This application is a U.S. national stage application of International Patent Application No. PCT/EP2018/055940, filed Mar. 9, 2018, which claims priority to Patent Application No. GB 1703775.5, filed on Mar. 9, 2017, Patent Application No. GB 1703781.3, filed Mar. 9, 2017, and Patent Application No. GB 1703783.9, filed Mar. 9, 2017. All of these applications are hereby incorporated by reference in their entireties and made part of this disclosure.
Embodiments described herein relates to a skin perfusion pressure determination device, apparatus and method of determining skin perfusion pressure.
Wound healing is natural process performed by the human body in response to injury. The amount of time taken for a wound to heal is dependent on many different factors which include the human body's ability to heal itself and any treatments that are applied to the wound to accelerate wound healing. Understanding the healing status of a wound and being able to monitor the healing process helps to inform decisions on further treatment of the wound and can also assist in the development of future wound therapies.
One factor that is known to be correlated with wound healing is the Skin Perfusion Pressure (SPP) in tissue adjacent the wound. SPP is the amount of pressure required to restore blood flow to blood vessels within skin tissue following a controlled occlusion of the blood vessels using a blood pressure cuff.
Techniques for detecting the restoration of blood flow include radioisotope clearance, laser doppler flow measurement and photoplethysmography. Such techniques are typically performed by clinicians and require instrumentation that is often bulky, complicated and expensive.
Additionally, a wound dressing is typically applied to a wound in order to protect the wound from pathogens, assist healing of the wound and to protect the area of the wound from further injury. In order to assess healing, the tissue in and around the wound may be inspected periodically. Inspection can be carried out by a clinician using the naked eye, but may also be carried out using optical devices that analyze the appearance of the wounded area to determine the state of the wound. To access the wounded area, the wound dressing must be removed. This is time consuming, inconvenient and often uncomfortable for the patient. Moreover, the original dressing is usually replaced by a fresh dressing even though the old dressing may not have needed replacing at the time of inspection
In order to assess healing, a probe or other form of inspection device may be used to measure a parameter associated with wound healing at various points about the perimeter of the wound dressing. One example is the measurement of the amount of blood perfusion in the tissue surrounding the wound. The amount of blood perfusion will, however, vary about the periphery of the wound dressing. For example, the amount of blood perfusion of tissue at the periphery of a wound to a forearm may be greater in tissue closer to the elbow than in tissue closer to the wrist. Repeated measurements at different locations by clinicians can therefore produce results which are inconsistent and unreliable for determining the status of the healing process.
It is an aim of the embodiments described herein to at least partly mitigate the above-mentioned problems.
It is an aim of certain embodiments to provide a skin perfusion pressure determination device, apparatus and a method of determining skin perfusion pressure for determining skin perfusion pressure at a target area.
Additionally, certain embodiments include a wound dressing which facilitates convenient inspection of the area of a wound without the inspection process being time consuming or uncomfortable for the patient.
Certain embodiments can provide a wound dressing which can be applied to a patient's wound in a predetermined orientation such that inspection of skin tissue in the vicinity of the wound can be conducted reliably, consistently and repeatedly.
Embodiments of the present disclosure relate to apparatuses and methods for wound treatment. Embodiments of the present disclosure provide a skin perfusion pressure determination device, apparatus and a method of determining skin perfusion pressure for determining skin perfusion pressure at a target area.
According to a some embodiments, there is provided a skin perfusion pressure determination device comprising a sensor module having a first sensor for sensing a first parameter associated with a pressure exerted on a target area by the sensor module and a second sensor for sensing a second parameter associated with an amount of blood perfusion at the target area, wherein the first sensor and the second sensor are arranged such that, when the sensor module is pressed against the target area the first sensor produces an output corresponding to the sensed first parameter and the second sensor produces an output corresponding to the sensed second parameter.
The first sensor may comprise a force sensor arranged to determine the force exerted by the sensor module on the target area.
The force sensor may be arranged such that when the sensor module is pressed against the target area, the second sensor is disposed between the target area and the force sensor.
The second sensor may comprise a light source and an optical detector arranged to receive light emitted by the light source which has been reflected by the target area.
The light source may comprise at least one light emitting diode and the optical detector comprises at least one photodetector. The second sensor may be a pulse sensor.
The device may be a portable device comprising a probe portion. The probe portion may comprise the sensor module.
The probe portion may comprise a pad portion having a lower surface which, in use, is pressed against the target area.
The device may be a portable device comprising a cuff portion for wrapping about a limb of a patient, the sensor module is arranged on an inner portion of the cuff.
The cuff may be inflatable. The cuff may be configured such that inflation of the cuff presses the sensor module against the target area.
The cuff may be manually actuated. The cuff may be configured to be inflated by an electromechanical actuator or fluid-based inflation device.
The device may comprise a wound dressing. The sensor module may be integral with the wound dressing.
The wound dressing may comprise an actuator arranged to press the sensor module against the target area.
The skin perfusion pressure determination device may further comprise a processor for processing an output of the first sensor and an output of the second sensor. The processor may be configured to determine that the output of the second sensor satisfies a predetermined condition associated with a predetermined amount of blood perfusion at the target area.
The predetermined condition may be a condition which corresponds to an amount of blood perfusion at the target area which exceeds a predetermine threshold.
The predetermined condition may be a condition that corresponds to the presence of a pulsatile component of blood flow at the target area.
The processor may be configured to produce an output which represents a pressure exerted on the target area by the sensor module when the second parameter satisfies the predetermined condition.
The skin perfusion pressure determination device may further comprise a memory for storing at least one of the predetermined condition and the output of the processor.
According to some embodiments, there is provided apparatus comprising the skin perfusion pressure determination device of the first aspect of the disclosure, wherein the apparatus comprises a display for displaying information representing at least one output of the first sensor and the second sensor.
According to some embodiments, there is provided a method of determining skin perfusion pressure comprising the steps: pressing a sensor module against a target area, wherein the sensor module has a first sensor for sensing a first parameter associated with a pressure exerted on a target area by the sensor module and a second sensor for sensing a second parameter associated with an amount of blood perfusion at the target area; subsequently reducing the pressure exerted on the target area by the sensor module; processing with a processor a first sensor output corresponding to the sensed first parameter and a second sensor output corresponding to the sensed second parameter to determine that the output of the second sensor satisfies a predetermined condition corresponding to an amount of blood perfusion at the target area and outputting an output from the processor which corresponds to the pressure exerted by the sensor module on the target area when the second parameter satisfies the predetermined condition.
The predetermined condition may be a condition which corresponds to an amount of blood perfusion at the target area which exceeds a predetermined threshold.
The predetermined condition may be a condition that corresponds to the presence of a pulsatile component of blood flow at the target area.
The step of reducing the pressure exerted by the sensor module on the target area may comprise the steps of: processing with the processor the second sensor output to determine that the second parameter satisfies a further predetermined condition associated with an amount of blood perfusion at the target area and subsequently reducing the pressure exerted by the sensor module on the target area.
The further predetermined condition may be a condition which corresponds to an amount of blood perfusion at the target area which is below a predetermined threshold.
According to some embodiments, there is provided a method of determining skin perfusion pressure comprising the steps: processing with a processor a first sensor output representing a sensed first parameter associated with a pressure applied to a target area and a second sensor output representing a sensed second parameter associated with an amount of blood perfusion at the target area to determine that the output of the second sensor satisfies a predetermined condition associated with an amount of blood perfusion at the target area and outputting an output from the processor which corresponds to the pressure exerted by the sensor module on the target area when the second parameter satisfies the predetermined condition.
The predetermined condition may be a condition which corresponds to an amount of blood perfusion at the target area which exceeds a predetermined threshold.
The predetermined condition may be a condition that corresponds to the presence of a pulsatile component of blood flow at the target area.
The method may further comprise the steps of: processing with the processor the second sensor output to determine that the second parameter satisfies a further predetermined condition associated with an amount of blood perfusion at the target area and subsequently reducing the pressure exerted by the sensor module on the target area.
The further predetermined condition may be a condition which corresponds to an amount of blood perfusion at the target area which is below a predetermined threshold.
Certain embodiments of the present disclosure allow a parameter associated with the amount of blood perfusion in skin tissue to be measured at the same location at which a pressure to occlude blood vessels in the skin is applied during measurement of skin perfusion pressure. An accurate measurement of skin perfusion pressure can therefore be determined at the location at which the pressure is applied.
Certain embodiments of the present disclosure allow for blood perfusion pressure to be determined using a device comprising a single sensor module for sensing parameters associated with applied pressure to a target area and the amount of blood perfusion at the target area simultaneously. The device can therefore be made compact, portable and easy to operate.
According to some embodiments, there is provided a wound dressing comprising:
The predetermined wavelength may be a wavelength that corresponds to visible, ultraviolet or infrared light.
The predetermined wavelength may be between 495 nm and 1350 nm. In particular, the predetermined wavelength may be between 650 nm and 1350 nm.
The or each window may comprise an opening through the peripheral portion. The or each window may comprise an optically transparent material.
The optically transparent material may comprise at least one of polyvinyl chloride (PVC), cellulose acetate or acrylic or silicone or polyurethane or acylate.
The peripheral portion may have a lower surface and an adhesive on the lower surface for securing the wound dressing to a patient's skin.
The wound dressing may be an island-type dressing in which the wound protecting portion is disposed centrally and the peripheral portion extends around a perimeter of the wound protecting portion.
The peripheral portion may further comprise at least one lobe which projects away from the wound protecting portion, wherein the or each window is provided at least partially in the or each lobe respectively. The or each window may be circular or ovoid.
The wound dressing may comprise at least two windows adjacent the wound protecting portion. The wound protecting portion may be disposed between the windows.
The wound protecting portion may have four sides and the four windows which are disposed adjacent each of the sides respectively.
According to some embodiments, there is provided apparatus comprising: the wound dressing and a measurement probe comprising an optical sensor configured to sense light at the predetermined wavelength.
