1. Field of the Invention
The present invention relates to a device and system for the intermediate storage of thermal energy.
2. Description of the Background Art
In view of the dwindling primary raw materials worldwide as resources for energy production, regenerative and alternative concepts are becoming more and more important. Examples are the use of solar energy in solar thermal power plants or the use of waste heat from industrial manufacturing processes. Because these alternative forms of energy are coupled to solar radiation or to certain industrial processes, however, their continuous availability is not guaranteed. Their practical usability therefore depends greatly on the possible intermediate storage of energy accumulating at a certain time and the ability to provide it at a later time. The storage of thermal energy therefore has a key importance in the development and implementation of alternative concepts for energy recovery.
Known systems for storing thermal energy comprise substantially a heat source, for example, a solar collector or an internal combustion engine, a heat accumulator with a thermally chargeable and dischargeable storage medium and at least one heat circuit for charging and discharging the heat accumulator, in which a working medium flows from the heat source to the heat point of use or from the heat accumulator to the heat point of use.
The storage medium has central importance for the effectiveness of the entire system. It must satisfy substantially two requirements: namely, on the one hand, have a high thermal storage capacity, i.e., have as great a capability as possible to take up thermal energy per unit weight and unit volume, and, on the other, be characterized by a high thermal conductivity, i.e., the heat must be able to spread as rapidly as possible in the storage medium.
Fluids that meet both of the above criteria are already known as a storage medium. For the low-temperature range to about 100° C., water is suitable as a storage medium, because it is available cost-effectively and is characterized by its high thermal storage capacity. A disadvantage, however, is the rapid increase in vapor pressure at temperatures above 100° C., which necessitates costly pressure vessels. For this reason, fluids with a higher boiling point are used for higher temperature ranges, e.g., heat transfer oils or salt melts. This is associated with a considerable increase in investment costs, however. A convective heat transfer results owing to the circulation of liquid storage media with the advantage of a rapid and uniform charging and discharging of the storage medium.
Apart from liquid accumulators, solid storage media are also known, which may include, for example, metals such as steel or cast iron. Such metals are well suited as a storage medium because of their high specific weight and their high thermal conductivity but lead to high investment costs.
DE 10 2008 047 557 A1 also discloses a solid storage medium made of a mineral material, through which a plurality of axis-parallel pipes run, in which an energy transfer medium flows in the heat circuit. The thermal energy of the energy transfer medium is introduced into the storage medium via the pipes and is distributed there gradually and uniformly over the entire volume. The mutual distance of the individual pipes and thereby their number are predetermined by the thermal conductivity of the storage material, because it must be assured for the practical usability of the heat accumulator that the thermal energy spreads within the entire storage device as rapidly and uniformly as possible in order to make possible a rapid charging and discharging of the energy storage device.
Solid storage media made of a mineral material in fact have the great advantage of being able to be produced cost-effectively but during their use it must be accepted that they have only a limited thermal conductivity. In order to achieve a satisfactory heat conduction, nevertheless, the pipes are arranged at a relatively high density in the solid storage media, as a result of which their number and thereby again the production costs increase. A cost advantage achieved with the use of a mineral solid storage medium is thereby again partially nullified.
It is therefore an object of the present invention to improve prior-art solid storage media in regard to their economy and function.
