The invention relates to a process to extract a geological horizon and related properties from their image deduced from seismic data.
The invention also relates to a device to extract a geological horizon and associated properties from their image deduced from seismic data.
The invention finally relates to computer software to extract a geological horizon and related properties from their image deduced from seismic data.
There are known processes for extracting the horizon and their seismic attributes. In these known processes, there is constructed a three-dimensional seismic attribution matrix of the same size and same sampling as the initial three-dimensional seismic matrix.
To attribute to each point on the horizon a value of seismic attribution, one can either interpolate the surrounding modes of the three-dimensional seismic attribution matrix or select the stored value in the mode which is closest to the three-dimensional seismic attribution matrix.
In the case of interpolation, the corresponding preprocessing requires a large processing time and a very great quantity of available memory; this is why it is generally necessary to carry out this pretreatment on a powerful computer.
In the case of the choice of attribution of the nearest node, this pretreatment is not necessary, and the determination of the attribution can only be carried out at points adjacent the points of the network of the original three-dimensional seismic matrix.
The principal drawback of the prior art is to introduce the defects or artifacts which induce critical errors on the horizon and the seismic attributes and lead to poor geological interpretation of the seismic measurements.
The first object of the invention is to improve the known technique by providing a direct and more exact computation, by minimizing the risk of possible error on the attributes at all points on the horizon.
A second object of the invention is to suppress the vertical errors that are adapted to lead to a poor geological interpretation.
The invention has for its object a process to extract a geological horizon and associated properties from a seismic representation, in which there is constructed a continuous function Sij,k(t) by interpolation or approximation of the discrete seismic traces of a multidimensional seismic matrix, said function being designated as a “continuous local seismic trace”, comprising the following steps:
a). using as optimum offset of two adjacent continuous local seismic traces, the value of the offset rendering a maximum their correlation function;
b). taking as conditional neighborhood of a continuous “central” local seismic trace Sij,k(t) the sub-neighborhood consisting in adjacent traces Spq,k(t) corresponding to optimum offsets associated with correlations Rij,pq,k(h) greater than a predetermined threshold comprised between 0 and 1;
c). constructing a two-dimensional extraction matrix adapted to be filled with extracted values;
d). choosing a seed point P(i,j,t) and determining the point P(i,j,k) that is vertically closest;
e). estimating the related properties of the conditional neighborhood and filling the two-dimensional extraction matrix with offset properties by translation of the current variable (t) of the optimum offset value (hij,pq,k) corresponding to the point P(i,j,k) vertically nearest.
According to other characteristics of the invention:
The invention also relates to a device for practicing the process according to the invention, comprising means to use as optimum offset of two adjacent continuous local seismic traces, the value of the offset rendering a maximum their correlation function, means to take as conditional neighborhood of a central continuous local seismic trace Sij,k(t) the sub-neighborhood consisting in adjacent traces Spq,k(t) corresponding to optimum offsets associated with correlations Rij,pq,k(h) greater than a predetermined threshold comprised between 0 and 1, means to construct a two-dimensional extraction matrix adapted to be filled with extracted values, means to select a seed point P(i,j,t) and to determine the point P(i,j,k) which is vertically nearest, and means to estimate the related properties of the conditional neighborhood and to fill the two-dimensional extraction matrix with offset properties by translation of the current variable (t) of the value of the optimum offset corresponding to the point P(i,j,k) which is vertically nearest.
According to other characteristics of the invention:
The invention finally has for its object a computer software, comprising elements of program code to carry out the steps of a process according to the invention, when said program is executed by a computer.
The invention will be better understood from the description which follows, given by way of non-limiting example, with reference to the accompanying drawings, in which:
With reference to
In
The assembly of seismic amplitudes corresponding to a geophone Gij of coordinates i, j is a one-dimensional matrix (Sij1, Sij2, . . . , Sijk, . . . , SijN) called a discrete seismic trace, because this one-dimensional matrix corresponds to the trace according to the point of horizontal coordinates i, j of the three-dimensional seismic matrix obtained by seismic measurements.
