Device assignment system and method

Information

  • Patent Grant
  • 12099893
  • Patent Number
    12,099,893
  • Date Filed
    Wednesday, June 9, 2021
    3 years ago
  • Date Issued
    Tuesday, September 24, 2024
    3 months ago
Abstract
A tag assignment system, comprising a processing circuitry and being communicatively connected to a data repository comprising records, each of which (i) being associated with a respective distinct animal of a plurality of animals, and (ii) including a Unique Animal Identifier (UAI) associated with the respective distinct animal; the processing circuitry is configured to: substantially simultaneously: (i) obtain an ID reading of an animal identification tag attached to a given animal of the animals from a first tag reading device, wherein the ID reading including the UAI uniquely identifying the given animal, and (ii) obtain a tag reading of a second tag attached to the given animal from a second tag reading device, the tag reading including tag identification information uniquely identifying the second tag; and cause update of the data repository to assign the tag identification information to a given record of the records associated with the UAI.
Description
TECHNICAL FIELD

The presently disclosed subject matter relates to animal identification and assignment of devices to animals according to the animal identification results.


BACKGROUND

Animals may be tagged for various purposes. One purpose of tagging an animal is for identification purposes. For example, an animal can be identified by an electronic identification (eID), such as an animal identification tag (also referred to herein as: “animal ID Tag” or “ID Tag”) that is attached thereto, for uniquely identifying the animal. Of course, an EID tag is not the only way an animal can be identified. Animals can additionally or alternatively be identified using other systems, methods or techniques, such as non-electronic identification tags, visual identification tags, camera based identification systems, identification marks directly on animals (either of the latter three identifiers can include digits, letters, symbols, or any combination thereof, etc.), readable barcodes, facial (or other body part) recognition, etc. Identification of an animal is also important for physiological monitoring thereof. An animal can be monitored (and optionally also identified, e.g. in case the ID tag is also used for physiological monitoring) by an animal monitoring device such as a tag (also referred to herein as: “Monitoring Tag”) that is designed to collect information relating to the animal's activity and health status and optionally to transmit the obtained information wirelessly to an external server. Monitoring tags may be ear tags or other types of tags, such as neck tags. It is thus naturally crucial to have the ability to identify the animal that is monitored by the monitoring tag by associating the animal (using an animal identification method, device, identifier, or system) with the monitoring tag (using an identifier thereof). In some cases, additional types of identification devices can be attached to an animal for various purposes. Including for example, tags that indicate some feature or detail about the animal's health, origin, status, etc. Such identification devices are also included in the scope of the presently disclosed subject matter.


In one example of identification systems discussed herein, current tagging systems are independent of one another and they are not automatically associated with an identifier of the animal to which they are attached. The identification tag, or any other identifier as indicated herein, identifies the animal, but the system that identifies the animal does not read the monitoring tag, and does not know to associate the animal identifier (e.g. the identifier associated with the ID tag) with the monitoring tag identifier (associated with the monitoring tag). Due to the fact that it is critical to be able to associate an animal identifier (e.g. the identifier associated with the ID tag) with the monitoring tag identifier (associated with the monitoring tag), such association is made manually. However, such manual assignment task is cumbersome, ineffective, and in some cases even impossible, especially in large farms in which hundreds, thousands, or tens of thousands of animals are grown. The task gets even more complicated due to the fact that monitoring tags (or other devices for that purpose) are reusable and may be transferred from animal to animal.


There is thus a need in the art for a new method and system for animal identifier reading, assignment, tracking, and/or correlation.


GENERAL DESCRIPTION

In accordance with a first aspect of the presently disclosed subject matter, there is provided a tag assignment system, comprising: one or more tag reading devices capable of reading tags attached to animals; and a processing circuitry; wherein: the tag assignment system is communicatively connected to a data repository comprising one or more records, each of the records (i) being associated with a respective distinct animal of a plurality of animals, and (ii) including a unique animal identifier associated with the respective distinct animal; and the processing circuitry is configured to: substantially simultaneously: (i) obtain an ID reading of an animal identification tag attached to a given animal of the animals from a first tag reading device of the tag reading devices, wherein the first tag reading device is operating according to a first communication protocol, and the ID reading including at least the unique animal identifier uniquely identifying the given animal, and (ii) obtain a tag reading of a second tag, other than the animal identification tag, attached to the given animal from a second tag reading device of the tag reading devices, wherein the second tag reading device is operating according to a second communication protocol, and the tag reading including at least tag identification information uniquely identifying the second tag attached to the given animal; and cause update of the data repository to assign the tag identification information to a given record of the records associated with the unique animal identifier of the given animal.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the processing circuitry is further configured to cause a second update of the data repository to delete the tag identification information from a second record of the records, other than the given record, wherein the second record is not associated with the unique animal identifier of the given animal.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the second tag is an animal monitoring tag.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the first communication protocol is different than the second communication protocol.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the first tag reading device is different than the second tag reading device.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the animal identification tag is an Radio Frequency Identification (RFID) tag and the first communication protocol is an RFID protocol.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the second tag is an Infra-Red (IR) tag and the second communication protocol is an IR protocol.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the ID reading and the tag reading are obtained when the given animal is located at a confined area, so that (a) the animal identification tag is within a first reading range of the first tag reading device, and (b) the second tag is within a second reading range of the second tag reading device.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the confined area is within a feeding station.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the confined area is within a milking cabin.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the confined area is a portion of an animal passage allowing only one of the animals to be located within the confined area during obtainment of the ID reading and the tag reading.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the animal passage is a sorting gate.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the confined area is an area defined by the first reading range and the second reading range.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the animal passage comprises conductive rails, and wherein at least one of (a) the first tag reading device, or (b) the second tag reading device, are insulated from the conductive rails.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the processing circuitry is further configured, after the substantially simultaneous obtainment, to substantially simultaneously: (a) obtain a second ID reading of the animal identification tag attached to the given animal from a third tag reading device of the tag reading devices, wherein the third tag reading device is operating according to the first communication protocol, and the second ID reading including at least the unique animal identifier uniquely identifying the given animal, and (b) obtain a second tag reading of the second tag attached to the given animal from a fourth tag reading device of the tag reading devices, wherein the fourth tag reading device is operating according to the second communication protocol, and the second tag reading including at least the tag identification information uniquely identifying the second tag attached to the given animal; and wherein causing the update of the data repository is made upon the ID reading being identical to the second ID reading and the tag reading being identical to the second tag reading.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, (a) the first tag reading device and the third tag reading device are different tag reading devices, and (b) the second tag reading device and the fourth tag reading device are different tag reading devices.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the second ID reading and the second tag reading are obtained when the given animal is located at a second confined area other than the confined area, so that (i) the animal identification tag is within a third reading range of the second animal identification tag reading device, and (ii) the animal monitoring tag is within a fourth reading range of the second animal monitoring tag reading device.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the processing circuitry is further configured to alert a user upon failure to obtain the ID reading or the tag reading.


In accordance with a second aspect of the presently disclosed subject matter, there is provided a tag assignment method, comprising: substantially simultaneously: (i) obtaining an ID reading of an animal identification tag attached to a given animal of the animals from a first tag reading device of one or more tag reading devices capable of reading tags attached to animals, wherein the first tag reading device is operating according to a first communication protocol, and the ID reading including at least the unique animal identifier uniquely identifying the given animal, and (ii) obtaining a tag reading of a second tag, other than the animal identification tag, attached to the given animal from a second tag reading device of the tag reading devices, wherein the second tag reading device is operating according to a second communication protocol, and the tag reading including at least tag identification information uniquely identifying the second tag attached to the given animal; and causing update of a data repository comprising one or more records, each of the records (i) being associated with a respective distinct animal of a plurality of animals, and (ii) including a unique animal identifier associated with the respective distinct animal, wherein the update includes assigning the tag identification information to a given record of the records associated with the unique animal identifier of the given animal.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the method further comprises causing a second update of the data repository to delete the tag identification information from a second record of the records, other than the given record, wherein the second record is not associated with the unique animal identifier of the given animal.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the second tag is an animal monitoring tag.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the first communication protocol is different than the second communication protocol.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the first tag reading device is different than the second tag reading device.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the animal identification tag is an Radio Frequency Identification (RFID) tag and the first communication protocol is an RFID protocol.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the second tag is an Infra-Red (IR) tag and the second communication protocol is an IR protocol.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the ID reading and the tag reading are obtained when the given animal is located at a confined area, so that (a) the animal identification tag is within a first reading range of the first tag reading device, and (b) the second tag is within a second reading range of the second tag reading device.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the confined area is within a feeding station.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the confined area is within a milking cabin.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the confined area is a portion of an animal passage allowing only one of the animals to be located within the confined area during obtainment of the ID reading and the tag reading.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the animal passage is a sorting gate.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the confined area is an area defined by the first reading range and the second reading range.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the animal passage comprises conductive rails, and wherein at least one of (a) the first tag reading device, or (b) the second tag reading device, are insulated from the conductive rails.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the method further comprises, after the substantially simultaneous obtainment, substantially simultaneously: (a) obtaining a second ID reading of the animal identification tag attached to the given animal from a third tag reading device of the tag reading devices, wherein the third tag reading device is operating according to the first communication protocol, and the second ID reading including at least the unique animal identifier uniquely identifying the given animal, and (b) obtaining a second tag reading of the second tag attached to the given animal from a fourth tag reading device of the tag reading devices, wherein the fourth tag reading device is operating according to the second communication protocol, and the second tag reading including at least the tag identification information uniquely identifying the second tag attached to the given animal; and wherein causing the update of the data repository is made upon the ID reading being identical to the second ID reading and the tag reading being identical to the second tag reading.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, (a) the first tag reading device and the third tag reading device are different tag reading devices, and (b) the second tag reading device and the fourth tag reading device are different tag reading devices.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the second ID reading and the second tag reading are obtained when the given animal is located at a second confined area other than the confined area, so that (i) the animal identification tag is within a third reading range of the second animal identification tag reading device, and (ii) the animal monitoring tag is within a fourth reading range of the second animal monitoring tag reading device.


In one embodiment of the presently disclosed subject matter and/or embodiments thereof, the method further comprises alerting a user upon failure of obtaining the ID reading or the tag reading.