The starting point for the invention comprises heat accumulators in which charging and discharging of the solid storage medium occurs via an energy transfer medium flowing in the pipe system, whereby the temperature gradient between the energy transfer medium and the solid storage medium is the driving force for the heat flow. Moreover, the thermal conductivity of the employed storage materials has a significant effect on the charging and discharging of the solid storage medium. For example, steel in comparison with concrete has a thermal conductivity that is higher by a factor of about 40, with the result that the thermal energy provided in the pipe system spreads only slowly in the solid storage medium. In a solid storage medium made of concrete, this has the result that areas, directly surrounding the individual pipes, of the solid storage medium are charged very rapidly thermally, however, with increasing distance from the individual pipes a great temperature drop is to be observed (
The invention resolves this problem with the aid of heat conducting elements, which have a higher thermal conductivity compared with the material of the solid storage medium and extend proceeding from the individual pipes into the solid storage medium. Preferred materials for the heat conducting elements are metals such as, for example, steel, aluminum, copper, or graphite, which can be available both as ground or compressed natural graphite and expanded or compressed natural graphite (graphite film). The heat conducting elements in this way form flow pathways for the rapid transport of thermal energy over greater distances within the solid body, from which then a uniform loading of the storage volume occurs over only relatively short distances. This allows for a rapid and uniform charging and discharging of the solid storage medium with the best possible utilization of the storage volume. The invention is thus characterized by a high specific heat output of the solid storage medium also at relatively great radial distances of the individual pipes of the pipe system and thus combines the seemingly contradictory requirements for a high thermal conductivity, on the one hand, and a cost-effective storage material, on the other.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:
a and b show details for the embodiment illustrated in
a shows an oblique view of an eighth embodiment of a heat accumulator according to the invention;
b shows a detail of the heat accumulator illustrated in
a shows an oblique view of a ninth embodiment of a heat accumulator according to the invention;
b shows a detail of the heat accumulator illustrated in
a and b show cross sections through a heat accumulator of the invention with an illustration of the heat distribution during charging of the heat accumulator.
Another element of the invention is the pipe system labeled with the number 5, which comprises a plurality of individual pipes 6. Individual pipes 6 go through solid storage medium 2 in its longitudinal direction in an axis-parallel position, which is made clear in
As is evident primarily from
Individual pipes 6 end as already described in cross-sectional levels, which run at a clear distance to front faces 3 and 4, for example, at a distance of 40 cm. Front plates 11 and 12, which are provided with through-openings according to the pattern of individual pipes 6, are arranged in these cross-sectional levels, therefore plane-parallel to front faces 3 and 4. Individual pipes 6 open on the back of face plates 11 and 12 into collection channels, which in turn are connected via connecting pipe sections 16 to a distributor 17 or collector 18, each of which have a pipe connection 19 for the inlet or outlet of heat accumulator 1 (
A fluid energy transfer medium flows through pipe system 5, for example, a heat transfer oil, which is supplied to the circulation and transports the thermal energy for charging heat accumulator 1 from a heat source, for example, a solar collector, to heat accumulator 1 or for discharging accumulator 1 the thermal energy present in accumulator 1 to a user. The thermal energy inherent to the energy transfer medium is thereby first transferred to pipe system 5, from where it is fed into solid storage medium 2.
To avoid damage due to temperature-induced different linear expansions between solid storage medium 2 and pipe system 5, a mechanical decoupling of these two components is provided, which can occur, for example, by providing a clear gap or a gap, filled with a thermally conductive material, between solid storage medium 2 and pipe system 5.
Whereas primarily a heat distribution in solid storage medium 2 occurs in the axial direction in individual pipes 6 due to the energy transfer medium flowing therein, horizontal heat conducting elements 20 and vertical heat conducting elements 21 are provided for lateral distribution of the thermal energy. Heat conducting elements 20, 21 in the present exemplary embodiment has flat metal bars.
Horizontal heat conducting elements 20 are placed with their longitudinal axis transverse to individual pipes 6 of a level on these and due to their length extend over several individual pipes 6. The axial distance of horizontal heat conducting elements 20 is within a range from 5 cm to 30 cm and is 15 cm in the present example. The contact-based placement of horizontal heat conducting elements 20 on individual pipes 6 forms a substantially linear heat transfer region via which the thermal energy is introduced from individual pipes 6 in to horizontal heat conducting elements 20.
In their simplest embodiment, because of their own weight, heat conducting elements 20 rest on individual pipes 6 without other securing measures. Preferred, however, is their fixation at a predetermined place, for example, by welding or binding with binding wire. Another type of fixation can also occur by the interlacing of horizontal heat conducting elements 20 in individual pipes 6 lying in a level, whereby heat conducting element 20 alternates the attachment side from individual bar 6 to individual bar 6, therefore is guided once above and once below past individual bars 6. Because of the elastic properties of heat conducting elements 20, the restoring forces in this case result in a pressing of heat conducting elements 20 against individual pipes 6.