The measurement probe may comprise a pad portion having a lower surface which, in use, is pressed against a patient's skin, and the window has a size and shape which corresponds to the size and shape of the pad portion.
According to some embodiments, there is provided a method of sensing at least one characteristic associated with a wound or a region of tissue proximate to a wound, comprising the steps of: locating a wound dressing comprising a wound protecting portion over a wound whereby the wound protecting portion overlies the wound, locating a pad portion of a measurement probe at a window region of a peripheral portion of the wound dressing, and transmitting light from the measurement probe through the window.
The method may further comprise preventing light from the measurement probe penetrating through the wound dressing at remaining regions of the wound dressing away from the window.
The method may further comprise: one-by-one, locating the measurement probe consecutively at each of a plurality of windows on the wound dressing and taking respective probe measurements at each location.
Certain embodiments of the present disclosure allow for consistent inspection of a region of tissue at or proximate a wound using a measurement probe.
Certain embodiments of the present disclosure allow for repeated measurements at a region of tissue at or proximate a wound to be made at one or more predetermined locations by a measurement probe such that a record of measurements associated with wound healing can be compiled for each of the predetermined locations.
Certain embodiments of the present disclosure allow for inspection of a region of tissue at or proximate a wound without having to remove a wound dressing.
According to some embodiments, there is provided a wound dressing comprising an upper surface, and at least one indicium for determining the orientation of the wound dressing, about an axis which is orthogonal to the upper surface, relative to a surface on which the wound dressing is securable.
At least one indicium may be provided on the upper surface.
The wound dressing may comprise a wound protecting portion; and a peripheral portion which extends around at least part of the wound contacting portion, wherein the wound protecting portion comprises the at least one indicium.
The peripheral portion may have a lower surface and an adhesive on the lower surface for securing the wound dressing to a surface.
A plurality of indiciums may be provided on the upper surface. Each indicium may comprise at least one graphical marker which is different from each of the other graphical markers.
The wound dressing may have at least two poles and at least one graphical marker may be provided at each of the poles. Each marker may comprise an alphanumeric character. Each marker may comprise a directional marker.
The wound dressing may be an island-type dressing.
Each indicium may be a printed element or a recessed region or a protruding region of the wound dressing. Each indicium may comprise at least one of a color patch, a metal element, a magnetic element and a resonant tag. Each indicium may comprise an RFID tag.
The wound dressing may further comprise a least one sensor site and said at least one indicium provides a visible cue for locating the sensor site at a desired location with respect to a wound. Each sensor site may be associated with a respective at least one indicium.
Each sensor site may comprise a location where a wound dressing sensor is located, a location of a window configured to receive a portion of a probe portion of an inspection device, or a target area of the wound dressing configured to receive a portion of a probe portion of an inspection device.
Each indicium may comprise of an RFID tag and a graphical marker which are configured to be uniquely associated with a respective sensor site of the wound dressing.
According to some embodiments, there is provided a method of orientating a wound dressing to a desired orientation with respect to a surface, comprising the steps of: locating a wound dressing proximate to a wound, rotating the wound dressing about an axis orthogonal to an upper surface of the wound dressing to align at least one indicium on the upper surface at a desired rotatory orientation, and urging the wound dressing towards the wound thereby dressing the wound via the wound dressing.
The method may further comprise rotating the wound dressing to align at least one indicium on a peripheral portion of the wound dressing at a desired positional relationship with respect to a wound or a predetermined patient feature.
The method may further comprise the wound dressing further comprising at least one sensor site and the step of rotating the wound dressing comprises locating each sensor site at a desired location with respect to the wound.
The step of locating each sensor site may comprise locating a wound dressing sensor at the desired location or at a window portion of the wound dressing that locates a wound dressing sensor.
Certain embodiments of the present disclosure allow inspection of skin tissue in the vicinity of the wound to be conducted reliably, consistently and repeatedly.
Certain embodiments of the present disclosure allow for measurements of a parameter associated with wound healing to be compiled for specific locations in the vicinity of a wound such that progress of wound healing can be monitored accurately over a desired period of time.
According to some embodiments, there is provided a wound dressing comprising an upper surface; and at least one indicium for determining the orientation of the wound dressing, about an axis which is orthogonal to the upper surface, relative to a surface on which the wound dressing is securable; a wound protecting portion; and a peripheral portion which extends around at least part of the wound contacting portion, wherein the wound protecting portion comprises the at least one indicium, wherein a plurality of indiciums are provided on the upper surface, each indicium comprising at least one graphical marker which is different from each of the other graphical markers.
According to some embodiments, there is provided a wound dressing comprising: an upper surface; at least one indicium for determining the orientation of the wound dressing, about an axis which is orthogonal to the upper surface, relative to a surface on which the wound dressing is securable; a wound protecting portion; and a peripheral portion which extends around at least part of the wound contacting portion, wherein the wound protecting portion comprises the at least one indicium.
According to some embodiments, there is provided a wound dressing comprising an upper surface and at least one indicium for determining the orientation of the wound dressing, about an axis which is orthogonal to the upper surface, relative to a surface on which the wound dressing is securable, wherein each indicium comprises an RFID tag.
According to some embodiments, there is provided a wound dressing comprising an upper surface; at least one indicium for determining the orientation of the wound dressing, about an axis which is orthogonal to the upper surface, relative to a surface on which the wound dressing is securable; at least one sensor site, wherein said at least one indicium provides a visible cue for locating the sensor site at a desired location with respect to a wound, and wherein each indicium comprises of an RFID tag and a graphical marker which are configured to be uniquely associated with a respective sensor site of the wound dressing.
According to some embodiments, there is provided an apparatus comprising a wound dressing; a skin perfusion pressure determination device comprising a sensor module, the sensor module including a sensor configured to sense at least one characteristic associated with a wound or a region of tissue proximate to a wound; and a display configured to indicate at least one condition relating to the at least one characteristic associated with a wound or a region of tissue proximate to a wound sensed by the sensor module.
The skin perfusion pressure determination device can comprise a hand-held device.
The display can comprise a computer monitor, laptop, tablet, or smart phone.
The display can be configured to provide a visual indication of a measurement location, an applied force, an occlusion reached indication, high force warning, speed of movement indication, perfusion measurement result, or a measurement quality indication.
The display can be positioned on the skin perfusion pressure determination device.
The display can comprise one or more visual indicators.
The one or more visual indicators can comprise a multi-segment gauge type indicator, a symbol, a text and/or numeric indication, graphical indication, or circumferential indicators.
The one or more visual indicators can comprise one or more light emitting diodes (LED).
The one or more visual indicators can comprise an LED indicator, organic light emitting diodes (OLED) indicator, and/or EINK indicators.
The one or more visual indicators can comprise a multi-segment gauge type indicator, a symbol, a text and/or numeric indication, graphical indication, or circumferential indicators.
The sensor module can be configured to apply a pressure on a target area.
The sensor module can comprise a first sensor for sensing a first parameter associated with the pressure exerted on the target area by the sensor module and a second sensor for sensing a second parameter associated with an amount of blood perfusion at the target area.
The display can be configured to provide user instructions to increase the applied pressure or to reduce the applied pressure during a measurement process.
According to some embodiments, there is provided an apparatus comprising a wound dressing, a skin perfusion pressure determination device comprising a sensor module, the sensor module including a sensor configured to sense at least one characteristic associated with a wound or a region of tissue proximate to a wound, and an audible and/or tactile indicator configured to indicate at least one condition relating to the at least one characteristic associated with a wound or a region of tissue proximate to a wound sensed by the sensor module.
According to some embodiments, there is provided a method of determining at least one characteristic associated with a wound or a region of tissue proximate to a wound comprising: locating a wound dressing comprising a wound protecting portion over a wound whereby the wound protecting portion overlies the wound; positioning a skin perfusion pressure determination device comprising a sensor module at a target area on or adjacent to the wound dressing, wherein the sensor module includes a sensor configured to detect at least one characteristic associated with a wound or a region of tissue proximate to a wound; and receiving a visual, audible, or tactile indicator relating to the at least one characteristic associated with a wound or a region of tissue proximate to a wound detected with the sensor of the skin perfusion pressure determination device.
A visual indicator can be incorporated into a display.
The skin perfusion pressure determination device can comprise a hand-held device.
The display can comprise a computer monitor, laptop, tablet, or smart phone.
The skin perfusion pressure determination device can comprise the visual, audible, or tactile indicators.
The display can comprise one or more visual indicators.
A visual indicator can comprise one or more light emitting diodes (LED).
A visual indicator can comprise an LED indicator, organic light emitting diodes (OLED) indicator, and/or EINK indicator.
A visual indicator can comprise a multi-segment gauge type indicator, a symbol, a text and/or numeric indication, graphical indication, or circumferential indicators.
The at least one characteristic associated with a wound or a region of tissue proximate to a wound can comprise a skin perfusion pressure.
The method can further comprise applying pressure to the skin perfusion pressure determination device to exert a pressure on a target area.
The sensor module can have a first sensor for sensing a first parameter associated with the pressure exerted on the target area by the sensor module and a second sensor for sensing a second parameter associated with an amount of blood perfusion at the target area.
The visual, audible, or tactile indicator can provide user instructions to increase the applied pressure or to reduce the applied pressure of the skin perfusion pressure determination device on the target area.
The visual, audible, or tactile indicator can provide an indication of a measurement location, an applied force, an occlusion reached indication, high force warning, speed of movement indication, perfusion measurement result, or a measurement quality indication.
Embodiments of the present disclosure will now be described, by way of example only, with reference to the accompanying drawings in which:
The monitoring device 8 is configured to receive and process a signal received from the sensor module 14 and display processed information on an integrated display 16.
The force sensor 18 is disposed on an upper portion of the optical sensor 20 and the optical sensor 20 is arranged such that it faces away from the force sensor 18 towards the arm 6.
The sensors 18, 20 are connected via respective electrical wires 10a, 10b, which comprise the lead 10, to an input of the monitoring device 8.