The vertical axis t oriented along a descending vertical designates usually the time, but can also be considered to represent a depth from the surface.
The invention relates not only to the application of a third coordinate t representative of time, but also to a third coordinate t representative of depth.
From the discrete seismic trace located on the vertical of a geophone Gij, there is defined, by interpolation or approximation, discrete values about t−tk=k, a continuous function Sij,k(t) which is designated as the “continuous local seismic trace”. The approximation or interpolation methods for discrete values to give rise to a continuous function are numerous, and comprise particularly polynomial interpolations or approximations, as well as polynomial trigonometric interpolations or approximations.
Any other interpolation or approximation variant giving a continuous function can also be applied to the present invention to provide a “continuous local seismic trace”.
In
By way of example, the horizontal spatial coordinates p, q corresponding to geophone Gpq are adjacent the horizontal spatial coordinates i, j corresponding to the geophone Gij if the absolute values of the differences i−p and j−q are less than given whole numbers, for example 2.
In this case, as shown in
In the case of continuous local seismic traces produced by seismic measurements, the profile of the geological horizons introduces vertical offsets between the adjacent continuous local seismic traces. For determining the relationships between two adjacent local continuous seismic traces Sij,k(t) and Spq,k(t) centered on the same sampling vertical coordinate t=tk=k and corresponding to different spatial coordinates i, j and p, q, there is calculated the correlation function Rij,pq,k(h) of two continuous local seismic traces.
The correlation function of two adjacent continuous local seismic traces is obtained by the following equation
in which the numerator corresponds to the covariance function of Sij,k(t) and Spq,k(t) obtained by the following expression
In this integral defining Cij,pq,k(h), the parameter Δ defines a “vertical investigation window” about t=tk=k.
For example, if the continuous local seismic traces Sij,k(t) and Spq,k(t) are trigonometric polynomials of the following form interpolating the seismic data
then one can show that the covariance function Cij,pq,l(h) is itself a trigonometric polynomial of the following form in which the coefficients Asij,pq,k and Bsij,pq,k depend on the coefficients asij,k, aspq,k, bsij,k and bspq,k:
A conventional and known mathematical result is that the correlation function
translates a similarity of the correlative functions when this correlation function approaches 1.
The study of the correlation functions of the continuous local seismic traces Sij,k(t) and Spq,k(t) permit defining as optimum offset the value hij,pq,k of h corresponding to the maximum of the correlation function Rij,pq,k(h), which is to say to the maximum of the correlation function nearest 1. Contrary to the prior art based on a discrete formulation of the correlation function Rij,pq,k(h), the use of a continuous formulation of the seismic traces and hence of the correlation function permits obtaining an optimum offset which is not necessarily a whole number multiple of the sampling interval along the vertical axis corresponding to the variable t.
The definition of the optimum offset hij,pq,k of two adjacent continuous local seismic traces permits obtaining a first approximation of the horizons passing through this reference continuous local seismic trace Sij,k(t), as represented in
In
As can be seen in
The above arrangements thus provide a continuous modeling permitting the practice of the invention.
With reference to
In step 101, there is defined a two-dimensional matrix whose indices of lines and columns correspond to the coordinates of the seismic measurement geophones.
In step 102, there is selected a seed point P(i,j,t) or first extraction point.
In step 103, there is determined the node (i,j,k) of the three-dimensional seismic matrix nearest the seed point P(i,j,t).
This node has the spatial coordinates i,j and time or depth coordinates the coordinates tk=k nearest the coordinate t of the seed point P(i,j,t) selected in step 102.
In step 104, there is selected first of all the local continuous local seismic traces Spq,k(t) belonging to the conditional neighborhood Nij,k(r) defined in step 100 and such that the indices (p,q) correspond to an empty location on the two-dimensional matrix defined in step 101.