In accordance with a second aspect of the presently disclosed subject matter, there is provided a non-transitory computer readable storage medium having computer readable program code embodied therewith, the computer readable program code, executable by at least one processing circuitry of a computer to perform a method comprising: substantially simultaneously: (i) obtaining an ID reading of an animal identification tag attached to a given animal of the animals from a first tag reading device of one or more tag reading devices capable of reading tags attached to animals, wherein the first tag reading device is operating according to a first communication protocol, and the ID reading including at least the unique animal identifier uniquely identifying the given animal, and (ii) obtaining a tag reading of a second tag, other than the animal identification tag, attached to the given animal from a second tag reading device of the tag reading devices, wherein the second tag reading device is operating according to a second communication protocol, and the tag reading including at least tag identification information uniquely identifying the second tag attached to the given animal; and causing update of a data repository comprising one or more records, each of the records (i) being associated with a respective distinct animal of a plurality of animals, and (ii) including a unique animal identifier associated with the respective distinct animal, wherein the update includes assigning the tag identification information to a given record of the records associated with the unique animal identifier of the given animal.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the presently disclosed subject matter and to see how it may be carried out in practice, the subject matter will now be described, by way of non-limiting examples only, with reference to the accompanying drawings, in which:



FIG. 1 is a schematic illustration of exemplary device assignment system, in accordance with the presently disclosed subject matter;



FIG. 2 is a block diagram schematically illustrating one example of a device assignment system, in accordance with the presently disclosed subject matter;



FIG. 3 is a flowchart illustrating one example of a sequence of operations carried out for device assignment, in accordance with the presently disclosed subject matter; and



FIG. 4 is another flowchart illustrating another optional part of the sequence of operations carried out for device assignment, in accordance with the presently disclosed subject matter.





DETAILED DESCRIPTION

In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the presently disclosed subject matter. However, it will be understood by those skilled in the art that the presently disclosed subject matter may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the presently disclosed subject matter.


In the drawings and descriptions set forth, identical reference numerals indicate those components that are common to different embodiments or configurations.


Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “obtaining”, “causing”, “updating”, “alerting” or the like, include action and/or processes of a computer that manipulate and/or transform data into other data, said data represented as physical quantities, e.g. such as electronic quantities, and/or said data representing the physical objects. The terms “computer”, “processor”, “processing circuitry” and “controller” should be expansively construed to cover any kind of electronic device with data processing capabilities, including, by way of non-limiting example, a personal desktop/laptop computer, a server, a computing system, a communication device, a smartphone, a tablet computer, a smart television, a processor (e.g. digital signal processor (DSP), a microcontroller, a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), etc.), a group of multiple physical machines sharing performance of various tasks, virtual servers co-residing on a single physical machine, any other electronic computing device, and/or any combination thereof.


The operations in accordance with the teachings herein may be performed by a computer specially constructed for the desired purposes or by a general-purpose computer specially configured for the desired purpose by a computer program stored in a non-transitory computer readable storage medium. The term “non-transitory” is used herein to exclude transitory, propagating signals, but to otherwise include any volatile or non-volatile computer memory technology suitable to the application.


As used herein, the phrase “for example,” “such as”, “for instance” and variants thereof describe non-limiting embodiments of the presently disclosed subject matter. Reference in the specification to “one case”, “some cases”, “other cases” or variants thereof means that a particular feature, structure or characteristic described in connection with the embodiment(s) is included in at least one embodiment of the presently disclosed subject matter. Thus, the appearance of the phrase “one case”, “some cases”, “other cases” or variants thereof does not necessarily refer to the same embodiment(s).


It is appreciated that, unless specifically stated otherwise, certain features of the presently disclosed subject matter, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the presently disclosed subject matter, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.


In embodiments of the presently disclosed subject matter, fewer, more and/or different stages than those shown in FIGS. 3 and 4 may be executed. In embodiments of the presently disclosed subject matter one or more stages illustrated in FIGS. 3 and 4 may be executed in a different order and/or one or more groups of stages may be executed simultaneously. FIGS. 1 and 2 illustrates a general schematic of the system architecture in accordance with an embodiment of the presently disclosed subject matter. Each module in FIGS. 1 and 2 can be made up of any combination of software, hardware and/or firmware that performs the functions as defined and explained herein. The modules in FIGS. 1 and 2 may be centralized in one location or dispersed over more than one location, as detailed herein. In other embodiments of the presently disclosed subject matter, the system may comprise fewer, more, and/or different modules than those shown in FIGS. 1 and 2.


Any reference in the specification to a method should be applied mutatis mutandis to a system capable of executing the method and should be applied mutatis mutandis to a non-transitory computer readable medium that stores instructions that once executed by a computer result in the execution of the method.


Any reference in the specification to a system should be applied mutatis mutandis to a method that may be executed by the system and should be applied mutatis mutandis to a non-transitory computer readable medium that stores instructions that may be executed by the system.


Any reference in the specification to a non-transitory computer readable medium should be applied mutatis mutandis to a system capable of executing the instructions stored in the non-transitory computer readable medium and should be applied mutatis mutandis to method that may be executed by a computer that reads the instructions stored in the non-transitory computer readable medium.


Bearing this in mind, attention is drawn to FIG. 1, a schematic illustration of exemplary device assignment system, in accordance with the presently disclosed subject matter.


In the illustration, an animal 10 is shown. Although the animal 10 in the illustration is a cow, it is by no means limiting, and the animal 10 can be any other animal (e.g. other types of cattle, pets, fish, livestock, etc.). The animal 10 has two devices attached to it: an identification (ID) device 12 (such as, but not limited to an ID tag) and a monitoring device 14 (such as, but not limited to, a monitoring tag). As indicated herein, the ID device 12 can be a tag that uniquely identifies the animal 10. However, the ID device 12 may alternatively be another type of device used to identify the animal 10 by any of the methods or systems described herein (including electronic identification, visual identification, camera-based identification, facial or body part recognition, barcode, identification marks, etc.). When read by a suitable reading device, the ID device 12 returns a reading that includes at least a unique animal identifier, uniquely identifying the animal 10. When read by a suitable reading device (e.g. a tag reading device), the monitoring device 14 returns a reading that includes monitoring device identification information uniquely identifying the animal monitoring device 14 attached to the animal 10. It is to be noted that additional and/or alternative devices can be attached to the animal, and the ID device 12 and the monitoring device 14 are provided by way of non-limiting examples. As discussed, the animal 10 can be identified using various systems/devices/methods/techniques, including an ID tag, identification marks (e.g. digits, letters, symbols, or any combination thereof, etc.), readable barcodes, facial (or other body parts) recognition, etc., and that the animal 10 can be physiologically monitored using various monitoring devices, including a monitoring tag, a bolus, etc.


The assignment system may further include one or more reading devices 18. The reading devices 18 are capable of reading the devices attached to the animal 10, such as the ID device 12 and the monitoring device 14.


When looking at an example in which two tags are attached to the animal 10 (the ID device 12 is an ID tag and the monitoring device 14 is a monitoring tag), and assuming that both tags operate according to a common communication or tag reading protocol/technique, a single reading device 18 can read both the ID device 12 and the monitoring device 14. For example, if both the ID device 12 and the monitoring device 14 are Radio-Frequency (RF) tags, a single RF reading device can be used to read both tags. Similarly, if both the ID device 12 and the monitoring device 14 are Infra-Red (IR) tags, a single IR reading device can be used to read both tags. It is to be noted that when a single reading device 18 is used there is a need to discriminate between a reading from the ID device 12 and a reading from the monitoring device 14. This can be achieved in various known manners, including, for example, by having each tag designed and/or programmed to respond to a different stimulus from the reading device 18.


When looking at another example, in which there are still two tags attached to the animal 10 (the ID device 12 is an ID tag and the monitoring device 14 is a monitoring tag), however both tags operate according to different communication or tag reading protocols/techniques, each tag can be read by a different reading device 18 operating according to the respective communication protocol. For example, if the ID device 12 is an RF tag and the monitoring device 14 is an IR tag, the ID device 12 has to be read by an RF reading device and the monitoring device 14 has to be read by an IR reading device. It is to be noted that in some cases, a single tag reading device 18 can be able to communicate (or read) with different tags that operate according to different communication protocols or reading techniques (i.e. such tag reading device 18 has the ability to communicate with tags using multiple communication protocols, or reading techniques).


In some cases, the animal 10 can be identified without having an ID device 12 attached thereto. One example is visual identification (e.g. facial, or other body parts, recognition). In such cases, at least one of the reading devices 18 is a visual reading device such as a camera that acquires an image based on which the animal 10 is identified. In such cases, the monitoring device 14 may be an IR or RF tag for example, and the animal 10 is identified by visual identification while the monitoring device 14 is read by a device, or devices, that can read using the respective techniques or protocols.


It is to be further noted that in some cases, one or more of the identification methods may be passive identification methods, such as passive tags. For example, the tags can be a printing of a certain identifier on the animal 10, or they can be stickers of a certain visual identifier attached of the animal, or they can be markings painted on the animal. In such cases, where the tags are visually identifiable (e.g. barcodes), the respective tag reading device 18 can be, for example, a camera capable of acquiring images in the spectrum of the visual tags.


It is to be still further noted that the reading devices 18 have to be placed so that they can obtain readings that can be used to identify the animal 10 (e.g. by reading an ID device 12, or by any other identification method and/or technique) and read the devices (e.g. tags) attached to a single animal at a time. Placement of the reading devices 18 at a position in which due to their reading range they may simultaneously read devices attached to more than one animal may lead to errors in assignment of the devices (e.g. tags). For example, if two cows are within the reading ranges of the reading devices 18, the reading devices 18 will not be able to discriminate between the devices (e.g. tags) on each cow.


It is to be still further noted that the reading devices 18 have to be placed so that they can obtain readings that can be used to identify the animal 10 (e.g. by reading an ID device 12, or by any other identification method and/or technique) and read the devices (e.g. tags) attached to a single animal at a time. Placement of the reading devices 18 at a position in which due to their reading range they may simultaneously read devices attached to more than one animal may lead to errors in assignment of the devices (e.g. tags). For example, if two cows are within the reading ranges of the reading devices 18, the reading devices 18 will not be able to discriminate between the devices (e.g. tags) on each cow.