The LED 22 and the photodiode 24 are disposed within a housing 26 and separated by a shield 28 which is opaque to the wavelength or range of wavelengths of light detectable by the photodiode 24. The shield 28 prevents emitted light from the LED being transmitted directly to the photodiode 24. The lower portion of the housing 26 is open or transparent so that light emitted by the LED 22 can pass through the lower portion to the skin tissue of the arm 6 and light reflected or scattered by the skin tissue of the arm 6 can pass back through the lower portion of the housing 26 to the photodiode 24. The shield 28 is spaced slightly from the skin tissue so that it does not contact the skin and so does not prevent light from passing underneath the shield 28. Light received by the photodiode 24 is therefore light which has been emitted by the LED 22 and either reflected, scattered or absorbed and reemitted by the skin tissue of the arm 6.
In the embodiment shown, the LED 22 emits light in the green band of the visible spectrum having a wavelength between 495 nm and 570 nm. Green light is known to be absorbed highly by hemoglobin within blood and so the amount of absorption of green light is correlated with the amount of blood in the skin tissue. Measuring the amount of absorption of green light emitted by the LED 22 can therefore be used to determine the amount of blood, and hence indicate the amount of blood perfusion, in a target area of tissue beneath the sensor module 14.
Referring again to
A method of determining skin perfusion pressure using the apparatus 2 will now be described with reference to
The sensor module 14 is placed against the arm 6 of a patient so that the lower portion of the housing 26 of the sensor module 14, which is open or transparent, is adjacent the target area of skin tissue, as shown in
Outputs from the force sensor 18 and the optical sensor 20 are then monitored and displayed on the display 16. Examples of outputs from the force sensor 18 and the optical sensor 20 are shown in the respective lower and upper traces of
The upper trace is a photoplethysmogram (PPG) which provides an indication of the amount of light emitted by the LED 22 that is absorbed by the skin tissue at the target area (i.e. the trace is inversely proportional to the amount of light reflected by the skin tissue at the target area and received by the photodiode 24). Therefore, a relatively large amount of blood in the skin tissue, which absorbs a relatively large amount of light emitted by the LED 22, produces a relatively high output trace value, and vice versa. Of course, the trace could be inverted such that the amount of light reflected by the skin tissue is plotted in which case, a large amount of blood within the skin tissue would produce a relatively low output trace value.
The upper trace will typically have a pulsatile component and a non-pulsatile component. The pulsatile component represents light absorbed by pulsatile arterial blood whereas the non-pulsatile component represents light absorbed by non-pulsatile arterial blood, venous blood and skin tissue. The pulsatile component arises due to the change in blood volume caused by the pressure pulse of the cardiac cycle pushing blood through the blood vessels and capillaries and is therefore associated with blood flow. The pulsatile component can therefore be monitored to obtain an indication of the amount of blood perfusion in the underlying tissue.
The amount of light absorbed by the skin tissue initially once the skin perfusion pressure determination device 4 has been secured to the patient's arm 6 is shown between times t1 and t2 of the upper trace in
Time t2 is the time at which a skin perfusion pressure measurement is commenced and corresponds to initiation of the first step of the method depicted by the flow diagram in
In use, a clinician (or the patient themselves) presses the sensor module 14 against the arm 6 to occlude the blood vessels within the tissue below the target area. The amount of force is increased until the pulsatile component of the trace drops below a predetermined level or ceases to be evident, as shown at time t3. Once the trace drops below the predetermined level, the clinician continues to hold the sensor module 14 against the arm 6 to ensure that the pulsatile arterial blood flow has ceased in the tissue at the target area, as shown between times t3 and t4. In the example shown, there remains a non-zero noise component of the trace which fluctuates at a level below the predetermined level. At time t4, the clinician begins to reduce the force applied to the sensor module 14 slowly until time t5 at which time the pressure module 14 has been released completely and pulsatile arterial blood flow in the tissue at the target area is completely restored.
The force exerted by the clinician on the tissue at the target area via the sensor module 14 is recorded by the lower trace. As can be seen from the lower trace, no force is recorded between times t1 and t2. The force increases relatively rapidly between times t2 and t3 as the clinician presses the sensor module 14 against the arm 6 of the patient and then plateaus while the clinician holds the sensor module 14 against the arm 6 between times t3 and t4. As the clinician begins to slowly release the sensor module 14 at time t4, the applied force reduces steadily back to zero at time t5 and pulsatile arterial blood flow returns to the skin tissue.
Pulsatile arterial blood flow returns when the blood pressure is sufficient to overcome the occlusion pressure on the blood vessels within the tissue which is applied by the clinician pressing on the sensor module 14. The return of blood flow is represented by a return of the pulsatile component in the upper trace, as shown at time tSPP. Different criteria can be used to determine the return of pulsatile arterial blood flow. For example, return of blood flow could be determined by the return of the value of the upper trace to a predetermined threshold ISPP value such as a value greater than a maximum expected noise value. Alternatively, the threshold value ISPP may be a value that is determined based on the pulse amplitude observed before a force is applied to occlude the blood vessels (i.e. the pulse amplitude between times t1 and t2). In one example, a threshold value ISPP may be used which is a predetermined percentage of the pulse amplitude observed before a force is applied to occlude the blood vessels. Other algorithms may be used to determine return of the pulsatile component of the trace.
The magnitude of the force FSPP of the lower trace at time tSPP is then recorded. The recorded force FSPP can subsequently be used to determine a skin perfusion pressure. This may be done by calculation, look-up tables or based on a pre-calibration of the force sensor 18. For example, if the contact area of the portion of the sensor module 14 pressed against the skin tissue is known, the pressure applied to the skin tissue can be calculated. In this instance, the target area corresponds to the contact area of the sensor module 14. In the described embodiment, the contact area of the sensor module 14 is circular and has a diameter of 10 mm and therefore a surface area of approximately 80 mm2. The larger the contact area, the greater the force required to stop blood flow. The smaller the contact area, the greater the fluctuations in pressure caused by fluctuations in the force applied so that, for very small contact areas it becomes difficult for a clinician to release the applied force in a controlled manner in order to determine the force at which blood flow returns. A very small contact area can also make it difficult for an accurate reading to be taken by the blood perfusion sensor. The contact area of the sensor module 14 may therefore be between 1 mm2 and 1000 mm2, for example between 10 mm2 and 400 mm2.
A benefit of the arrangement is that contemporaneous measurements of the pressure exerted by the sensor module 14 on the target area and the amount of blood perfusion are made at the target area. The measurements can be taken and recorded simultaneously to produce an accurate and reliable measurement of blood perfusion pressure at a desired location on a patient's body.
Measurement of skin perfusion pressure may be performed as a single measurement or determined from trends evident from repeated measurements over time. Such measurements may be used to aid the prediction of wound healing.
Use of an LED light source, in particular a surface-mount LED, provides a compact, widely available, inexpensive, very reliable and a low power consumption light source. In the embodiment described above an LED which emits light in the green band of the visible spectrum is used. However, other suitable light sources could be used which emit light having a wavelength that is absorbed or reflected by blood. Light sources which emit light having a wavelength (or range of wavelengths) between 600 nm and 1350 nm may be used. In particular, light sources which emit light in the red band of the visible spectrum having a wavelength of between 600 nm and 750 nm or which emit light in the near-infrared band of the visible spectrum having a wavelength of between 850 nm and 1000 nm may be used. Light sources which emit light in the near-infrared window of biological tissue having a wavelength of between 650 nm and 1350 nm are beneficial because light has its maximum depth of penetration in tissue at these wavelengths and so a greater proportion of the emitted light will reach the blood vessels within the tissue.
Alternative light detectors may be used. For example, phototransistors or complementary metal-oxide semiconductor (CMOS) based sensors may be used. These sensors, and the photodiodes of the described embodiment, are preferred because they are inexpensive, compact and widely available.
Alternative sensors for determining a parameter associated with a pressure exerted on the target area may be used. In particular, sensors which have a thickness which corresponds to, or is less than, the thickness of a typical wound dressing may be used. Suitable capacitive, resistive thin-film or micromachined sensors or strain gauges or the like may be used. Such sensors are suitable for incorporation onto wound dressings, as described below. It will be appreciated that although the embodiment described above comprises a force sensor, alternative types of sensor which produce an output which can be used to determine a parameter associated with the pressure exerted on or stress created at the target area by a sensor module may be used. Such sensors may include sensors configured to output a pressure applied by the sensor or the sensor module to the target area.
In the embodiment described above, a simple trace showing the outputs from the sensor module 14 is provided to aid the clinician or patient. The processor may, however, be configured to display instructions to a patient/clinician on the display 16 such as instructions to increase the applied force or to reduce the applied force at each stage of the measurement process. An audible signal may be generated to inform a clinician/patient of the pulse strength. The audible signal may be continuous or a series of beeps that vary in frequency or volume depending on the magnitude of the pulsatile component of the trace. For example, an audible beep pattern may become silent when the pulsatile component drops below a threshold value and re-emerges when the pulsatile component returns indicating the return of blood flow in the tissue at the target area. In addition to written instructions, a light or a symbol or a color signal or an audible signal could be used to instruct a user to increase or decrease a force applied.
In use, the grip portion 106 is held by a clinician and used to press the pad portion 110 against a target area of a patient's skin. The method shown in
Four circular windows 208A, 208B, 208C, 208D are provided in respective lobes 210A, 210B, 210C, 210D of the securing portion 206. The lobes 210A, 210B, 210C, 210D are spaced apart about the wound protecting portion 204 so that each lobe 210A, 210B, 210C, 210D is positioned opposite one of the other lobes 210A, 210B, 210C, 210D. Each window 208A, 208B, 208C, 208D is defined by an opening through which the pad portion 110 can be pressed directly against a patient's skin. Each window 208A, 208B, 208C, 208D has a size and shape which corresponds to the size and shape of the pad portion 110 in order to help locate the pad portion 110 as it is pressed against a patient's skin. The windows 208A, 208B, 208C, 208D provide a convenient way in which blood perfusion pressure can be measured at a target area close to the location of a wound without having to remove a wound dressing. The fixed location of the windows 208A, 208B, 208C, 208D also ensures that measurements of skin perfusion pressure can be repeatedly and reliably made at the same location or locations to assess wound healing. This facilitates consistent and robust tracking of wound healing. Other shapes of windows that help locate a suitably shaped pad portion of a hand-held device could of course be utilized. At least some of the lobes 210A, 210B, 210C, 210D may be detachable, for example, by being connected to the remainder of the wound dressing 202 via one or more perforated sections. Furthermore, the windows 208A, 208B, 208C, 208D could be revealed and/or created at the time of use by removing detachable portions of the wound dressing 202 immediately before application of the wound dressing 202. The detachable portions may be connected to the remainder of the wound dressing 202 via one or more perforated sections. The quantity, location and size of the lobes may be tailored in accordance with requirements such as body location for the wound dressing or wound size or wound type.