For heat distribution in the vertical direction, the embodiment of the invention shown in
A pipe system 5 prepared in this way can be provided for the completion of solid storage medium 2, for example, in a closed formwork and concreted. In this way a solid storage medium 2 of concrete forms, which is run through in the longitudinal direction by individual pipes 6 of pipe system 5 and in the horizontal and vertical lateral direction in addition by horizontal heat conducting elements 20 and vertical heat conducting elements 21. This type of solid storage medium 2 can be charged or discharged uniformly with thermal energy with a very short time despite the limited thermal conductivity of the storage material.
As already mentioned, only the functional principle of heat accumulator 1 is to be clarified with the type of presentation selected in
Groove-shaped recesses 25 are formed in the top side of prefabricated elements 23 for receiving individual pipes 6 in the butt joint. Groove-shaped recesses 25 have a rounded bottom and a depth and width somewhat larger than the diameter of individual pipes 6, which results in a U-shaped cross section of groove-shaped recesses 25.
Groove-shaped recesses 25 extend over the entire length of solid storage medium 2, so that if a number of prefabricated elements 23 are placed one behind the other in the longitudinal direction, groove-shaped recesses 25 run aligned over the entire length. The lateral distance of groove-shaped recesses 25 among one another corresponds to the lateral distance of individual pipes 6, whereby depending on the width of prefabricated elements 23 a prefabricated element 23 may have up to a plurality of groove-shaped recesses 25.
In addition, in the butt joint of two prefabricated elements 23 an upper horizontal heat conducting element 26 and a lower horizontal heat conducting element 27 can be seen, each of which has an thin-walled, planar structure and may include, for example, sheet metal or a graphite film. Heat conducting elements 26 and 27 extend over the entire width and/or length of prefabricated elements 23 or also only over a partial width and/or partial length, whereby in the latter case the stringing together of a number of heat conducting elements 26 and 27 is possible.
Whereas the upper heat conducting element 26 is formed planar over its entire surface, the lower heat conducting element 27 in the regions assigned to groove-shaped recesses 25 has U-shaped bent areas to form through-shaped seats 28 for individual pipes 6. In this way seats 28 with their outer circumference fit form-fittingly in groove-shaped recesses 25 of prefabricated elements 23 and with their inner circumference on individual pipes 6.
The building of such a solid storage medium 2 occurs by the sequential layering of the individual components, as is shown in
The additional embodiment of the invention, shown in
Prefabricated element 23 is formed in a corresponding manner; i.e., it has a vertical slot 30, which extends from the bottom of groove-shaped recess 25 into prefabricated element 23, as far as is possible for structural reasons. In the present case, slot 30 extends over half the thickness of prefabricated element 23.
It becomes clear from
The advantage of this embodiment of the invention is that individual pipes 6 of pipe system 5, after being placed in seat 28″ of a lower heat conducting element 27″ with their lower circumference form a projection in the butt joint in a lower prefabricated element 23. After the prefabricated elements 23 of overlying layer 24 are placed on top, thus a centering of the two overlying prefabricated elements 23 occurs via a form fit. A centering of the prefabricated elements can also be achieved by separate form-fitting component in the butt joint, such as, for example, groove bars and female connectors or pin and indentation.
In the embodiments of the invention according to
The detail of another embodiment of the invention, as shown in
Heat conducting pipe 34 surrounds individual pipes 6 of pipe system 5 in a coaxial manner, whereby the annular gap between heat conducting pipe 34 and individual pipe 6 is filled with a thermally conductive material 41 such as, e.g., ground natural graphite or metal filings, to decouple mechanically solid storage medium 2 and pipe system 5 from each other and at the same time to assure the heat transfer from individual pipes 6 to heat conducting element 33. According to a variation of this embodiment of the invention, this function can also be assumed by fluids with which the annular gap sealed in each case on the front side is filled. Such embodiments of the invention are capable of compensating for dimensional differences between pipe system 5 and solid storage medium 2, which can greatly facilitate the assembly of heat accumulator 1.