Then, for each local continuous seismic trace Spq,k(t) thus selected, there is attributed to the point P(p,q,t) the value P(p,q,t+hij,pq,k), in which hij,pq,k is the optimum offset of the point P(p,q,t+hij,pq,k) relative to the adjacent point P(i,j,k) determined in step 103. This point P(p,q,t+hij,pq,k) is considered as a new point located on the horizon and is stored at the location (p,q) on the two-dimensional matrix defined in step 101.
The process which has been described is adapted to determine the assembly of the points belonging to the horizon passing through a point P(i,j,t), but it also applicable to attribute to these points, to the extent of their determination, an assembly of properties characterizing the physical nature of the terrains adjacent the horizon thus determined.
To this end, one can attach to each point P(p,q,t+hij,pq,k) of the two-dimensional matrix defined in step 101, an assembly of properties called “seismic attributes”.
These properties are generally represented by different colors on screen displays, so as to permit a rapid visualization without risk of error of the properties associated with a geological horizon.
In practice, there are carried out steps similar to the steps described with reference to steps 100 to 104 and there are constructed the attributes of the point P(p,q,t+hij,pq,k) with the help of the equation of the local continuous seismic trace Spq,k(t); for example, there is thus constructed an envelope attribute, a phase attribute or a frequency attribute, in a manner known per se, for example according to information in the publication of TANER M. T., KOEHLER F., SHERIFF R. E., (1979), Complex seismic trace analysis, GEOPHYSICS, volume 44, No. 6, pages 1041 to 1063.
This method thus permits displaying the seismic attribute on the extracted horizon by painting it with corresponding colors.
The process which has been described thus permits defining the extraction values of a predetermined horizon corresponding to real data, but only in a conditional neighborhood of the point P(i,j,k) nearest the selected seed point P(i,j,t).
To propagate the process of extraction to the assembly of two-dimensional matrix defined in step 101, there is first of all constructed an assembly of new seed points constituted by new points P(p,q,t+hij,pq,k) located on the horizon which have been determined and are stored in corresponding locations (p,q) of the two-dimensional matrix defined in step 101. Each of these points is memorized in step 106, to be re-injected in step 102, and there serving as a new seed point.
This propagates the successive processing to the assembly of the two-dimensional matrix corresponding to the geophones.
When no new seed point can be found, the process is oriented in step 106 toward a step 107 of visualization on the screen of the horizons or attributes or properties associated with the geological horizon, to as to permit a visualization in color or in gray of the corresponding properties of the corresponding extracted geological horizon corresponding in real time t.
Thus, at the end of the algorithm defined in
The assembly of the points can be reordered with its neighbors, according to
The process according to the invention is preferably practiced with a device comprising suitable means for practicing the steps described with reference to
In particular, a device according to the invention comprises memory means needed for the successive computations and the visualization means necessary for step 107.
Preferably, a device according to the invention is a programmable device controlled by computer software comprising program code elements to execute the steps of the process described with reference to
The invention described with reference to several particular objects is in no way thereby limited, but on the contrary covers all modification of form and any variation of embodiment within the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
02 07596 | Jun 2002 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR03/01753 | 6/11/2003 | WO | 00 | 8/8/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO04/001450 | 12/31/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3731269 | Judson et al. | May 1973 | A |
4672546 | Flinchbaugh | Jun 1987 | A |
5615171 | Hildebrand | Mar 1997 | A |
5930730 | Kirlin et al. | Jul 1999 | A |
6138075 | Yost | Oct 2000 | A |
6138076 | Graf et al. | Oct 2000 | A |
6151555 | Pepper et al. | Nov 2000 | A |
6665615 | Van Riel et al. | Dec 2003 | B2 |
20020022930 | Dalley et al. | Feb 2002 | A1 |
20040204859 | Knobloch | Oct 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060129359 A1 | Jun 2006 | US |