The wound dressing 202 has an upper surface on which indicia are provided in order to determine the orientation of the wound dressing 202. In some embodiments, the indicia can be used to determine orientation, detect the target area or location of measurement, and/or identify the wound dressing. Since the time between measurements can be between about one day to about seven days, the indicia can assist the user in assuring accurate and repeated measurements can be taken form the same location and/or dressing.
In some embodiments, the indicia can comprise alphanumeric characters A, B, C and D, as shown in
Other indicia and patterns can be used to determine orientation, detect the target area or location of measurement, and/or identify the wound dressing. In some embodiments, locations on the wound dressing can be color-coded. In some embodiments, the wound dressing can have color patches or be color-coded to identify the orientation, location, and/or identify the wound dressing. The coloring can be used to identify the target area for taking a skin perfusion pressure measurement. Color patches can be used next to or on the intended measurement location. In some embodiments, the color can be detected using a color sensor on or in the measurement device. The probe portion 108 of the hand-held skin perfusion pressure determination device or other device with a sensor module can include a color sensor which can be used to detect a color patch on or near the wound dressing 202. In some embodiments, the hand-held skin perfusion pressure determination device 104 can include an illumination source. As shown in
In some embodiments, the wound dressing can include an optical pattern to identify the target area on the wound dressing.
As shown in
The orientation of the wound dressing, the location of measurement, and/or the identity of the wound dressing can be determined by observing the indicia on the upper surface of a wound dressing. In some embodiments, the indicia can be positioned on the dressing in an asymmetrical way. For example, the indicia 714 can be positioned in three of the four corners of a square dressing 202 as illustrated in
In some embodiments, as illustrated in
While
In some embodiments, magnetic encoding can be utilized to assist the user to identify the location for measurement on the wound dressing. A magnetic material or pattern in the wound dressing can be used next to or on the intended measurement location, a location used to determine orientation, and/or a location used to identify the wound dressing. The hand-held device can include a magnetic sensor (for example, a magnetometer) to detect the magnetic material or pattern in the wound dressing. In some embodiments, the magnetic material can utilize different amounts of magnetic material in different locations to generate a different size of signal detected by the detection device or hand-held device. In some embodiments, the different size of signal detected can be subject to the sensitivity of the magnetometer or magnetic sensor. In some embodiments, various patterns of magnetic material can be used to identify locations on the wound dressing.
Each indicium may comprise an RFID identification tag that is configured to communicate information, such as the location of the RFID tag and/or a window associated with the RFID tag to the hand-held device 104 when the pad portion 110 is located at the respective window. In other embodiments, a combination of an RFID tag and a visible marker could be used in which the visible marker and the RFID tag store information that, when combined, can be used to identify a wound dressing and/or a patient to which a wound dressing is applied. For example, a dressing may have an identifier in the form of a serial number. At least a portion of the serial number may be obtainable from the RFID tag and a different portion of the serial number may be obtainable from the visual marker. The two portions can be combined to enable anonymous identification of a wound dressing, and hence a patient to which the wound dressing has been applied.
The hand-held device may comprise a suitable RFID reader or camera module for acquiring information about the indicia of the wound dressing. The apparatus may be configured to associate a measurement with a wound dressing or a certain window/lobe of the wound dressing.
It will be appreciated that the windows 208A, 208B, 208C, 208D could be formed of a material that is transparent to a wavelength of the light used by the optical sensor of the sensor module. For example, each window 208A, 208B, 208C, 208D may be made of a material that is transparent, or substantially transparent, to green light having a wavelength of between 495 nm and 570 nm. The windows may comprise, for example, at least one of polyvinyl chloride (PVC), cellulose acetate or acrylic or silicone or polyurethane or acylate or other suitable material.
In some embodiments, the windows 208A, 208B, 208C, 208D shown in
In some embodiments, the backing layer 724 can be formed from a thermoplastic polyurethane. The wound contact layer 722 can be a perforated layer and can optionally include an adhesive. In some embodiments, the absorbent or foam layer 723 can be any dressing construction material, for example, a spacer layers, super absorbers, non-wovens, foams, masking layers, and/or any combination thereof.
In some embodiments, a separate dressing layer can be used to form the material of the window. For example, a wound contact layer can be used under the absorbent and/or foam layer or the central wound protecting portion 728. A separate non-perforated and/or non-adhesive film can be used around the peripheral securing portion 725 of the dressing and/or within the windows. In some embodiments, the material used within the window can be selected for pressure and/or optical transmission.
The inflatable cuff 808 is arranged so that, in use, the cuff 808 surrounds the wound dressing 810 and a patient's limb 822 or other region of a patient's body to which the wound dressing is to be secured. The cuff 808 is configured so that the display 820 is visible to a clinician or other such healthcare professional. For example, a window (not shown) may be provided in the cuff 808 in the vicinity of the display 820. The display 820 may be a thin-film display having a thickness which corresponds to, or is less than, the thickness of the wound dressing 810 and which is suitable for incorporation into the wound dressing.
The cuff 808 may be inflated and deflated using an external pump, such as a hand pump, or a pump integrated into the apparatus 802. Inflation of the cuff 808 presses the sensor module 812 against the patient's limb. The cuff 808 can then be deflated in order to reduce the force applied to the sensor module 812 in accordance with the method outlined above with respect to the apparatus shown in
The processor is configured to both drive the force actuator 1008 and to process outputs from the sensor module 1012 (although separate processors may be used instead) and is programmed to conduct a series of skin perfusion pressure measurements automatically in accordance with a predetermined requirement such as a predetermined time pattern or on an ad hoc basis when initiated by a user. The memory is configured to store data obtained from the sensor module 1012. The stored data can be subsequently transmitted to a further device for storage and/or processing, for example, during consultations with a clinician. This may be done via a wired link or wirelessly.
In some embodiments, the sensor module (not shown) can be integrated into the wound dressing 1210. A user can press the sensor module within the wound dressing 1210 to carry out a measurement as illustrated in
In some embodiments, the application and release of pressure on a sensor module can be fully automated in order to obtain a skin perfusion pressure measurement. The cuff can use electromechanical actuators which can control the cuff as is shrinks around a patient's limb. Once the appropriate pressure has been applied to the patient's limb, the cuff can automatically release the pressure. In other embodiments, the cuff 1302 can use fluid-based inflatable pads or devices to control the inflation and/or release of pressure on the cuff 1302 by inflating and deflating the cuff 1302 as shown in
As described previously, the hand-held skin perfusion pressure determination device or other device with a sensor module can be used to obtain a skin perfusion pressure measurement. The hand-held skin perfusion pressure determination device or other device with a sensor module described herein can be placed either above, below, to the left, and/or to the right of the wound bed to obtain a measurement. In some embodiments, the hand-held skin perfusion pressure determination device or other device with a sensor module can be placed 5 cm from the edge of the wound bed. In some embodiments, the hand-held skin perfusion pressure determination device or other device with a sensor module can be placed about 2 cm to 10 cm from the edge of the wound bed. In some embodiments, measurements can be taken up to the edge of the wound. In some embodiments, measurements can be taken any distance from the wound or from a location on the patient's body not associated with a wound. The skin perfusion measurement can be obtained from one or more locations near or on the wound bed. In some embodiments, the skin perfusion measurement can be obtained from each location, one at a time.
The hand-held skin perfusion pressure determination device or other device with a sensor module can be placed in a first location and measurements can be obtained from the first location in accordance with the methods described herein. Then the hand-held skin perfusion pressure determination device or other device with a sensor module can be placed in a second location and measurements can be obtained from the second location in accordance with the methods described herein. The process can be repeated at each location where a measurement is desired.
In some embodiments, the hand-held skin perfusion pressure determination device or other device with a sensor module can include or be in communication with signal processing electronics and a processor for processing signals received from the sensors in the sensor module. In some embodiments, the hand-held skin perfusion pressure determination device or other device with a sensor module can be connected to or in communication with a monitoring device similar to that shown in
As shown in
Force can continue to be applied until the indicator bar 1917 on the display 1916 reaches the top 1919 of the display as shown in
Once the appropriate amount of force has been applied to the measurement location 1911 to conduct the perfusion measurement according to the methods described herein, the force applied by the hand-held device 1902 can be decreased as the hand-held device 1902 is removed from the measurement location 1911 as illustrated in
The display 1916 can give live or real time feedback on the current amount of pressure being applied versus the pressure that should be applied. The display 1916 and indication bar 1917 can give helpful, education feedback to improve performance for the next use if the first use was insufficient to collect data.
Once the measurement is taken at a first location, the hand-held device 1902 can be applied to a second measurement location and the process can be repeated with the force application instructions provided by the user on the display 1916 as illustrated in
In some embodiments, the display or user interface can be used to provide guidance and/or feedback to a user. In some embodiments, the display or user interface can provide guidance and/or feedback with respect to the measurement location and the applied force to conduct the perfusion measurement according to the methods described herein. In some embodiments, the display can indicate various conditions. For example, the display can provide a visual indication of a measurement location, an applied force, an occlusion reached indication, high force warning, speed of movement indication, perfusion measurement result, and/or a measurement quality indication. In some embodiments, these conditions or indicators can be displayed on a remote display such as a computer monitor, laptop, tablet, smart phone, and/or other device with a user interface. In some embodiments, these conditions or indicators can be displayed on a device comprising a sensor module, for example, a hand-held skin perfusion pressure determination device.