Accordingly, the reading devices 18 are placed so that they can obtain readings that can be used to identify the animal 10 (e.g. by reading an ID device 12, or by any other identification method and/or technique) and read the devices (e.g. tags) attached to the animal 10 when the animal is within a confined area 16. The confined area 16 is an area in which only a single cow can be located when the reading devices 18 read the devices (e.g. tags) attached to the animal.


In some cases, the reading devices 18 obtain readings that can be used to identify the animal 10 (whether using an ID tag or by any other means) and read the devices (e.g. tags) that are attached to the animal 10 substantially simultaneously. When reference is made herein to substantially simultaneously, one option is that the readings are made within a range of few seconds or even less than one second. Another option is that the readings are made during a time frame during which the animal 10 is expected to be located at the confined area 16 (for example, if the animal 10 is walking through an animal passage, and the readings are obtained while it is walking, it can be expected that the animal 10 will be located within the confined area 16 for less than a few seconds).


The confined area 16 can be, for example, at least part of feeding station in which a single animal is fed. Additionally, or alternatively, the confined area 16 can be at least part of milking cabin in which a single animal is milked. Additionally, or alternatively, the confined area 16 can be a portion of an animal passage allowing only one of the animals to be located within the confined area 16 during obtainment of readings that can be used to identify the animal 10 (e.g. by reading an ID device 12, or by any other identification method and/or technique) and the readings of the tags attached to the single animal by the reading devices 18. In some cases, the animal passage is a sorting gate.


In some cases, the animal passage comprises conductive rails. In some cases, these conductive rails may create the risk of interacting or interfering with the reading devices 18 operation. For example, the rails may act as an antenna that may conducts signals sent from the reading devices 18 to the devices (e.g. tags) attached to the animals outside the confined area 16, and/or the signals sent from the devices (e.g. tags) attached to the animals outside the confined area 16 in response to excitation by the reading devices 18. Thus, in some cases the reading devices 18 can be insulated from the conductive rails, e.g. using known methods and/or techniques.


It is to be noted that, in some cases, the confined area 16 may be limited to an area that covers the entire reading range of the reading devices 18, so that the tag reading devices 18 cannot obtain readings that can be used to identify animals that are located outside of the confined area 16 and/or readings of tags that are located outside s


In some cases, as further detailed herein, inter alia with reference to FIG. 4, the animal 10 can be identified (e.g. by reading an ID device 12, or by any other identification method and/or technique) and the devices (e.g. tags) attached to the animal 10 can be read more than once, in order to verify that the identification and the obtained readings are accurate. In such cases, such subsequent reading/s can be made by the same reading devices 18, or they can be made by additional reading devices (not shown in the figure) that are also placed so that they can obtain readings that can be used to identify the animal 10 (e.g. by reading an ID device 12, or by any other identification method and/or technique) and read the devices (e.g. tags) attached to the animal 10 when the animal 10 is within a confined area, that can be the same confined area 16 shown in the figure, or another confined area that is not shown in the figure (e.g. another section of the animal passage).


Having described an example of part of the deployment of the system, attention is now drawn to FIG. 2. FIG. 2 is a block diagram schematically illustrating one example of a device assignment system, in accordance with the presently disclosed subject matter.


According to the presently disclosed subject matter, device assignment system 100 comprises one or more reading devices 18, each of which being capable of reading one or more devices (e.g. tags) attached to the animal 10. Due to the fact that the animal 10 can have a plurality of devices attached thereto, it can be appreciated that in those cases where two or more of the devices operate according to different communication or tag reading protocols/techniques, a plurality of reading devices 18 are required, so that the reading devices 18 include at least one reading device for each communication protocol/technique.


As indicated herein, one of the devices that can be attached to an animal 10 is an identification device 12 (e.g. an ID tag). In some cases, the animal 10 can be identified using non-tag based devices and systems, as described herein, such as, but not limited to, facial (or other body part) recognition techniques. In such cases, one or more other devices can be attached to the animal 10, and its identification can be non-tag based (e.g. facial, or other body-part, recognition).


Device assignment system 100 may further comprise a processing circuitry 120. Processing circuitry 120 can be one or more processing units (e.g. central processing units), microprocessors, microcontrollers (e.g. microcontroller units (MCUs)) or any other computing devices or modules, including multiple and/or parallel and/or distributed processing units, which are adapted to independently or cooperatively process data for controlling relevant device assignment system 100 resources and for enabling operations related to device assignment system's 100 resources.


Device assignment system 100 can further comprise a network interface 110 (e.g. a network card, a WiFi client, a LiFi client, 3G/4G client, or any other component), enabling device assignment system 100 to communicate over a network with various systems, such as a farm management system 140 in which animal records are kept (as further detailed herein), etc. It is to be noted that in some cases, the animal records are maintained in the device assignment system 100, and in such cases, the device assignment system 100 can optionally be a standalone system that does not have to communicate with an external farm management system 140.


Processing circuitry 120 comprises a device assignment module 130, configured to perform a device assignment process, as further detailed herein, inter alia with reference to FIGS. 3 and 4.


As indicated herein, one or more animal records are kept in a data repository 160. The device assignment system 100 is communicatively connected to the data repository 160. The data repository 160 can be an internal data repository comprised within the device assignment system 100, however it may also be an external data repository. In such cases, the data repository 160 can be part of a management system 140 (e.g. a farm management system), that the device assignment system 100 can communicate with (e.g. via its network interface 110).


In those cases where a management system 140 external to the device assignment system 100 exists, it can comprise a network interface 150 (e.g. a network card, a WiFi client, a LiFi client, 3G/4G client, or any other component), enabling management system 140 to communicate over a network with various systems, such as the device assignment system 100.


Management system 140 can further comprise, or be otherwise associated with, a data repository 160 (e.g. a database, a storage system, a memory including Read Only Memory-ROM, Random Access Memory-RAM, or any other type of memory, etc.) configured to store data, optionally including, inter alia, one or more animal records. Each animal record can be associated with a respective distinct animal and can include various types of information associated therewith, including a unique animal identifier associated with the respective distinct animal, and optionally information identifying one or more devices attached to the animal 10, as further detailed herein. Data repository 160 can be further configured to enable retrieval and/or update and/or deletion of the stored data. It is to be noted that in some cases, data repository 160 can be distributed, while the management system 140 has access to the information stored thereon, e.g. via a wired or wireless network to which management system 140 is able to connect (utilizing its network interface 150).


It is to be noted, as indicated herein, that in some cases the data repository 160 is internal to the device assignment system 100. In other cases, the data repository 160 can be comprised within the devices themselves, so that, for example, one or more of the devices that are attached to an animal 10 can include information identifying one or more other devices attached to the same animal 10, and/or information identifying the animal 10 itself. For example, the identification device 12 that is attached to the animal 10 can include a record comprising an identifier of the monitoring device 14 attached to the same animal 10. In those cases, those devices that include information identifying one or more other devices can be regarded as including their own data repository.


Having described the various components of the device assignment system 100, attention is drawn to FIG. 3, a flowchart illustrating one example of a sequence of operations carried out for device assignment, in accordance with the presently disclosed subject matter.


According to certain examples of the presently disclosed subject matter, device assignment system 100 is configured to perform a device assignment process 200, e.g. utilizing the tag assignment module 130. For this purpose, tag assignment system 100 is configured to obtain an animal identifier (e.g. by reading an ID device 12 such as an ID tag, or using any other identification method and/or technique) and one or more readings from one or more readings obtained by the reading devices 18 from the devices (e.g. tags) attached to the animal 10 (block 210).


In some cases, the obtainment of the animal identifier and of the readings obtained by the reading devices 18 from the devices (e.g. tags) attached to the animal 10 is performed substantially simultaneously, as detailed with reference to FIG. 1.


The animal identifier can be an ID reading of an animal identification device 12 (e.g. an ID tag) attached to a given animal 10, of a plurality of animals, from a reading device of the reading devices 18. In such cases, the ID reading includes at least information uniquely identifying the given animal 10. In other cases, the animal identifier can be obtained from any other device capable of uniquely identifying an animal 10 (e.g. using facial recognition methods and/or techniques).


The one or more readings obtained at block 210 may include a device reading of a device, other than the animal identification device 12, attached to the given animal 10 (e.g. an animal monitoring device 14 such as a monitoring tag). The device reading may be obtained from one of the reading devices 18. In such cases, the device reading includes at least device identification information uniquely identifying the device (e.g. the monitoring device 14) attached to the given animal 10.


As indicated herein, in case two devices are attached to the animal 10 (e.g. the ID device 12 and the monitoring device 14), and assuming that both devices operate according to a common communication protocol, a single reading device 18 can read both devices (while using known techniques for differentiating between the readings, as detailed herein with reference to FIG. 1). However, in case two devices are attached to the animal 10 (e.g. the ID device 12 and the monitoring device 14), however both devices operate according to different communication protocols, each device has to be read by a different reading device 18 operating according to the respective communication protocol (as detailed herein with reference to FIG. 1).


As indicated herein, it is to be noted that in some cases, the ID reading and the device reading are obtained when the given animal 10 is located at a confined area 16 as defined with reference to FIG. 1.


In some cases, device assignment system 100 can be configured to check if the readings failed (block 220), and in such case provide an alert to a user of the device assignment system 100 with a suitable indication (block 230). It is to be noted that a device reading can fail due to various reasons, including, for example, a malfunction of the device, a missing device (as in some cases devices, such as tags, can for example break and fall), etc.


Device assignment system 100 is further configured to cause update of the data repository 160 to assign the device identification information to a given record of the records associated with the unique animal identifier of the given animal 10 (block 240). By doing so, the data repository 160 is automatically updated to indicate that the device identified by the device identification information is attached to the animal 10 that is identified by the obtained animal identifier.


It is to be noted that in some cases, a device that is attached to the animal 10 may be removed (for any reason) from another animal before attachment to the animal 10. Due to the fact that the device was attached to another animal, the data repository 160 may indicate that such device is assigned to such other animal. Accordingly, device assignment system 100 can be further configured to cause another update of the data repository 160 to delete the device identification information from a second record of the records, other than the given record, wherein the second record is not associated with the unique animal identifier of the given animal (block 250).


