said laser gyroscope according to at least two angular coordinates relative to a laboratory system; storing said three-dimensional orientation as a first measurement result; supporting said laser gyroscope on said cut end; electronically registering the three-dimensional orientation of said laser gyroscope on said cut end according to at least two angular coordinates relative to a laboratory system; storing said three-dimensional orientation as a second measurement result; comparing said first and second measurement results to obtain a value of a phase displacement angle; and displaying said value of said determined phase displacement angle.
  • 2. The process as claimed in claim 1, wherein said step of supporting said laser gyroscope on said cut end comprises placing said laser gyroscope directly on said cut end.
  • 3. The process as claimed in claim 1, wherein said step of placing said laser gyroscope on a wall of a hollow cylinder placing comprises placing said laser gyroscope on an inside wall of the hollow cylinder.
  • 4. The process as claimed in claim 1, wherein said laser gyroscope is provided with measurement blades, said measurement blades being used for contacting at least one of said inside surface of the hollow cylinder and a planar end surface of said cut end of the body during said electronically registering steps.
  • 5. The process as claimed in claim 1, wherein said step of supporting said laser gyroscope on said cut end comprises the steps of placing a support for supporting said laser gyroscope on the end surface of said cut end and placing said laser gyroscope on said support.
  • 6. The process as claimed in claim 1, wherein said step of placing the laser gyroscope on the inner wall of the hollow cylinder is repeated at different points around the circumference of the inner wall for increasing the accuracy of the first measurement result.
  • 7. A device for measuring the mutual orientation of a hollow cylinder and a planar cut end of a body containing said hollow cylinder, said device comprising:a high-precision laser gyroscope having means for contacting an inner surface of a said hollow cylinder and for mounting the laser gyroscope on an end surface of said cut end.
  • 8. The device as claimed in claim 7, wherein a support mechanism is provided for supporting said laser gyroscope indirectly on said the end surface of said cut end.
  • 9. The device as claimed in claim 7, wherein said device further comprises means for measuring directional characteristics of cylinders in large-volume internal combustion engines.
  • 10. The device as claimed in claim 7, wherein said laser gyroscope is provided with measurement blades for contacting at least one of said inside surface of the hollow cylinder and a surface of said planar cut end of said body.
Priority Claims (1)
Number Date Country Kind
199 47 292 Oct 1999 DE
US Referenced Citations (9)
Number Name Date Kind
4521968 Wiltermood et al. Jun 1985 A
4635375 Tarcsafalvi Jan 1987 A
4756088 Russell et al. Jul 1988 A
5038485 Beissbarth Aug 1991 A
5274566 Reed et al. Dec 1993 A
5426507 Rando Jun 1995 A
5778543 Schneider et al. Jul 1998 A
5802303 Rosenquist Sep 1998 A
6044571 Strait Apr 2000 A
Foreign Referenced Citations (3)
Number Date Country
195 46 405 Jun 1997 DE
10-160432 Jun 1998 JP
10-160433 Jun 1998 JP
Non-Patent Literature Citations (1)
Entry
Diagnostic Instruments, Hand Held Computing Update Summer 1999, One Page.