In some embodiments, the display can be a high force warning indicator with a two-level indication. The two-level indication can include an indication when occlusion pressure is reached and when the force is above a critical level. In other embodiments, the high force warning can have a three-level indication. The three-level indication can include an indication when occlusion pressure is reached, when force has reached a desired level, and when the force is above a critical level.
In some embodiments, the display can include an indication of the quality of the measurement obtained from the measurement location.
In some embodiments, the two visual indicators 2120a and 2120b can be used to indicate two different conditions. As illustrated in
As illustrated in
In some embodiments, the hand-held device 2202 can include a display 2216 that provides a graphical indication of various conditions of the hand-held device 2202, measurement technique, and/or measurement information. In some embodiments, the graphical indicator can include multiple visual indicators. In some embodiments, as shown in
In some embodiments, the visual indicators can be LED indicators, organic light emitting diodes (OLED) indicators, and/or electronic paper display technology (EINK) indicators.
An audible and/or tactile indicators can be used in addition to or in place of the visual indicators on the hand-held device. In some embodiments, the audible and/or tactile indicators can provide an audible and/or tactile signals to indicate and/or monitor the force level and/or withdrawal speed. The audible signal or tactile indicator may be generated to inform a clinician/patient of a condition or parameter. In some embodiments, an audible and/or tactile signal can be used to provide warnings or alerts including a warning when the occlusion pressure is reached and/or a high force warning. In some embodiment, the audible signal may be continuous or a series of beeps that vary in frequency or volume depending on the magnitude of the pulsatile component of the trace or when a condition is reached. The tactile signal may be a continuous or series of vibrations that vary in frequency or volume depending on the magnitude of the pulsatile component of the trace or when a condition is reached. For example, an audible beep pattern or vibration pattern may stop when the pulsatile component drops below a threshold value and re-emerges when the pulsatile component returns indicating the return of blood flow in the tissue at the target area.
In some embodiments, the indicators can be circumferential indicators.
Although,
It will be appreciated that the blood perfusion sensor may comprise other types of optical sensor or may be a non-optical sensor, the monitoring device could comprise other types of data storage devices. It will also be appreciated that, where applicable, each embodiment described previously could be modified so that recorded data is processed and/or stored locally on a skin perfusion pressure determination device or transmitted for remote processing and/or storage and vice versa.
The embodiments described above comprise a sensor module which is configured such that an optical sensor can be positioned adjacent the skin and a force sensor is located above the optical sensor. Other possible arrangements include a sensor module in which a force sensor and an optical sensor are arranged such that, in use, the force sensor is placed next to a target region of skin tissue and the optical sensor is positioned above the force sensor. In such an arrangement, the force sensor may comprise through-holes or transparent portions through which light can be transmitted.
It will be appreciated that throughout this specification reference is made to a wound. It is to be understood that the term wound is to be broadly construed and encompasses open and closed wounds in which skin is torn, cut or punctured or where trauma causes a contusion, or any other superficial or other conditions or imperfections on the skin of a patient or otherwise that benefit from reduced pressure treatment. A wound is thus broadly defined as any damaged region of tissue where fluid may or may not be produced. Examples of such wounds include, but are not limited to, abdominal wounds or other large or incisional wounds, either as a result of surgery, trauma, sternotomies, fasciotomies, or other conditions, dehisced wounds, acute wounds, chronic wounds, subacute and dehisced wounds, traumatic wounds, flaps and skin grafts, lacerations, abrasions, contusions, burns, diabetic ulcers, pressure ulcers, stoma, surgical wounds, trauma and venous ulcers or the like.
It will be understood that embodiments of the present disclosure are generally applicable for use in topical negative pressure (“TNP”) therapy systems, such as be incorporated into a TNP dressing. Briefly, negative pressure wound therapy assists in the closure and healing of many forms of “hard to heal” wounds by reducing tissue oedema; encouraging blood flow and granular tissue formation; removing excess exudate and may reduce bacterial load (and thus infection risk). In addition, the therapy allows for less disturbance of a wound leading to more rapid healing. TNP therapy systems may also assist on the healing of surgically closed wounds by removing fluid and by helping to stabilize the tissue in the apposed position of closure. A further beneficial use of TNP therapy can be found in grafts and flaps where removal of excess fluid is important and close proximity of the graft to tissue is required in order to ensure tissue viability. As is used herein, reduced or negative pressure levels, such as −X mmHg, represent pressure levels relative to normal ambient atmospheric pressure, which can correspond to 760 mmHg (or 1 atm, 29.93 inHg, 101.325 kPa, 14.696 psi, etc.). Accordingly, a negative pressure value of −X mmHg reflects absolute pressure that is X mmHg below 760 mmHg or, in other words, an absolute pressure of (760-X) mmHg. In addition, negative pressure that is “less” or “smaller” than X mmHg corresponds to pressure that is closer to atmospheric pressure (e.g., −40 mmHg is less than −60 mmHg). Negative pressure that is “more” or “greater” than −X mmHg corresponds to pressure that is further from atmospheric pressure (e.g., −80 mmHg is more than −60 mmHg). In some embodiments, local ambient atmospheric pressure is used as a reference point, and such local atmospheric pressure may not necessarily be, for example, 760 mmHg. The negative pressure range for some embodiments of the present disclosure can be approximately −80 mmHg, or between about −20 mmHg and −200 mmHg. Note that these pressures are relative to normal ambient atmospheric pressure, which can be 760 mmHg. Thus, −200 mmHg would be about 560 mmHg in practical terms. In some embodiments, the pressure range can be between about −40 mmHg and −150 mmHg. Alternatively a pressure range of up to −75 mmHg, up to −80 mmHg or over −80 mmHg can be used. Also in other embodiments a pressure range of below −75 mmHg can be used. Alternatively, a pressure range of over approximately −100 mmHg, or even −150 mmHg, can be supplied by the negative pressure apparatus.
In the drawings like reference numerals refer to like parts.
Throughout the description and claims of this specification, the words “comprise” and “contain” and variations of them mean “including but not limited to” and they are not intended to (and do not) exclude other moieties, additives, components, integers or steps. Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
Features, integers, characteristics or groups described in conjunction with a particular aspect, embodiment or example of the disclosure are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of the features and/or steps are mutually exclusive. The disclosure is not restricted to any details of any foregoing embodiments. The disclosure extends to any novel one, or novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