It is to be noted that in some cases, all, or part, of the device assignment process 200, can be performed by the management system 140, in cooperation with the tag assignment system 100 or by itself.


It is to be further noted, with reference to FIG. 2, that some of the blocks can be integrated into a consolidated block or can be broken down to a few blocks and/or other blocks may be added. It should be also noted that whilst the flow diagram is described also with reference to the system elements that realizes them, this is by no means binding, and the blocks can be performed by elements other than those described herein.


Turning to FIG. 4, there is shown another flowchart illustrating another optional part of the sequence of operations carried out for device assignment, in accordance with the presently disclosed subject matter.


According to certain examples of the presently disclosed subject matter, as part of the device assignment process 200, after performance of block 210 or block 220, device assignment system 100, can be configured to again obtain a second animal identifier and one or more second readings from one or more of the reading devices 18 (block 310). The second animal identifier and the one or more second readings obtained at block 310 can be obtained from the same origin (e.g. from the same reading devices 18), at different points in time, or from other origins (e.g. other reading devices) simultaneously, or at different points in time.


In some cases, the obtainment of the second animal identified and of the second readings is performed substantially simultaneously, as detailed with reference to FIG. 1.


The second animal identifier can be an ID reading of an animal identification device 12 (e.g. an ID tag) attached to the given animal 10, from a reading device of the tag reading devices 18. In such cases, the second ID reading includes at least information uniquely identifying the given animal 10. In other cases, the animal identifier can be obtained from any other device capable of uniquely identifying an animal 10 (e.g. using facial recognition methods and/or techniques).


The one or more readings obtained at block 310 include a second device reading of the device attached to the given animal 10 that is not an animal identification to device g 12 (e.g. an animal monitoring device 14, such as a monitoring tag). The second device reading is obtained from one of the reading devices 18. In such cases, the second device reading includes at least device identification information uniquely identifying the second device attached to the given animal 10.


As indicated herein, it is to be noted that in some cases, the ID reading and the device reading are obtained when the given animal 10 is located at the confined area 16 as defined with reference to FIG. 1, or at another confined area (e.g. another part of the animal passage) that meets the same requirements of a confined area as defiled with reference to FIG. 1.


After obtainment of the information at block 310, the device assignment system 100 can be configured to check if the readings match (block 320). That is, the device assignment system 100 is configured to verify that (a) the unique animal identifier included in the second ID reading obtained at block 310 is identical to the unique animal identifier included in the ID reading obtained at block 210, and (b) that the device identification information included in the second readings obtained at block 310 is identical to the device identification information included in the device readings obtained at block 210.


In case of a mismatch, the device assignment system 100 can be configured to perform an action, such as provide a notification to a user of the device assignment system 100, mark the animal to be checked, etc. (block 330). In case no mismatch exists, the device assignment process 200 can proceed to block 220 or 240, so that the causing of the update of the data repository is performed only in case of a match between the values of the readings (identical animal identifier and identical device identification information).


It is to be noted, with reference to FIG. 4, that some of the blocks can be integrated into a consolidated block or can be broken down to a few blocks and/or other blocks may be added. It should be also noted that whilst the flow diagram is described also with reference to the system elements that realizes them, this is by no means binding, and the blocks can be performed by elements other than those described herein.


It is to be understood that the presently disclosed subject matter is not limited in its application to the details set forth in the description contained herein or illustrated in the drawings. The presently disclosed subject matter is capable of other embodiments and of being practiced and carried out in various ways. Hence, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for designing other structures, methods, and systems for carrying out the several purposes of the present presently disclosed subject matter.


It will also be understood that the system according to the presently disclosed subject matter can be implemented, at least partly, as a suitably programmed computer. Likewise, the presently disclosed subject matter contemplates a computer program being readable by a computer for executing the disclosed methods. The presently disclosed subject matter further contemplates a machine-readable memory tangibly embodying a program of instructions executable by the machine for executing the disclosed methods.