The particular feature of the embodiment of the invention as shown in
a and b show another embodiment of the invention. A solid storage medium 2 is evident which includes a plurality of concrete prefabricated elements 46. Concrete prefabricated elements 46 are stacked one above the other in horizontal layers, whereby a planar horizontal heat conducting element 47 is arranged in the butt joints of two overlying layers in each case. This produces a structure of solid storage medium 2, in which concrete prefabricated elements 46 and heat conducting elements 47 are arranged alternately in the vertical direction. Heat conducting element 47 in this case corresponds in structure and material selection to those described in regard to
Concrete prefabricated elements 46 of a horizontal layer have among one another a horizontal lateral distance to the neighboring concrete prefabricated element 46; this results in a longitudinal gap 49 aligned in the horizontal direction and extending over the entire height of concrete prefabricated elements 46. Longitudinal gap 49 is used to receive individual pipes 6 of pipe system 5, which run at half the height of a longitudinal gap 49 in the middle between the horizontal heat conducting elements 47. The width of longitudinal gap 49 therefore corresponds at least to the diameter of individual pipes 6.
To transfer the thermal energy from individual pipes 6 to horizontal heat conducting elements 47 and vice versa, in each case strip-shaped heat conducting elements 48 which enable a vertical heat transport and whose long side 50, assigned to individual pipe 6, is made concave in order to create as great a heat transfer region is possible, are arranged in longitudinal gaps 49. The opposite long side 51 of vertical heat conducting elements 48 is made planar, in order to form as large a contact region as possible with horizontal heat conducting elements 47. In cross section, in each case two such heat conducting elements 48 fill longitudinal gap 49 above and below an individual pipe 6.
During charging of solid storage medium 2, therefore, the thermal energy supplied in individual pipes 6 is taken up linearly via vertical heat conducting elements 48 and further fed into the planar horizontal heat conducting elements 47, where a rapid and extensive distribution of the thermal energy in solid storage medium 2 occurs. Proceeding from heat conducting elements 47, the supplying of concrete prefabricated elements 46 with thermal energy for its storage then occurs.
A variation of this embodiment is shown in
The effective mode of action of a heat accumulator 1 of the invention compared with conventional heat accumulators comes across clearly in
In contrast, the temperature profile shown in
Not shown in the drawing but still within the scope of the invention are embodiments of the invention, in which the heat conducting elements includes a paste-like or free-flowing material, for example, of metal filings or metal powder, which is applied like the already described sheets or graphite films in a uniform thickness between two layers of the solid body. These materials have the advantage that with the application of the load from the overlying layers a deformation and adaptation of the heat conducting elements to the surface contour of the layers occur and thus despite possible tolerances a snug butting of the heat conducting elements against the solid storage medium and thereby optimal heat transfer are assured. So that these materials do not escape from the solid storage medium in the edge regions, a sheathing of these materials can be provided.
According to another embodiment of the invention, which is not shown, it is provided to design the heat conducting elements as a grid structure, which can be achieved in a simple way, for example, by the use of a wire-mesh-like network. Here as well, an automatic adaptation to possible irregularities occurs in the butt joint during the placement of two prefabricated parts one on top of another. Furthermore, the manageability and economy of the invention can be increased further with the saving of weight and materials.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
DE102009060911.3 | Dec 2009 | DE | national |
This nonprovisional application is a continuation of International Application No. PCT/EP2010/007909, which was filed on Dec. 23, 2010, and which claims priority to German Patent Application No. DE 10 2009 060 911.3, which was filed in Germany on Dec. 31, 2009, and which are both herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2010/007909 | Dec 2010 | US |
Child | 13539980 | US |