The reader's attention is directed to all papers and documents which are filed concurrently with or previous to this specification in connection with this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
1703775 | Mar 2017 | GB | national |
1703781 | Mar 2017 | GB | national |
1703783 | Mar 2017 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/055940 | 3/9/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/162728 | 9/13/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3896802 | Williams | Jul 1975 | A |
4334530 | Hassell | Jun 1982 | A |
5090410 | Saper et al. | Feb 1992 | A |
5253654 | Thomas et al. | Oct 1993 | A |
5635201 | Fabo | Jun 1997 | A |
5642096 | Leyerer et al. | Jun 1997 | A |
5678448 | Fullen et al. | Oct 1997 | A |
5690610 | Ito et al. | Nov 1997 | A |
5836990 | Li | Nov 1998 | A |
6095992 | Augustine | Aug 2000 | A |
6178342 | Borgos et al. | Jan 2001 | B1 |
6381482 | Jayaraman et al. | Apr 2002 | B1 |
6517484 | Wilk et al. | Feb 2003 | B1 |
6551252 | Sackner et al. | Apr 2003 | B2 |
6731987 | McAdams et al. | May 2004 | B1 |
7014611 | Geddes et al. | Mar 2006 | B1 |
7077832 | Fleischmann | Jul 2006 | B2 |
7088591 | Kishimoto et al. | Aug 2006 | B2 |
7201063 | Taylor et al. | Apr 2007 | B2 |
7206623 | Blank et al. | Apr 2007 | B2 |
7289205 | Yaroslavsky et al. | Oct 2007 | B2 |
7316652 | Dalgaard et al. | Jan 2008 | B2 |
7429255 | Thompson | Sep 2008 | B2 |
7520875 | Bernabei | Apr 2009 | B2 |
7521292 | Rogers et al. | Apr 2009 | B2 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7625117 | Haslett et al. | Dec 2009 | B2 |
7687678 | Jacobs | Mar 2010 | B2 |
7838717 | Haggstrom et al. | Nov 2010 | B2 |
7846141 | Weston | Dec 2010 | B2 |
7877866 | Greenberg et al. | Feb 2011 | B1 |
7884258 | Boehringer et al. | Feb 2011 | B2 |
7904133 | Gehman et al. | Mar 2011 | B2 |
7922676 | Daskal et al. | Apr 2011 | B2 |
7942869 | Houbolt et al. | May 2011 | B2 |
7945302 | McAdams | May 2011 | B2 |
8019401 | Smith et al. | Sep 2011 | B1 |
8032210 | Finneran et al. | Oct 2011 | B2 |
8060174 | Simpson et al. | Nov 2011 | B2 |
8079247 | Russell et al. | Dec 2011 | B2 |
8111165 | Ortega et al. | Feb 2012 | B2 |
8116841 | Bly et al. | Feb 2012 | B2 |
8182425 | Stamatas et al. | May 2012 | B2 |
8207392 | Haggstrom et al. | Jun 2012 | B2 |
8238996 | Burnes | Aug 2012 | B2 |
8241231 | Bausewein et al. | Aug 2012 | B2 |
8332053 | Patterson et al. | Dec 2012 | B1 |
8333874 | Currie et al. | Dec 2012 | B2 |
8366692 | Weston | Feb 2013 | B2 |
8480641 | Jacobs | Jul 2013 | B2 |
8579872 | Coulthard et al. | Nov 2013 | B2 |
8644911 | Panasyuk et al. | Feb 2014 | B1 |
8663106 | Stivoric et al. | Mar 2014 | B2 |
8682442 | McAdams | Mar 2014 | B2 |
8783948 | Panda et al. | Jul 2014 | B2 |
8788009 | Greene et al. | Jul 2014 | B2 |
8800386 | Taylor | Aug 2014 | B2 |
8818478 | Scheffler et al. | Aug 2014 | B2 |
8829263 | Haggstrom et al. | Sep 2014 | B2 |
8848187 | Uematsu et al. | Sep 2014 | B2 |
8894590 | Lamoise et al. | Nov 2014 | B2 |
8925392 | Esposito et al. | Jan 2015 | B2 |
8934957 | Dias et al. | Jan 2015 | B2 |
8934965 | Rogers et al. | Jan 2015 | B2 |
8943897 | Beauvais et al. | Feb 2015 | B2 |
8948839 | Longinotti-Buitoni et al. | Feb 2015 | B1 |
8974428 | Shuler et al. | Mar 2015 | B2 |
8997588 | Taylor | Apr 2015 | B2 |
9000251 | Murphy et al. | Apr 2015 | B2 |
9042075 | Borini et al. | May 2015 | B2 |
9192531 | Wu | Nov 2015 | B2 |
9192700 | Weston et al. | Nov 2015 | B2 |
9204806 | Stivoric et al. | Dec 2015 | B2 |
9220455 | Sarrafzadeh et al. | Dec 2015 | B2 |
9226402 | Hsu | Dec 2015 | B2 |
9282897 | Ross, Jr. et al. | Mar 2016 | B2 |
9314175 | Jacofsky et al. | Apr 2016 | B2 |
9320473 | Shuler | Apr 2016 | B2 |
9372123 | Li et al. | Jun 2016 | B2 |
9378450 | Mei et al. | Jun 2016 | B1 |
9386947 | Johnson | Jul 2016 | B2 |
9393354 | Freedman et al. | Jul 2016 | B2 |
9402988 | Buchanan et al. | Aug 2016 | B2 |
9408573 | Welch et al. | Aug 2016 | B2 |
9427179 | Mestrovic et al. | Aug 2016 | B2 |
9439599 | Thompson et al. | Sep 2016 | B2 |
9483726 | Mei et al. | Nov 2016 | B2 |
9494474 | Servati et al. | Nov 2016 | B2 |
9511215 | Skiba | Dec 2016 | B2 |
9516758 | Arora et al. | Dec 2016 | B2 |
9526439 | Connelly et al. | Dec 2016 | B2 |
9554484 | Rogers et al. | Jan 2017 | B2 |
9572507 | Moore et al. | Feb 2017 | B2 |
9582072 | Connor | Feb 2017 | B2 |
9585620 | Paquet et al. | Mar 2017 | B2 |
9587991 | Padiy | Mar 2017 | B2 |
9592007 | Nuovo et al. | Mar 2017 | B2 |
9603560 | Monty et al. | Mar 2017 | B2 |
9610388 | Aceto et al. | Apr 2017 | B2 |
9613911 | Rogers et al. | Apr 2017 | B2 |
9629584 | Barber et al. | Apr 2017 | B2 |
9675238 | Iida et al. | Jun 2017 | B2 |
9687195 | Sims et al. | Jun 2017 | B2 |
9717565 | Blair | Aug 2017 | B2 |
9829471 | Hammond et al. | Nov 2017 | B2 |
9907103 | Chen et al. | Feb 2018 | B2 |
9999711 | Weston et al. | Jun 2018 | B2 |
10004643 | Luckemeyer et al. | Jun 2018 | B2 |
10046096 | Askem et al. | Aug 2018 | B2 |
10080524 | Xi | Sep 2018 | B1 |
10086117 | Locke et al. | Oct 2018 | B2 |
10117705 | Chernov et al. | Nov 2018 | B2 |
10152789 | Carnes et al. | Dec 2018 | B2 |
10182740 | Tonar et al. | Jan 2019 | B2 |
10201644 | Haggstrom et al. | Feb 2019 | B2 |
10207031 | Toth | Feb 2019 | B2 |
10209213 | Kang et al. | Feb 2019 | B2 |
10285620 | Jung et al. | May 2019 | B2 |
10288590 | Hammond et al. | May 2019 | B2 |
10321862 | Dalene et al. | Jun 2019 | B2 |
10463773 | Haggstrom et al. | Nov 2019 | B2 |
10857038 | Zamierowski et al. | Dec 2020 | B2 |
11026847 | Piotrowski et al. | Jun 2021 | B2 |
11229553 | Chen et al. | Jan 2022 | B2 |
11647922 | Scherer | May 2023 | B2 |
20020016536 | Benni | Feb 2002 | A1 |
20020135752 | Sokolov et al. | Sep 2002 | A1 |
20030033032 | Lind et al. | Feb 2003 | A1 |
20030036690 | Geddes et al. | Feb 2003 | A1 |
20030036751 | Anderson et al. | Feb 2003 | A1 |
20030208148 | Sullivan | Nov 2003 | A1 |
20030210810 | Gee, Jr. et al. | Nov 2003 | A1 |
20030216630 | Jersey-Willuhn et al. | Nov 2003 | A1 |
20040034293 | Kimball | Feb 2004 | A1 |
20040230132 | Shehada | Nov 2004 | A1 |
20050088832 | Su et al. | Apr 2005 | A1 |
20050240107 | Alfano et al. | Oct 2005 | A1 |
20050280531 | Fadem et al. | Dec 2005 | A1 |
20050281445 | Marcotte et al. | Dec 2005 | A1 |
20060052678 | Drinan et al. | Mar 2006 | A1 |
20060058690 | Bartnik et al. | Mar 2006 | A1 |
20060129039 | Lindner et al. | Jun 2006 | A1 |
20060181791 | Van Beek et al. | Aug 2006 | A1 |
20060234383 | Gough | Oct 2006 | A1 |
20060241495 | Kurtz | Oct 2006 | A1 |
20060276700 | O'Neil et al. | Dec 2006 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070173892 | Fleischer et al. | Jul 2007 | A1 |
20070191754 | Aali | Aug 2007 | A1 |
20070260421 | Berner, Jr. et al. | Nov 2007 | A1 |
20070293748 | Engvall et al. | Dec 2007 | A1 |
20080081973 | Hoarau | Apr 2008 | A1 |
20080167535 | Stivoric et al. | Jul 2008 | A1 |
20080258717 | Igney et al. | Oct 2008 | A1 |
20080287747 | Mestrovic et al. | Nov 2008 | A1 |
20080319282 | Tran | Dec 2008 | A1 |
20080319283 | Cotton et al. | Dec 2008 | A1 |
20090149800 | Durand | Jun 2009 | A1 |
20090177051 | Arons et al. | Jul 2009 | A1 |
20090177110 | Lyden et al. | Jul 2009 | A1 |
20090209830 | Nagle et al. | Aug 2009 | A1 |
20090234206 | Gaspard et al. | Sep 2009 | A1 |
20090245601 | Cohen et al. | Oct 2009 | A1 |
20100022990 | Karpowicz et al. | Jan 2010 | A1 |
20100025831 | Yamazaki et al. | Feb 2010 | A1 |
20100166252 | Ahmed et al. | Jul 2010 | A1 |
20100168727 | Hancock et al. | Jul 2010 | A1 |
20100268111 | Drinan et al. | Oct 2010 | A1 |
20100305473 | Yuzhakov | Dec 2010 | A1 |
20110004088 | Grossman | Jan 2011 | A1 |
20110015591 | Hanson et al. | Jan 2011 | A1 |
20110054283 | Shuler | Mar 2011 | A1 |
20110092958 | Jacobs | Apr 2011 | A1 |
20110130697 | Nagle et al. | Jun 2011 | A1 |
20110140703 | Chiao et al. | Jun 2011 | A1 |
20110190639 | Peltie et al. | Aug 2011 | A1 |
20110218757 | Callsen et al. | Sep 2011 | A1 |
20110242532 | McKenna | Oct 2011 | A1 |