Claims
  • 1. A tag assignment system, comprising: one or more tag reading devices capable of reading tags attached to animals; anda processing circuitry;wherein: (a) the tag assignment system is communicatively connected to a data repository comprising one or more records, each of the records being associated with a respective distinct animal of a plurality of animals, and including a unique animal identifier associated with the respective distinct animal; and(b) the processing circuitry is configured to: obtain a first ID reading of an animal identification tag attached to a given animal of the animals from a first tag reading device of the tag reading devices, wherein the first tag reading device is operating according to a first communication protocol, and the first ID reading including at least the unique animal identifier uniquely identifying the given animal, and substantially simultaneously, in respect to the time of the first ID reading, obtain a first tag reading of a second tag, other than the animal identification tag, attached to the given animal from a second tag reading device of the tag reading devices, wherein the second tag reading device is operating according to a second communication protocol, wherein the animal identification tag is a Radio Frequency Identification (RFID) tag and the first communication protocol is an RFID protocol, the second tag is an Infra-Red (IR) tag and the second communication protocol is an IR protocol, the first tag reading including at least tag identification information uniquely identifying the second tag attached to the given animal;obtain at least one additional readings set of ID and Tag readings, each additional readings set is obtained by: obtaining a second ID reading of the animal identification tag attached to the given animal—from at least one third tag reading device of the tag reading devices, wherein the third tag reading device operating according to the first communication protocol, the second ID reading including at least the unique animal identifier uniquely identifying the given animal, and obtain a second tag reading of the second tag attached to the given animal from a fourth tag reading device of the tag reading devices, wherein the fourth tag reading device is operating according to the second communication protocol, and the second tag reading including at least the tag identification information uniquely identifying the second tag attached to the given animal; andupon the first ID reading being identical to the second ID reading and upon the tag identification information of the first tag reading being identical to the tag identification information of the second tag reading, of at least one of the additional readings sets, cause update of the data repository, at least to assign the tag identification information to a given record of the records associated with the unique animal identifier of the given animal.
  • 2. The tag assignment system of claim 1, wherein the processing circuitry is further configured to cause a second update of the data repository to delete the tag identification information from a second record of the records, other than the given record, wherein the second record is not associated with the unique animal identifier of the given animal.
  • 3. The tag assignment system of claim 1, wherein the second tag is an animal monitoring tag.
  • 4. The tag assignment system of claim 1, wherein the first communication protocol is different than the second communication protocol.
  • 5. The tag assignment system of claim 1, wherein the first tag reading device is different than the second tag reading device.
  • 6. The tag assignment system of claim 1, wherein the ID reading and the tag reading are obtained when the given animal is located at a confined area, so that (a) the animal identification tag is within a first reading range of the first tag reading device, and (b) the second tag is within a second reading range of the second tag reading device.
  • 7. The tag assignment system of claim 6, wherein the confined area is: (a) within a feeding station, (b) within a milking cabin, (c) a portion of an animal passage allowing only one of the animals to be located within the confined area during obtainment of the ID reading and the tag reading, or (d) is an area defined by the first reading range and the second reading range.
  • 8. The tag assignment system of claim 6, wherein the animal passage comprises conductive rails, and wherein at least one of (a) the first tag reading device, or (b) the second tag reading device, are insulated from the conductive rails.
  • 9. The tag assignment system of claim 1, wherein the processing circuitry is further configured to alert a user upon failure to obtain the ID reading or the tag reading.
  • 10. The tag assignment system of claim 1, wherein the first ID reading and the first tag reading are performed at a different time point in respect to the timing of the ID reading and the tag reading of the at least one additional reading set.
  • 11. A tag assignment method, comprising: obtaining a first ID reading of an animal identification tag attached to a given animal of the animals from a first tag reading device of one or more tag reading devices capable of reading tags attached to animals, wherein the first tag reading device is operating according to a first communication protocol, and the first ID reading including at least the unique animal identifier uniquely identifying the given animal, and substantially simultaneously, in respect to the time of the first ID reading, obtaining a first tag reading of a second tag, other than the animal identification tag, attached to the given animal from a second tag reading device of the tag reading devices, wherein the second tag reading device is operating according to a second communication protocol, wherein the animal identification tag is a Radio Frequency Identification (RFID) tag and the first communication protocol is an RFID protocol, the second tag is an Infra-Red (IR) tag and the second communication protocol is an IR protocol, and the first tag reading including at least tag identification information uniquely identifying the second tag attached to the given animal; andobtaining at least one additional readings set of ID and tag readings, each additional reading set is obtainable by: obtaining a second ID reading of the animal identification tag attached to the given animal from a third tag reading device of the tag reading devices, wherein the third tag reading device is operating according to the first communication protocol, and the second ID reading including at least the unique animal identifier uniquely identifying the given animal, and substantially simultaneously, in respect to the time of the second ID reading, obtaining a second tag reading of the second tag attached to the given animal from a fourth tag reading device of the tag reading devices, wherein the fourth tag reading device is operating according to the second communication protocol, and the second tag reading including at least the tag identification information uniquely identifying the second tag attached to the given animal; andupon the first ID reading being identical to the second ID reading and upon the tag identification information of the first tag reading being identical to the tag identification information of the second tag reading, of at least one of the additional readings sets, causing update of a data repository comprising one or more records, each of the records (i) being associated with a respective distinct animal of a plurality of animals, and (ii) including a unique animal identifier associated with the respective distinct animal, wherein the update includes at least assigning the tag identification information to a given record of the records associated with the unique animal identifier of the given animal.
  • 12. The tag assignment method of claim 11, further comprising causing a second update of the data repository to delete the tag identification information from a second record of the records, other than the given record, wherein the second record is not associated with the unique animal identifier of the given animal.
  • 13. The tag assignment method of claim 11, wherein the second tag is an animal monitoring tag.
  • 14. The tag assignment method of claim 11, wherein the first communication protocol is different than the second communication protocol.
  • 15. The tag assignment method of claim 11, wherein the first tag reading device is different than the second tag reading device.
  • 16. The tag assignment method of claim 11, wherein the ID reading and the tag reading are obtained when the given animal is located at a confined area, so that (a) the animal identification tag is within a first reading range of the first tag reading device, and (b) the second tag is within a second reading range of the second tag reading device.
  • 17. The tag assignment method of claim 11, wherein the confined area is: (a) within a feeding station, (b) within a milking cabin, (c) a portion of an animal passage allowing only one of the animals to be located within the confined area during obtainment of the ID reading and the tag reading, or (d) is an area defined by the first reading range and the second reading range.
  • 18. The tag assignment method of claim 11, further comprising alerting a user upon failure of obtaining the ID reading or the tag reading.