20110245682 | Robinson et al. | Oct 2011 | A1 |
20110301441 | Bandic et al. | Dec 2011 | A1 |
20120029306 | Paquet et al. | Feb 2012 | A1 |
20120029307 | Paquet et al. | Feb 2012 | A1 |
20120029410 | Koenig et al. | Feb 2012 | A1 |
20120112347 | Eckhardt et al. | May 2012 | A1 |
20120165717 | Al Khaburi et al. | Jun 2012 | A1 |
20120166680 | Masoud et al. | Jun 2012 | A1 |
20120190956 | Connolly | Jul 2012 | A1 |
20120190989 | Kaiser et al. | Jul 2012 | A1 |
20120265120 | Beisang, III et al. | Oct 2012 | A1 |
20120271265 | Langdon | Oct 2012 | A1 |
20120277559 | Kohl-Bareis et al. | Nov 2012 | A1 |
20120316538 | Heiser et al. | Dec 2012 | A1 |
20120330252 | Stokes et al. | Dec 2012 | A1 |
20130041235 | Rogers et al. | Feb 2013 | A1 |
20130064772 | Swiss et al. | Mar 2013 | A1 |
20130066172 | Kulcke | Mar 2013 | A1 |
20130121544 | Sarrafzadeh et al. | May 2013 | A1 |
20130123722 | Pratt et al. | May 2013 | A1 |
20130151223 | Zamierowski et al. | Jun 2013 | A1 |
20130200268 | Rafferty et al. | Aug 2013 | A1 |
20130261409 | Pathak et al. | Oct 2013 | A1 |
20130271278 | Duesterhoft et al. | Oct 2013 | A1 |
20130274563 | Duesterhoft et al. | Oct 2013 | A1 |
20130274629 | Duesterhoft et al. | Oct 2013 | A1 |
20130317367 | Shuler | Nov 2013 | A1 |
20140012108 | McPeak | Jan 2014 | A1 |
20140018637 | Bennett et al. | Jan 2014 | A1 |
20140024905 | Sarrafzadeh et al. | Jan 2014 | A1 |
20140031663 | Gallego et al. | Jan 2014 | A1 |
20140072190 | Wu et al. | Mar 2014 | A1 |
20140075658 | McGuin | Mar 2014 | A1 |
20140107495 | Marinelli et al. | Apr 2014 | A1 |
20140107498 | Bower et al. | Apr 2014 | A1 |
20140147611 | Ackerman, Jr. et al. | May 2014 | A1 |
20140203797 | Stivoric et al. | Jul 2014 | A1 |
20140206947 | Isserow et al. | Jul 2014 | A1 |
20140232516 | Stivoric et al. | Aug 2014 | A1 |
20140235166 | Molettiere et al. | Aug 2014 | A1 |
20140236019 | Rahum | Aug 2014 | A1 |
20140243709 | Gibson et al. | Aug 2014 | A1 |
20140296749 | Reid, Jr. et al. | Oct 2014 | A1 |
20140298927 | Allin et al. | Oct 2014 | A1 |
20140298928 | Duesterhoft et al. | Oct 2014 | A1 |
20140303463 | Robinson et al. | Oct 2014 | A1 |
20140324120 | Bogie et al. | Oct 2014 | A1 |
20140340857 | Hsu et al. | Nov 2014 | A1 |
20140343478 | Brennan et al. | Nov 2014 | A1 |
20140350882 | Everett et al. | Nov 2014 | A1 |
20150018792 | Marsiquet et al. | Jan 2015 | A1 |
20150025343 | Gareau et al. | Jan 2015 | A1 |
20150073271 | Lee | Mar 2015 | A1 |
20150138330 | Krishnamoorthi | May 2015 | A1 |
20150141767 | Rogers et al. | May 2015 | A1 |
20150148760 | Dodd et al. | May 2015 | A1 |
20150150479 | Yoshino et al. | Jun 2015 | A1 |
20150182166 | Evans et al. | Jul 2015 | A1 |
20150223716 | Korkala et al. | Aug 2015 | A1 |
20150257644 | Cao | Sep 2015 | A1 |
20150265191 | Harding et al. | Sep 2015 | A1 |
20150282748 | Hamaguchi et al. | Oct 2015 | A1 |
20150292968 | Vogt et al. | Oct 2015 | A1 |
20150313476 | Pisani et al. | Nov 2015 | A1 |
20150313533 | Rapp et al. | Nov 2015 | A1 |
20150327777 | Kostic et al. | Nov 2015 | A1 |
20150335254 | Fastert et al. | Nov 2015 | A1 |
20150335287 | Neuman et al. | Nov 2015 | A1 |
20150335288 | Toth et al. | Nov 2015 | A1 |
20150351970 | Dagger et al. | Dec 2015 | A1 |
20150359485 | Berg et al. | Dec 2015 | A1 |
20150374309 | Farkas et al. | Dec 2015 | A1 |
20160015962 | Shokoueinejad Maragheh | Jan 2016 | A1 |
20160022223 | Grundfest et al. | Jan 2016 | A1 |
20160029900 | LaPlante et al. | Feb 2016 | A1 |
20160030132 | Cheung et al. | Feb 2016 | A1 |
20160038045 | Shapiro | Feb 2016 | A1 |
20160038083 | Ding et al. | Feb 2016 | A1 |
20160051147 | Cohen et al. | Feb 2016 | A1 |
20160058380 | Lee et al. | Mar 2016 | A1 |
20160066854 | Mei et al. | Mar 2016 | A1 |
20160069743 | McQuilkin et al. | Mar 2016 | A1 |
20160074234 | Abichandi et al. | Mar 2016 | A1 |
20160081580 | Bergelin et al. | Mar 2016 | A1 |
20160081601 | Ballam et al. | Mar 2016 | A1 |
20160100790 | Cantu et al. | Apr 2016 | A1 |
20160100987 | Hartwell et al. | Apr 2016 | A1 |
20160101282 | Bergelin et al. | Apr 2016 | A1 |
20160129469 | Kulinsky et al. | May 2016 | A1 |
20160143534 | Hyde et al. | May 2016 | A1 |
20160157779 | Baxi et al. | Jun 2016 | A1 |
20160165719 | Li et al. | Jun 2016 | A1 |
20160166438 | Rovaniemi | Jun 2016 | A1 |
20160213269 | Lam et al. | Jul 2016 | A1 |
20160228049 | Nackaerts et al. | Aug 2016 | A1 |
20160232807 | Ghaffari et al. | Aug 2016 | A1 |
20160242331 | Park et al. | Aug 2016 | A1 |
20160249810 | Darty et al. | Sep 2016 | A1 |
20160262672 | Hammond et al. | Sep 2016 | A1 |
20160262687 | Vaidyanathan et al. | Sep 2016 | A1 |
20160270700 | Baxi et al. | Sep 2016 | A1 |
20160287177 | Huppert et al. | Oct 2016 | A1 |
20160302729 | Starr et al. | Oct 2016 | A1 |
20160310023 | Chachisvilis et al. | Oct 2016 | A1 |
20160317057 | Li et al. | Nov 2016 | A1 |
20160331263 | Cailler et al. | Nov 2016 | A1 |
20160331322 | Son et al. | Nov 2016 | A1 |
20160338591 | Lachenbruch et al. | Nov 2016 | A1 |
20160346164 | Ward et al. | Dec 2016 | A1 |
20160354001 | Buckley et al. | Dec 2016 | A1 |
20160367189 | Aimone et al. | Dec 2016 | A1 |
20160367192 | Iyengar et al. | Dec 2016 | A1 |
20160367406 | Barnett | Dec 2016 | A1 |
20170000407 | Saxby et al. | Jan 2017 | A1 |
20170007853 | Alford et al. | Jan 2017 | A1 |
20170027498 | Larson et al. | Feb 2017 | A1 |
20170079740 | Hufnagel et al. | Mar 2017 | A1 |
20170086519 | Vigano et al. | Mar 2017 | A1 |
20170086709 | Khine et al. | Mar 2017 | A1 |
20170095208 | Oberleitner et al. | Apr 2017 | A1 |
20170146474 | Bedell et al. | May 2017 | A1 |
20170156594 | Stivoric et al. | Jun 2017 | A1 |
20170156621 | Bettinger et al. | Jun 2017 | A1 |
20170156658 | Maharbiz et al. | Jun 2017 | A1 |
20170164865 | Rafferty et al. | Jun 2017 | A1 |
20170164876 | Hyde et al. | Jun 2017 | A1 |
20170172439 | Zhu et al. | Jun 2017 | A1 |
20170202711 | Cemasov et al. | Jul 2017 | A1 |
20170224271 | Lachenbruch et al. | Aug 2017 | A1 |
20170231015 | Jang et al. | Aug 2017 | A1 |
20170258972 | Weston | Sep 2017 | A1 |
20170304510 | Askem et al. | Oct 2017 | A1 |
20170319075 | Homan et al. | Nov 2017 | A1 |
20170326004 | Long et al. | Nov 2017 | A1 |
20170367644 | Sharman et al. | Dec 2017 | A1 |
20180003579 | Esposito et al. | Jan 2018 | A1 |
20180008177 | Shimuta et al. | Jan 2018 | A1 |
20180055359 | Shamim et al. | Mar 2018 | A1 |
20180055697 | Mihali et al. | Mar 2018 | A1 |
20180056087 | Ribiero et al. | Mar 2018 | A1 |
20180070880 | Trembly et al. | Mar 2018 | A1 |
20180074547 | Smadi et al. | Mar 2018 | A1 |
20180116877 | Ineichen | May 2018 | A1 |
20180128681 | Otsuka | May 2018 | A1 |
20180132287 | Cheng et al. | May 2018 | A1 |
20180192514 | Seo | Jul 2018 | A1 |
20180200414 | Askem et al. | Jul 2018 | A1 |
20180206758 | Feldkamp et al. | Jul 2018 | A1 |
20180235484 | Mozdzierz | Aug 2018 | A1 |
20180296397 | Askem et al. | Oct 2018 | A1 |
20190001032 | Weston et al. | Jan 2019 | A1 |
20190021911 | Askem et al. | Jan 2019 | A1 |
20190038014 | Greer, Jr. et al. | Feb 2019 | A1 |
20190060126 | Ribble et al. | Feb 2019 | A1 |
20190076298 | Quintanar et al. | Mar 2019 | A1 |
20190083025 | Aung et al. | Mar 2019 | A1 |
20190133812 | Seres et al. | May 2019 | A1 |
20190134280 | Toth | May 2019 | A1 |
20190159938 | Askem et al. | May 2019 | A1 |
20190175098 | Burns | Jun 2019 | A1 |
20190192066 | Schoess et al. | Jun 2019 | A1 |
20190231939 | Askem et al. | Aug 2019 | A1 |
20190290496 | Brownhill et al. | Sep 2019 | A1 |
20200147407 | Efremkin | May 2020 | A1 |
20200330258 | Hansen et al. | Oct 2020 | A1 |
20210212855 | Hansen et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
105232229 | Jan 2016 | CN |
105395184 | Mar 2016 | CN |
106102322 | Nov 2016 | CN |
10 2012 211015 | Jan 2014 | DE |
10 2013 013013 | Feb 2015 | DE |
2 422 757 | Feb 2012 | EP |
2 454 990 | May 2012 | EP |
2 565 630 | Mar 2013 | EP |
2 574 275 | Apr 2013 | EP |
1 734 858 | Jul 2014 | EP |
3 034 054 | Jun 2016 | EP |
3 231 478 | Oct 2017 | EP |
3 409 190 | Dec 2018 | EP |