  • 19. A non-transitory computer readable storage medium having computer readable program code embodied therewith, the computer readable program code, executable by at least one processing circuitry of a computer to perform a method comprising: obtaining a first ID reading of an animal identification tag attached to a given animal of the animals from a first tag reading device of one or more tag reading devices capable of reading tags attached to animals, wherein the first tag reading device is operating according to a first communication protocol, and the first ID reading including at least the unique animal identifier uniquely identifying the given animal, and substantially simultaneously, in respect to the time of the first ID reading, obtaining a first tag reading of a second tag, other than the animal identification tag, attached to the given animal from a second tag reading device of the tag reading devices, wherein the second tag reading device is operating according to a second communication protocol, wherein the animal identification tag is a Radio Frequency Identification (RFID) tag and the first communication protocol is an RFID protocol, the second tag is an Infra-Red (IR) tag and the second communication protocol is an IR protocol, and the first tag reading including at least tag identification information uniquely identifying the second tag attached to the given animal; andobtaining at least one additional readings set of ID and tag readings, each additional reading set is obtainable by: obtaining a second ID reading of the animal identification tag attached to the given animal from a third tag reading device of the tag reading devices, wherein the third tag reading device is operating according to the first communication protocol, and the second ID reading including at least the unique animal identifier uniquely identifying the given animal, and substantially simultaneously, in respect to the time of the second ID reading, obtaining a second tag reading of the second tag attached to the given animal from a fourth tag reading device of the tag reading devices, wherein the fourth tag reading device is operating according to the second communication protocol, and the second tag reading including at least the tag identification information uniquely identifying the second tag attached to the given animal; andupon the first ID reading being identical to the second ID reading and upon the tag identification information of the first tag reading being identical to the tag identification information of the second tag reading, of at least one of the additional readings sets, causing update of a data repository comprising one or more records, each of the records (i) being associated with a respective distinct animal of a plurality of animals, and (ii) including a unique animal identifier associated with the respective distinct animal, wherein the update includes at least assigning the tag identification information to a given record of the records associated with the unique animal identifier of the given animal.
  • 20. The tag assignment method of claim 11, wherein the first ID reading and the first tag reading are performed at a different time point in respect to the timing of the ID reading and the tag reading of the at least one additional reading set.
Priority Claims (1)
Number Date Country Kind
275812 Jul 2020 IL national
PCT Information
Filing Document Filing Date Country Kind
PCT/IL2021/050688 6/9/2021 WO
Publishing Document Publishing Date Country Kind
WO2022/003666 1/6/2022 WO A
US Referenced Citations (449)
Number Name Date Kind
85575 Marsden Apr 1869 A
1016752 Leith Feb 1912 A
1188510 Timson Jun 1916 A
1364137 Pannier Jan 1921 A
1759400 Hobbs May 1930 A
1843314 Berntson et al. Feb 1932 A
1863037 Archbold Jun 1932 A
2078827 Ashton Apr 1937 A
2420020 Snell May 1947 A
2553400 Blair May 1951 A
2570048 Cooke et al. Oct 1951 A
3091770 McMurray et al. Jun 1963 A
3261243 Ellison Jul 1966 A
3596541 Bieganski Aug 1971 A
3812859 Murphy et al. May 1974 A
3884100 Fideldy May 1975 A
3981209 Caroff Sep 1976 A
4120303 Villa-Massone et al. Oct 1978 A
4121591 Hayes Oct 1978 A
4281657 Ritchey Aug 1981 A
4323183 Duchin Apr 1982 A
4497321 Fearing et al. Feb 1985 A
4516577 Scott et al. May 1985 A
4531520 Reggers et al. Jul 1985 A
4552147 Gardner Nov 1985 A
4666436 McDonald et al. May 1987 A
4672966 Haas, Jr. Jun 1987 A
4696119 Howe et al. Sep 1987 A
4716899 Huenefeld et al. Jan 1988 A
4819639 Gardner Apr 1989 A
4821683 Veldman Apr 1989 A
4943294 Knapp Jul 1990 A
5022253 Parlatore Jun 1991 A
5056385 Petersen Oct 1991 A
5141514 van Amelsfort Aug 1992 A
5154721 Perez Oct 1992 A
5267464 Cleland Dec 1993 A
5509291 Nilsson et al. Apr 1996 A
5651791 Zavlodaver et al. Jul 1997 A
5778820 van der Lely et al. Jul 1998 A
6007548 Ritchey Dec 1999 A
6016769 Forster Jan 2000 A
6043748 Touchton et al. Mar 2000 A
6053926 Luehrs Apr 2000 A
6095915 Battista et al. Aug 2000 A
6099482 Brune et al. Aug 2000 A
6100804 Brady et al. Aug 2000 A
6113539 Ridenour Sep 2000 A
6114957 Westrick et al. Sep 2000 A
6145225 Ritchey Nov 2000 A
6166643 Janning et al. Dec 2000 A
6172640 Durst et al. Jan 2001 B1
6232880 Anderson et al. May 2001 B1
6235036 Gardner et al. May 2001 B1
6271757 Touchton et al. Aug 2001 B1
6297739 Small Oct 2001 B1
6310553 Dance Oct 2001 B1
6402692 Morford Jun 2002 B1
6497197 Huisma Dec 2002 B1
6502060 Christian Dec 2002 B1
6510630 Gardner Jan 2003 B1
6535131 Bar-Shalom et al. Mar 2003 B1
6569092 Guichon et al. May 2003 B1
6659039 Larsen Dec 2003 B1
6868804 Huisma et al. Mar 2005 B1
7016730 Ternes Mar 2006 B2
7046152 Peinetti et al. May 2006 B1
7137359 Braden Nov 2006 B1
7296539 Iljas Nov 2007 B2
7380518 Kates Jun 2008 B2
7705736 Kedziora Apr 2010 B1
7772979 Reinhard Aug 2010 B2
7843350 Geissler et al. Nov 2010 B2
7937861 Zacher May 2011 B1
8005624 Starr Aug 2011 B1
8260948 Chand Sep 2012 B2
8266990 Janson Sep 2012 B1
8305220 Gibson Nov 2012 B2
8478389 Brockway et al. Jul 2013 B1
8622929 Wilson et al. Jan 2014 B2
8763557 Lipscomb et al. Jul 2014 B2
8955462 Golden et al. Feb 2015 B1
9215862 Bladen et al. Dec 2015 B2
9392767 Talt et al. Jul 2016 B2
9392946 Sarantos et al. Jul 2016 B1
9449487 Spitalny Sep 2016 B1
9648849 Vivathana May 2017 B1
9654925 Solinsky et al. May 2017 B1
9693536 Dana Jul 2017 B1
9717216 Schlachta et al. Aug 2017 B1
9743643 Kaplan et al. Aug 2017 B1
9848577 Brandao et al. Dec 2017 B1
9861080 Hathway et al. Jan 2018 B1
10021857 Bailey et al. Jul 2018 B2
10039263 Teychene et al. Aug 2018 B2
10045511 Yarden et al. Aug 2018 B1
10064391 Riley Sep 2018 B1
10091972 Jensen et al. Oct 2018 B1
10231442 Chang et al. Mar 2019 B1
10242547 Struhsaker et al. Mar 2019 B1
10264762 Lamb Apr 2019 B1
10291690 Barrueto May 2019 B1
10352759 Jensen Jul 2019 B1
10446006 Johnson, Jr. et al. Oct 2019 B1
10512430 Hladio Dec 2019 B1
10588295 Riley Mar 2020 B1
10628756 Kuper et al. Apr 2020 B1
10638726 Makarychev et al. May 2020 B1
10691674 Leong et al. Jun 2020 B2
20010027751 van den Berg Oct 2001 A1
20020010390 Guice et al. Jan 2002 A1
20020021219 Edwards Feb 2002 A1
20020091326 Hashimoto et al. Jul 2002 A1
20020095828 Koopman et al. Jul 2002 A1
20020154015 Hixson Oct 2002 A1
20020158765 Pape et al. Oct 2002 A1
20030004652 Brunner et al. Jan 2003 A1
20030023517 Marsh et al. Jan 2003 A1
20030062001 Hakan Apr 2003 A1
20030066491 Stampe Apr 2003 A1
20030144926 Bodin et al. Jul 2003 A1
20030146284 Schmit et al. Aug 2003 A1
20030149526 Zhou et al. Aug 2003 A1
20030177025 Curkendall et al. Sep 2003 A1
20030201931 Durst et al. Oct 2003 A1
20030208157 Eidson et al. Nov 2003 A1
20030221343 Volk et al. Dec 2003 A1
20030229452 Lewis Dec 2003 A1
20040066298 Schmitt et al. Apr 2004 A1
20040078390 Saunders Apr 2004 A1
20040118920 He Jun 2004 A1
20040119831 Miyawaki Jun 2004 A1
20040123810 Lorton et al. Jul 2004 A1
20040177011 Ramsay et al. Sep 2004 A1
20040201454 Waterhouse et al. Oct 2004 A1
20050010333 Lorton et al. Jan 2005 A1
20050026181 Davis et al. Feb 2005 A1
20050097997 Hile May 2005 A1
20050108912 Bekker May 2005 A1
20050115508 Little Jun 2005 A1
20050128086 Brown et al. Jun 2005 A1
20050139168 Light et al. Jun 2005 A1
20050145187 Gray Jul 2005 A1
20050210267 Sugano Sep 2005 A1
20050273117 Teychene Dec 2005 A1
20050279287 Kroeker Dec 2005 A1
20050284381 Bell et al. Dec 2005 A1
20060011145 Kates Jan 2006 A1
20060052986 Rogers et al. Mar 2006 A1
20060064325 Matsumoto et al. Mar 2006 A1
20060087440 Klein Apr 2006 A1
20060106289 Elser May 2006 A1
20060117619 Costantini Jun 2006 A1
20060155172 Rugg Jul 2006 A1
20060170561 Eyal Aug 2006 A1
20060173367 Stuart et al. Aug 2006 A1
20060185605 Renz et al. Aug 2006 A1
20060201436 Kates Sep 2006 A1
20060207515 Palett Sep 2006 A1
20060241521 Cohen Oct 2006 A1
20060261928 Solberg Nov 2006 A1
20060282274 Bennett Dec 2006 A1
20060290514 Sakama et al. Dec 2006 A1
20070006494 Hayes et al. Jan 2007 A1
20070008155 Trost et al. Jan 2007 A1
20070021660 DeLonzor et al. Jan 2007 A1
20070027375 Melker et al. Feb 2007 A1
20070027377 DeLonzor et al. Feb 2007 A1
20070027379 Delonzor et al. Feb 2007 A1
20070029381 Braiman Feb 2007 A1
20070044317 Critelli Mar 2007 A1
20070044732 Araki et al. Mar 2007 A1
20070062457 Bates et al. Mar 2007 A1
20070069899 Shih et al. Mar 2007 A1
20070103296 Paessel et al. May 2007 A1
20070103314 Geissler May 2007 A1
20070149871 Sarussi et al. Jun 2007 A1
20070152825 August et al. Jul 2007 A1
20070222624 Eicken et al. Sep 2007 A1
20070255124 Pologe et al. Nov 2007 A1
20070258625 Mirtsching Nov 2007 A1
20070283791 Engvall et al. Dec 2007 A1
20070298421 Jiang et al. Dec 2007 A1
20080001815 Wang et al. Jan 2008 A1
20080004798 Troxler et al. Jan 2008 A1
20080017126 Adams et al. Jan 2008 A1
20080018481 Zehavi Jan 2008 A1
20080021352 Keegan et al. Jan 2008 A1
20080036610 Hokuf et al. Feb 2008 A1
20080047177 Hilpert Feb 2008 A1
20080055155 Hensley et al. Mar 2008 A1
20080059263 Stroman et al. Mar 2008 A1
20080061990 Milnes et al. Mar 2008 A1
20080076988 Sarussi et al. Mar 2008 A1
20080076992 Hete et al. Mar 2008 A1
20080085522 Meghen et al. Apr 2008 A1
20080097726 Lorton et al. Apr 2008 A1
20080110406 Anderson et al. May 2008 A1
20080146890 LeBoeuf et al. Jun 2008 A1
20080173255 Mainini et al. Jul 2008 A1
20080190202 Kulach et al. Aug 2008 A1
20080190379 Mainini et al. Aug 2008 A1
20080215484 Oldham Sep 2008 A1
20080227662 Stromberg et al. Sep 2008 A1
20080228105 Howell et al. Sep 2008 A1
20080262326 Hete et al. Oct 2008 A1
20080272908 Boyd Nov 2008 A1
20080312511 Osler et al. Dec 2008 A1
20090009388 Wangrud Jan 2009 A1
20090020613 Chang et al. Jan 2009 A1
20090025651 Lalor Jan 2009 A1
20090058730 Geissler et al. Mar 2009 A1
20090094869 Geissler et al. Apr 2009 A1
20090102668 Thompson et al. Apr 2009 A1
20090139462 So Jun 2009 A1
20090149727 Truitt et al. Jun 2009 A1
20090187392 Riskey et al. Jul 2009 A1
20090255484 Muelken Oct 2009 A1
20090312667 Utsunomiya et al. Dec 2009 A1
20100018363 Chervenak et al. Jan 2010 A1
20100030036 Mottram et al. Feb 2010 A1
20100045468 Geissler Feb 2010 A1
20100113902 Hete et al. May 2010 A1
20100139575 Duncan et al. Jun 2010 A1
20100160809 Laurence Jun 2010 A1
20100164687 Perng Jul 2010 A1
20100175625 Klenotiz Jul 2010 A1
20100180824 Bright Jul 2010 A1
20100217102 LeBoeuf et al. Aug 2010 A1
20100250198 Lorton et al. Sep 2010 A1
20100289639 Gibson et al. Nov 2010 A1
20100315241 Jow Dec 2010 A1
20100321182 Wangrud Dec 2010 A1
20100321189 Gibson et al. Dec 2010 A1
20100331739 Afikim et al. Dec 2010 A1
20110018717 Takahashi et al. Jan 2011 A1
20110041367 Bladen et al. Feb 2011 A1
20110061605 Hardi et al. Mar 2011 A1
20110095089 Kolton et al. Apr 2011 A1
20110121356 Krawinkel et al. May 2011 A1
20110137185 Hete et al. Jun 2011 A1
20110152876 Vandeputte Jun 2011 A1
20110178423 Hatch Jul 2011 A1
20110203144 Junek et al. Aug 2011 A1
20110258130 Grabiner et al. Oct 2011 A1
20110272470 Baba et al. Nov 2011 A1
20110313264 Hete Dec 2011 A1
20120009943 Greenberg et al. Jan 2012 A1
20120068848 Campbell et al. Mar 2012 A1
20120089152 Lynd et al. Apr 2012 A1
20120089340 Huisma Apr 2012 A1
20120092132 Holme et al. Apr 2012 A1
20120111286 Lee et al. May 2012 A1
20120112917 Menachem et al. May 2012 A1
20120160181 So et al. Jun 2012 A1
20120175412 Grabiner et al. Jul 2012 A1
20120204811 Ryan Aug 2012 A1
20120236690 Rader et al. Sep 2012 A1
20120291715 Jiang et al. Nov 2012 A1
20120299731 Triener Nov 2012 A1
20120326862 Kwak et al. Dec 2012 A1
20120326874 Kwak et al. Dec 2012 A1
20130006065 Yanai et al. Jan 2013 A1
20130014706 Menkes Jan 2013 A1
20130046170 Haynes Feb 2013 A1
20130113622 Pratt et al. May 2013 A1
20130119142 McCoy et al. May 2013 A1
20130175347 Decaluwe et al. Jul 2013 A1
20130192526 Mainini Aug 2013 A1
20130211773 Loeschinger et al. Aug 2013 A1
20130222141 Rhee et al. Aug 2013 A1
20130237778 Rouquette et al. Sep 2013 A1
20130239904 Kim et al. Sep 2013 A1
20130239907 Laurence et al. Sep 2013 A1
20130265165 So et al. Oct 2013 A1
20130285815 Jones, II Oct 2013 A1
20140073486 Ahmed et al. Mar 2014 A1
20140122488 Jung et al. May 2014 A1
20140123912 Menkes et al. May 2014 A1
20140135596 LeBoeuf et al. May 2014 A1
20140135631 Brumback et al. May 2014 A1
20140171762 LeBoeuf et al. Jun 2014 A1
20140174376 Touchton et al. Jun 2014 A1
20140196673 Menkes et al. Jul 2014 A1
20140230755 Trenkle et al. Aug 2014 A1
20140232541 Trenkle et al. Aug 2014 A1
20140253709 Bresch et al. Sep 2014 A1
20140261235 Rich et al. Sep 2014 A1
20140267299 Couse Sep 2014 A1
20140275824 Couse Sep 2014 A1
20140276089 Kirenko et al. Sep 2014 A1
20140290013 Eidelman et al. Oct 2014 A1
20140302783 Aiuto et al. Oct 2014 A1
20140331942 Sarazyn Nov 2014 A1
20140333439 Downing et al. Nov 2014 A1
20140347184 Triener Nov 2014 A1
20140352632 McLaughlin Dec 2014 A1
20140368338 Rettedal et al. Dec 2014 A1
20150025394 Hong et al. Jan 2015 A1
20150039239 Shuler et al. Feb 2015 A1
20150057963 Zakharov et al. Feb 2015 A1
20150097668 Toth Apr 2015 A1
20150099472 Ickovic Apr 2015 A1
20150100245 Huang et al. Apr 2015 A1
20150107519 Rajkondawar et al. Apr 2015 A1
20150107522 Lamb Apr 2015 A1
20150122893 Warther May 2015 A1
20150128873 Prescott et al. May 2015 A1
20150130617 Triener May 2015 A1
20150148811 Swope et al. May 2015 A1
20150157435 Chasins et al. Jun 2015 A1
20150182322 Couse et al. Jul 2015 A1
20150201587 Brayer Jul 2015 A1
20150245592 Sibbald et al. Sep 2015 A1
20150282457 Yarden Oct 2015 A1
20150334994 Prasad Nov 2015 A1
20150342143 Stewart Dec 2015 A1
20150351365 Claver Tallón Dec 2015 A1
20150351885 Kool et al. Dec 2015 A1
20150366166 Mueller Dec 2015 A1
20160000045 Funaya et al. Jan 2016 A1
20160004953 Karani Jan 2016 A1
20160021506 Bonge, Jr. Jan 2016 A1
20160058379 Menkes et al. Mar 2016 A1
20160066546 Borchersen et al. Mar 2016 A1
20160100802 Newman Apr 2016 A1
20160106064 Bladen et al. Apr 2016 A1
20160113524 Gross et al. Apr 2016 A1
20160120154 Hill et al. May 2016 A1
20160128637 LeBoeuf et al. May 2016 A1
20160135431 Siegel May 2016 A1
20160148086 Clarke et al. May 2016 A1
20160150362 Shaprio et al. May 2016 A1
20160151013 Atallah et al. Jun 2016 A1
20160165851 Harty et al. Jun 2016 A1
20160165852 Goldfain Jun 2016 A1
20160166761 Piehl et al. Jun 2016 A1
20160198957 Arditi et al. Jul 2016 A1
20160210841 Huang et al. Jul 2016 A1
20160213317 Richardson et al. Jul 2016 A1
20160278712 Sagara et al. Sep 2016 A1
20160286757 Armstrong Oct 2016 A1
20160287108 Wei et al. Oct 2016 A1
20160317049 LeBoeuf et al. Nov 2016 A1
20160345881 Sarantos et al. Dec 2016 A1
20160360733 Triener Dec 2016 A1
20160367495 Miller et al. Dec 2016 A1
20170000090 Hall Jan 2017 A1
20170006836 Torres Jan 2017 A1
20170006838 Brayer Jan 2017 A1
20170042119 Garrity Feb 2017 A1
20170067770 Sun Mar 2017 A1
20170079247 Womble et al. Mar 2017 A1
20170095206 Leib et al. Apr 2017 A1
20170156288 Singh Jun 2017 A1
20170164905 Gumiero Jun 2017 A1
20170193208 Ashley et al. Jul 2017 A1
20170196203 Huisma et al. Jul 2017 A1
20170202185 Trumbull et al. Jul 2017 A1
20170245797 Quinn Aug 2017 A1
20170258039 Lauterbach Sep 2017 A1
20170272842 Touma Sep 2017 A1
20170280675 MacNeil et al. Oct 2017 A1
20170280688 Deliou et al. Oct 2017 A1
20170318781 Rollins et al. Nov 2017 A1
20170360004 Carver Dec 2017 A1
20170372583 Lamkin et al. Dec 2017 A1
20180000045 Bianchi et al. Jan 2018 A1
20180007863 Bailey et al. Jan 2018 A1
20180014512 Arabani et al. Jan 2018 A1
20180055016 Hsieh et al. Mar 2018 A1
20180064068 McKee et al. Mar 2018 A1
20180070559 So Mar 2018 A1
20180098522 Steinfort Apr 2018 A1
20180110205 Czarnecky et al. Apr 2018 A1
20180131074 Wilkinson et al. May 2018 A1
20180132455 Pradeep et al. May 2018 A1
20180146645 Arbel May 2018 A1
20180206448 Madhusudan Jul 2018 A1
20180206455 Thiex et al. Jul 2018 A1
20180242860 LeBoeuf et al. Aug 2018 A1
20180249683 Borchersen et al. Sep 2018 A1
20180260976 Watanabe et al. Sep 2018 A1
20180271058 Valdez Sep 2018 A1
20180279582 Yajima et al. Oct 2018 A1
20180288968 Cisco et al. Oct 2018 A1
20180295809 Yajima et al. Oct 2018 A1
20180303425 Wordham et al. Oct 2018 A1
20180310526 Birch et al. Nov 2018 A1
20180325382 Brandao et al. Nov 2018 A1
20180332989 Chiu Nov 2018 A1
20180333244 Hanks et al. Nov 2018 A1
20190008118 Keegan Jan 2019 A1
20190008124 Komatsu et al. Jan 2019 A1
20190029226 Triener Jan 2019 A1
20190053469 Mardirossian Feb 2019 A1
20190053470 Singh et al. Feb 2019 A1
20190059335 Crider, Jr. et al. Feb 2019 A1
20190059337 Robbins Feb 2019 A1
20190059741 Crider, Jr. et al. Feb 2019 A1
20190069512 Eriksson et al. Mar 2019 A1
20190075945 Strassburger et al. Mar 2019 A1
20190082654 Robbins Mar 2019 A1
20190090754 Brandao et al. Mar 2019 A1
20190110433 Myers Apr 2019 A1
20190110436 Gardner et al. Apr 2019 A1
20190125509 Hotchkin May 2019 A1
20190130728 Struhsaker et al. May 2019 A1
20190133086 Katz et al. May 2019 A1
20190159428 Bolen May 2019 A1
20190166802 Seltzer et al. Jun 2019 A1
20190183091 Betts-LaCroix Jun 2019 A1
20190183092 Couse et al. Jun 2019 A1
20190208358 de Barros Chapiewski et al. Jul 2019 A1
20190213860 Shaprio et al. Jul 2019 A1
20190254599 Young et al. Aug 2019 A1
20190287429 Dawson et al. Sep 2019 A1
20190290133 Crider et al. Sep 2019 A1
20190290847 Veyrent et al. Sep 2019 A1
20190298226 Filipowicz Oct 2019 A1
20190298924 Gibson et al. Oct 2019 A1
20190327939 Sharpe et al. Oct 2019 A1
20190335715 Hicks et al. Nov 2019 A1
20190350168 Shi Nov 2019 A1
20190365324 Chang Dec 2019 A1
20190373857 Leigh-Lancaster et al. Dec 2019 A1
20190380311 Crouthamel et al. Dec 2019 A1
20190385037 Robadey et al. Dec 2019 A1
20190385332 Yajima et al. Dec 2019 A1
20190387711 Flennert Dec 2019 A1
20200015740 Alnofeli et al. Jan 2020 A1
20200037886 Greer et al. Feb 2020 A1
20200068853 Radovcic Mar 2020 A1
20200085019 Gilbert et al. Mar 2020 A1
20200100463 Rooda et al. Apr 2020 A1
20200107522 Kersey et al. Apr 2020 A1
20200110946 Kline et al. Apr 2020 A1
20200113728 Spector et al. Apr 2020 A1
20200170222 Gotts Jun 2020 A1
20200178505 Womble et al. Jun 2020 A1
20200178800 Geissler Jun 2020 A1
20200205381 Wernimont et al. Jul 2020 A1
20200229391 De Groot Jul 2020 A1
20200229707 Donnelly Jul 2020 A1
20200242551 Lau et al. Jul 2020 A1
20220330522 Wang Oct 2022 A1
20220369593 Vogels Nov 2022 A1
20230129369 Womble Apr 2023 A1
20230244886 Kreuscher Aug 2023 A1
Foreign Referenced Citations (322)
Number Date Country
199534570 Oct 1994 AU
2003239832 May 2002 AU
2003238759 Jan 2004 AU
2004263067 Feb 2005 AU
2004305403 Jul 2005 AU
2011210083 Aug 2011 AU
2016266101 Dec 2016 AU
2017100469 May 2017 AU
2018220079 Sep 2018 AU
8701673 Mar 2009 BR
112012018909 Jan 2011 BR
2267812 Oct 2000 CA
2493331 Jan 2005 CA
2788153 Aug 2011 CA
2880138 Feb 2013 CA
2858905 Oct 2013 CA
2875637 Jan 2014 CA
2875578 Dec 2014 CA