3424417 | Jan 2019 | EP |
3 499 510 | Jun 2019 | EP |
1476894 | Jun 1977 | GB |
2316171 | Feb 1998 | GB |
2563602 | Dec 2018 | GB |
2006280770 | Oct 2006 | JP |
2009-225863 | Oct 2009 | JP |
10 2012 0119523 | Oct 2012 | KR |
101224629 | Jan 2013 | KR |
10 2014 0024743 | Mar 2014 | KR |
10 2014 0058041 | May 2014 | KR |
10 2016 0071044 | Jun 2016 | KR |
20190105898 | Sep 2019 | KR |
1 027 236 | Apr 2006 | NL |
WO-9415531 | Jul 1994 | WO |
WO 2000021433 | Apr 2000 | WO |
WO 2000043046 | Jul 2000 | WO |
WO-0185024 | Nov 2001 | WO |
WO 2003067229 | Aug 2003 | WO |
WO 2006041997 | Apr 2006 | WO |
WO 2007030379 | Mar 2007 | WO |
WO 2008006150 | Jan 2008 | WO |
WO 2008010604 | Jan 2008 | WO |
WO 2009052607 | Apr 2009 | WO |
WO 2009120951 | Oct 2009 | WO |
WO 2009141777 | Nov 2009 | WO |
WO 2010020919 | Feb 2010 | WO |
WO 2010105053 | Sep 2010 | WO |
WO 2011082420 | Jul 2011 | WO |
WO 2011113070 | Sep 2011 | WO |
WO 2011123848 | Oct 2011 | WO |
WO 2012141999 | Oct 2012 | WO |
WO 2013026999 | Feb 2013 | WO |
WO 2013044226 | Mar 2013 | WO |
WO 2013155193 | Oct 2013 | WO |
WO 2014036577 | Mar 2014 | WO |
WO-2014094173 | Jun 2014 | WO |
WO-2014116816 | Jul 2014 | WO |
WO-2015047015 | Apr 2015 | WO |
WVO 2015112095 | Jul 2015 | WO |
WO 2015168720 | Nov 2015 | WO |
WO 2016025438 | Feb 2016 | WO |
WO-2016022295 | Feb 2016 | WO |
WO 2016030752 | Mar 2016 | WO |
WO 2016058032 | Apr 2016 | WO |
WO-2016073777 | May 2016 | WO |
WO 2016100218 | Jun 2016 | WO |
WO 2016109744 | Jul 2016 | WO |
WO 2016110564 | Jul 2016 | WO |
WO 2016187136 | Nov 2016 | WO |
WO 2016205872 | Dec 2016 | WO |
WO 2016205881 | Dec 2016 | WO |
WO 2017021006 | Feb 2017 | WO |
WO 2017021965 | Feb 2017 | WO |
WO 2017033058 | Mar 2017 | WO |
WO 2017037479 | Mar 2017 | WO |
WO 2017041014 | Mar 2017 | WO |
WO 2017041386 | Mar 2017 | WO |
WO 2017041387 | Mar 2017 | WO |
WO-2017041385 | Mar 2017 | WO |
WO 2017119996 | Jul 2017 | WO |
WO 2017205728 | Nov 2017 | WO |
WO-2017201419 | Nov 2017 | WO |
WO 2017214188 | Dec 2017 | WO |
WO 2018035612 | Mar 2018 | WO |
WO 2018060417 | Apr 2018 | WO |
WO 2018064569 | Apr 2018 | WO |
WO 2018115461 | Jun 2018 | WO |
WO 2018144938 | Aug 2018 | WO |
WO 2018144941 | Aug 2018 | WO |
WO 2018144943 | Aug 2018 | WO |
WO 2018144946 | Aug 2018 | WO |
WO 2018162728 | Sep 2018 | WO |
WO 2018162732 | Sep 2018 | WO |
WO 2018162735 | Sep 2018 | WO |
WO 2018162736 | Sep 2018 | WO |
WO 2018185138 | Oct 2018 | WO |
WO 2018189265 | Oct 2018 | WO |
WO 2018209090 | Nov 2018 | WO |
WO 2018210692 | Nov 2018 | WO |
WO 2018210693 | Nov 2018 | WO |
WO 2018211458 | Nov 2018 | WO |
WO 2018234443 | Dec 2018 | WO |
WO 2019020550 | Jan 2019 | WO |
WO 2019020551 | Jan 2019 | WO |
WO 2019020666 | Jan 2019 | WO |
WO 2019030384 | Feb 2019 | WO |
WO 2019048624 | Mar 2019 | WO |
WO 2019048626 | Mar 2019 | WO |
WO 2019048638 | Mar 2019 | WO |
WO 2019063481 | Apr 2019 | WO |
WO 2019063488 | Apr 2019 | WO |
WO 2019067264 | Apr 2019 | WO |
WO 2019072531 | Apr 2019 | WO |
WO 2019076967 | Apr 2019 | WO |
WO 2019096828 | May 2019 | WO |
WO 2019140441 | Jul 2019 | WO |
WO 2019140444 | Jul 2019 | WO |
WO 2019140448 | Jul 2019 | WO |
WO 2019140449 | Jul 2019 | WO |
Entry |
---|
“Little Miss Plasters”, kidstravelclub.co.uk., accessed Aug. 26, 2016, in 2 pages. URL: http://www.kidstravelclub.co.uk/little-miss-girls-childrens-plasters. |
Aubakir, B. et al., “Vital Sign Monitoring Utilizing Eulerian Video Magnification and Thermography”, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Aug. 16, 2016, pp. 3527-3530, in 4 pages. |
Bandodkar, A. et al., “Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat”, Science Advances, vol. 5(1), Jan. 18, 2019, in 16 pages. URL: http://advances.sciencemag.org/content/5/1/eaav3294. |
Cauwe, M. et al., “Technology development for a low-cost, roll-to-roll chip embedding solution based on PET foils”, 18th European Microelectronics and Packaging Conference (EMPC), IEEE, Sep. 12, 2011, in 6 pages. |
Farooqui, M. et al., “Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds”, Scientific Reports, vol. 6, Jun. 29, 2016, in 14 pages. |
Geng, Y. et al., “A Hybrid Low Power Biopatch for Body Surface Potential Measurement”, IEEE Journal of Biomedical and Health Informatics, vol. 17(3), May 1, 2013, XP011506375. |
Great Britain Office Action and Search Report, re GB Application No. 1703775.5, dated Aug. 2, 2017. |
Great Britain Office Action and Search Report, re GB Application No. 1703781.3, dated Aug. 14, 2017. |
Great Britain Office Action and Search Report, re GB Application No. 1703783.9, dated Aug. 22, 2017. |
Great Britain Office Action, re GB Application No. 1814814.8, dated Mar. 8, 2019. |
Great Britain Office Action, re GB Application No. 1814872.6, dated Mar. 13, 2019. |
Iannetta, R.A. et al., “Successful case histories of polymer based circuitry on flexible film substrates”, Electro/94 International Conference Proceedings Combined vols. IEEE, May 10-12, 1994, XP010149465. |
Invitation to Pay Additional Fees and Partial Search Report, re PCT Application No. PCT/EP2018/055940, mailed Jun. 12, 2018. |
International Search Report and Written Opinion, re PCT Application No. PCT/EP2019/074254, mailed Dec. 5, 2019. |
Jinto, G. et al., “Reliability of Plastic-Encapsulated Electronic Components in Supersaturated Steam Environments”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 5, No. 10, Oct. 2015, in 9 pages. |
Lu, B. et al., “A study of the autofluorescence of parylene materials for [mu]TAS applications”, Lab on Chip, vol. 10, No. 14, Jul. 2010, pp. 1826-1834, in 9 pages. |
Mcleod, A. et al., “Motion Magnification for Endoscopic Surgery”, Progress in Biomedical Optics and Imaging, SPIE—International Society for Optical Engineering, Mar. 12, 2014, vol. 9036, in 8 pages. |
Mostafalu, P. et al., “Wireless Flexible Smart Bandage for Continuous Monitoring of Wound Oxygenation”, IEEE Transactions on Biomedical Circuits and Systems, vol. 9, No. 5, Oct. 2015, pp. 670-677, in 8 pages. |
Narusawa, H., “The corona discharge causes short destruction that had bad influence on a power switching circuit”, Adphox Corporation, Jan. 1, 2009, in 12 pages. URL: http://www.adphox.co.jp/keisokuki/ke-english-corona/CORONA_DISCHARGE_EN.pdf. |
Raviglione, A. et al., “Real-Time Smart Textile-Based System to Monitor Pressure Offloading of Diabetic Foot Ulcers”, Journal of Diabetes Science and Technology, vol. 11, Sep. 2017, in 5 pages. |
Rose, D. et al., “Adhesive RFID Sensor Patch for Monitoring of Sweat Electrolytes”, IEEE Transactions on Biomedical Engineering, vol. 62(6), Jun. 2015 (first published Nov. 11, 2015), in 9 pages. |
Wakita, J. et al., “Variations in Optical Absorption and Fluorescence Spectra for Polyimide Thin Films Caused by Structural Isomerism”, J. Photopolym. Sci. Technol. Jan. 1, 2003, in 1 page. |
Willis, B., “Conformal Coating Inspection & Coating Faults”, Vision Engineering, Jul. 21, 2016, in 35 pages. URL: http://www.visioneng.com/wp-content/uploads/2017/11/Confirmal-Coating-Inspection-and-Defects.21JUL16.pdf. |
Willis, B., “Guide to Conformal Coating & Cleaning Defects Contents”, Mar. 1, 2014, in 31 pages. URL: http://coatingguide.smartgroup.org/Files%20pdf/Coating%20Defects%20V2%2014March2014.pdf. |
International Search Report and Written Opinion, re PCT Application No. PCT/EP2018/055940, mailed Sep. 3, 2018. |
Hu F., et al., “Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning,” 2013, Auberach Publications, pp. 3-5. |
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/EP2019/074254, mailed on Mar. 25, 2021, 10 pages. |
International Preliminary Report on Patentability for Application No. PCT/EP2018/055940, mailed on Sep. 19, 2019, 9 pages. |
Mehmood N., et al., “Applications Of Modern Sensors And Wireless Technology In Effective Wound Management: Modern Sensors And Wireless Technology,” Journal of Biomedical Materials Research Part B, vol. 102, May 1, 2014, XP055739544, pp. 885-895. |
Number | Date | Country | |
---|---|---|---|
20210137446 A1 | May 2021 | US |