2915843 Dec 2014 CA
2990620 Dec 2016 CA
2916286 Jun 2017 CA
3007296 Jun 2017 CA
1989895 Jul 2007 CN
201171316 Dec 2008 CN
101578516 Nov 2009 CN
101816290 Sep 2010 CN
101875975 Nov 2010 CN
101875976 Nov 2010 CN
102781225 Jan 2011 CN
102142116 Aug 2011 CN
102485892 Jun 2012 CN
102682322 Sep 2012 CN
203313865 Dec 2013 CN
203689049 Feb 2014 CN
203523519 Apr 2014 CN
204047531 Aug 2014 CN
204305813 May 2015 CN
204331349 May 2015 CN
105191817 Dec 2015 CN
106125648 Nov 2016 CN
106172068 Dec 2016 CN
106197675 Dec 2016 CN
106719037 Feb 2017 CN
205919898 Feb 2017 CN
106472347 Mar 2017 CN
106845598 Jun 2017 CN
206431665 Aug 2017 CN
107201409 Sep 2017 CN
207201674 Sep 2017 CN
107251851 Oct 2017 CN
107667898 Feb 2018 CN
108353810 Feb 2018 CN
207100094 Mar 2018 CN
207249710 Apr 2018 CN
108651301 May 2018 CN
108656996 May 2018 CN
108684549 May 2018 CN
108118096 Jun 2018 CN
108308055 Jul 2018 CN
109006541 Aug 2018 CN
109008529 Aug 2018 CN
108617533 Oct 2018 CN
108717668 Oct 2018 CN
108766586 Nov 2018 CN
109006550 Dec 2018 CN
208273869 Dec 2018 CN
109355402 Feb 2019 CN
109937904 Mar 2019 CN
109937905 Mar 2019 CN
109823691 May 2019 CN
110073995 May 2019 CN
110059781 Jul 2019 CN
110106261 Aug 2019 CN
110106262 Aug 2019 CN
110506656 Nov 2019 CN
210076292 Feb 2020 CN
633742 Aug 1936 DE
2850438 May 1980 DE
19629166 Feb 1997 DE
19826348 Jun 1998 DE
29906146 Jun 1999 DE
19911766 Sep 2000 DE
20018364 Jan 2001 DE
10001176 May 2001 DE
102004027978 Dec 2005 DE
202010008325 Feb 2012 DE
202013011075 Jan 2014 DE
202016101289 Apr 2016 DE
140001 Nov 1979 DK
55127 Jun 1982 EP
125915 Nov 1984 EP
0499428 Aug 1992 EP
513525 Nov 1992 EP
743043 Nov 1996 EP
938841 Feb 1998 EP
898449 Mar 1999 EP
1076485 Feb 2001 EP
1445723 Aug 2004 EP
1479338 Nov 2004 EP
1521208 Apr 2005 EP
1907816 Apr 2008 EP
1961294 Aug 2008 EP
2028931 Mar 2009 EP
2172878 Apr 2010 EP
2453733 May 2012 EP
2465344 Jun 2012 EP
2488237 Aug 2012 EP
2528431 Dec 2012 EP
2534945 Dec 2012 EP
2657889 Oct 2013 EP
2664234 Nov 2013 EP
2728995 May 2014 EP
2879615 Jun 2015 EP
2955998 Dec 2015 EP
3153098 Apr 2017 EP
3164855 May 2017 EP
3210531 Aug 2017 EP
3217566 Sep 2017 EP
3218865 Sep 2017 EP
3225106 Oct 2017 EP
3316680 May 2018 EP
3346422 Jul 2018 EP
3385886 Oct 2018 EP
3593634 Jan 2020 EP
3627856 Mar 2020 EP
3660855 Jun 2020 EP
2046912 Feb 1994 ES
2206009 May 2004 ES
2215152 Oct 2004 ES
1072416 Jul 2010 ES
2391341 Nov 2012 ES
1194609 Oct 2017 ES
20165318 Jun 2017 FI
2106705 May 1972 FR
2297565 Aug 1976 FR
2342024 Jan 1983 FR
2601848 Jan 1988 FR
2779153 Dec 1999 FR
2834521 Jul 2003 FR
2964777 Mar 2012 FR
3046332 Jan 2016 FR
3024653 Feb 2016 FR
3085249 Sep 2018 FR
588870 Jun 1947 GB
641394 Aug 1950 GB
865164 Apr 1961 GB
1072971 Jun 1967 GB
1267830 Mar 1972 GB
1415650 Nov 1975 GB
2067121 Jul 1981 GB
2055670 Jul 1983 GB
2114045 Aug 1983 GB
2125343 Mar 1984 GB
2142812 Jan 1985 GB
2392138 Feb 2004 GB
2469326 Oct 2010 GB
2554636 Sep 2016 GB
2570340 Jul 2019 GB
2571404 Aug 2019 GB
201103443 Dec 2011 IN
200802272 Jun 2016 IN
57173562 Nov 1982 JP
7177832 Jul 1995 JP
2001178692 Jul 2001 JP
2004292151 Oct 2004 JP
2005102959 Apr 2005 JP
5659243 Jan 2011 JP
2011067178 Apr 2011 JP
2011087657 May 2011 JP
2013247941 Jun 2012 JP
2017112857 Jun 2017 JP
2017002170 Apr 2018 JP
2003061157 Jul 2003 KR
2005046330 May 2005 KR
780449 Nov 2007 KR
101747418 Jan 2011 KR
20130019970 Feb 2013 KR
20130057683 Jun 2013 KR
2013138899 Dec 2013 KR
2019061805 Nov 2017 KR
101827311 Feb 2018 KR
20180035537 Apr 2018 KR
101896868 Sep 2018 KR
2018109451 Oct 2018 KR
20190081598 Jul 2019 KR
2019091708 Aug 2019 KR
20200009450 Jan 2020 KR
9600754 Feb 1997 MX
356331 Jan 2011 MX
2017104 Jan 2018 NL
2019186 Jan 2019 NL
2020275 Jul 2019 NL
198486 May 1986 NZ
199494 Jul 1986 NZ
203924 Oct 1986 NZ
335702 Mar 2001 NZ
507129 Aug 2002 NZ
582984 Jan 2011 NZ
2178711 Jan 2002 RU
2265324 Dec 2005 RU
4567 Mar 1893 SE
5549 Apr 1894 SE
123213 Nov 1948 SE
188102 Mar 1964 SE
1766336 Oct 1992 SU
1984000468 Feb 1984 WO
1991011956 Aug 1991 WO
199302549 Feb 1993 WO
199822028 May 1998 WO
1998039475 Sep 1998 WO
1999017658 Apr 1999 WO
2000062263 Apr 1999 WO
9945761 Sep 1999 WO
1999045761 Sep 1999 WO
2000013393 Mar 2000 WO
2000061802 Oct 2000 WO
2001033950 May 2001 WO
2001087054 Nov 2001 WO
2002031629 Apr 2002 WO
2002085106 Oct 2002 WO
2003001180 Jan 2003 WO
2004092920 Mar 2003 WO
2003087765 Oct 2003 WO
2003094605 Nov 2003 WO
2004015655 Feb 2004 WO
2005104775 Apr 2004 WO
2006078943 Jan 2005 WO
2005104930 Apr 2005 WO
2005073408 Aug 2005 WO
2005082132 Sep 2005 WO
2006021855 Mar 2006 WO
2006134197 Dec 2006 WO
2006135265 Dec 2006 WO
2007034211 Mar 2007 WO
2007095684 Aug 2007 WO
2007122375 Nov 2007 WO
2008033042 Mar 2008 WO
2008041839 Apr 2008 WO
2008052298 May 2008 WO
2008075974 Jun 2008 WO
2010091686 Dec 2008 WO
2009034497 Mar 2009 WO
2009062249 May 2009 WO
2009076325 Jun 2009 WO
2009089215 Jul 2009 WO
2009117764 Oct 2009 WO
2009153779 Dec 2009 WO
2010008620 Jan 2010 WO
2010048753 May 2010 WO
2010053811 May 2010 WO
2010068713 Jun 2010 WO
2010140900 Dec 2010 WO
2012075480 Dec 2010 WO
2011039112 Apr 2011 WO
2011076886 Jun 2011 WO
2011154949 Dec 2011 WO
2012071670 Jun 2012 WO
2013008115 Jan 2013 WO
2013038326 Mar 2013 WO
2013082227 Jun 2013 WO
2015001537 Jul 2013 WO
2013118121 Aug 2013 WO
2015024050 Aug 2013 WO
2013179020 Dec 2013 WO
2013190423 Dec 2013 WO
2014020463 Feb 2014 WO
2014095759 Jun 2014 WO
2014107766 Jul 2014 WO
2014118788 Aug 2014 WO
2014125250 Aug 2014 WO
2016027271 Aug 2014 WO
2014140148 Sep 2014 WO
2014141084 Sep 2014 WO
2014194383 Dec 2014 WO
2014197631 Dec 2014 WO
2014199363 Dec 2014 WO
2015009167 Jan 2015 WO
2015030832 Mar 2015 WO
2015055709 Apr 2015 WO
2015086338 Jun 2015 WO
2016207844 Jun 2015 WO
2015107354 Jul 2015 WO
2017001717 Jul 2015 WO
2017031532 Aug 2015 WO
2015140486 Sep 2015 WO
2015158787 Oct 2015 WO
2015175686 Nov 2015 WO
2015176027 Nov 2015 WO
2015197385 Dec 2015 WO
2016037190 Mar 2016 WO
2017149049 Mar 2016 WO
2016053104 Apr 2016 WO
2016108187 Jul 2016 WO
2016166748 Oct 2016 WO
2017001538 Jan 2017 WO
2017027551 Feb 2017 WO
2017037479 Mar 2017 WO
2017066813 Apr 2017 WO
2017089289 Jun 2017 WO
2017096256 Jun 2017 WO
2017121834 Jul 2017 WO
2017136897 Aug 2017 WO
2018006965 Jan 2018 WO
2018011736 Jan 2018 WO
2018019742 Feb 2018 WO
2020022543 Jul 2018 WO
2018172976 Sep 2018 WO
2020060248 Sep 2018 WO
2018203203 Nov 2018 WO
2019009717 Jan 2019 WO
2019025138 Feb 2019 WO
2019046216 Mar 2019 WO
2019048521 Mar 2019 WO
2019058752 Mar 2019 WO
2019071222 Apr 2019 WO
2019132803 Jul 2019 WO
2019207561 Oct 2019 WO
2019235942 Dec 2019 WO
2019245978 Dec 2019 WO
2020003310 Jan 2020 WO
2020096528 May 2020 WO
2020140013 Jul 2020 WO
Non-Patent Literature Citations (12)
Entry
Christian Pahl, Eberhard Hartung, Anne Grothmann, Katrin Mahlkow-Nerge, Angelika Haeussermann, Rumination activity of dairy cows in the 24 hours before and after calving, Journal of Dairy Science, vol. 97, Issue 11, 2014, pp. 6935-6941.
Steensels, Machteld; Maltz, Ephraim; Bahr, Claudia; Berckmans, Daniel; Antler, Aharon; et al., Towards practical application of sensors for monitoring animal health: The effect of post-calving health problems on rumination duration, activity and milk yield, the Journal of Dairy Research; Cambridge vol. 84, Iss. 2, (May 2017): 132-138.
Clark, C., Lyons, N., Millapan, L., Talukder, S., Cronin, G., Kerrisk, K., & Garcia, S. (2015), Rumination and activity levels as predictors of calving for dairy cows, Animal, 9(4), 691-695.
K. Koyama, T. Koyama, M. Sugimoto, N. Kusakari, R. Miura, K. Yoshioka, M. Hirako, Prediction of calving time in Holstein dairy cows by monitoring the ventral tail base surface temperature, the Veterinary Journal, vol. 240, 2018, pp. 1-5, ISSN 1090-0233.
L. Calamari, N. Soriani, G. Panella, F. Petrera, A. Minuti, E. Trevisi, Rumination time around calving: An early signal to detect cows at greater risk of disease, Journal of Dairy Science, vol. 97, Issue 6, 2014, pp. 3635-3647, ISSN 0022-0302.
S. Benaissa, F.A.M. Tuyttens, D. Plets, J. Trogh, L. Martens, L. Vandaele, W. Joseph, B. Sonck, Calving and estrus detection in dairy cattle using a combination of indoor localization and accelerometer sensors, Computers and Electronics in Agriculture, vol. 168, 2020, 105153, ISSN 0168-1699.
N. Soriani, E. Trevisi, L. Calamari, Relationships between rumination time, metabolic conditions, and health status in dairy cows during the transition period, Journal of Animal Science, vol. 90, Issue 12, Dec. 2012, pp. 4544-4554.
The role of sensors, big data and machine learning in modern animal farming; Suresh Neethirajan; Accepted Jul. 3, 2020 Sensing and Bio-Sensing Research 29 (2020) 100367 2214-1804/ © 2020 the Author. Published by Elsevier B.V.
A Review on Determination of Computer Aid Diagnosis and/or Risk Factors Using Data Mining Methods in Veterinary Field Pnar Cİhan, Erhan Göçke, Oya Kalipsiz; Tekirda Namk Kemal University, Çorlu Faculty of Engineering, Department of Computer Engineering, Tekirda{hacek over (g)}, Turkey. 2019.
Big Data Analytics and Precision Animal Agriculture Symposium: Data to decisions B. J. White, D. E. Amrine, and R. L. Larson Beef Cattle Institute, Kansas State University, Manhattan, KS; © the Author(s) 2018. Published by Oxford University Press on behalf of American Society of Animal Science.
Gasteiner, J.; Boswerger, B.; Guggenberger, T., Practical use of a novel ruminal sensor on dairy farms, Praktische Tierarzt 2012 vol. 93 No. 8 pp. 730 . . . 739 ref.45.
Drying up Cows and the Effect of Different Methods Upon Milk Production; Ralph Wayne, C. H. Eckles, and W. E. Peterson; Division of Dairy Husbandry, University of Minnesota, St. Paul; Research-Article| vol. 16, Issue 1, p. 69-78, Jan. 1, 1933.
Related Publications (1)
Number Date Country
20230244886 A1 Aug 2023 US