Information
-
Patent Application
-
20040012288
-
Publication Number
20040012288
-
Date Filed
April 11, 200321 years ago
-
Date Published
January 22, 200421 years ago
-
CPC
-
US Classifications
-
International Classifications
Abstract
At temperatures located in a cryogenic temperature range, nickel steel is used for components, which can be subjected to high levels of mechanical stress and which have ferromagnetic properties at these temperatures.
Description
[0001] The present invention relates to a device in accordance with the preamble of patent claim 1. This is preferably the temperature range of liquid air. The material, which inevitably has to be able to withstand mechanical load and/or temperature changes and embrittlement, of the component of the device which can be subjected to high mechanical loads must also have required ferromagnetic properties and/or a high magnetic conductivity for the intended magnetic flux guidance and/or flux amplification.
[0002] It is known from the prior art, e.g. Reed, Materials at Low Temperatures, pages 388/389, to use nickel steel with a nickel content of between 3.5 and 9% for components which can be subjected to mechanical loads for cryogenic applications, i.e. for the temperature range<173 K. Examples of such components include tanks which are required for storing and transporting liquefied gases, such as for example liquid air. Nickel steel with a nickel content of 12% has also already been developed for temperatures below 77 K and especially for use in connection with liquid helium at 4 K. It is essential for these materials that the transition temperature from ductile to brittle be reduced to below the intended application temperature. The abovementioned prior art has also made references to additives which may be present in the nickel steel.
[0003] However, for the use of a material which corresponds to the invention, it is not only its temperature-dependent mechanical property which is of crucial importance, but also it is necessary for the material which is mechanically suitable for the temperature range mentioned also to have a ferromagnetic property.
[0004] The latter property is crucial, for example, when the material is to be used for magnetic flux guidance and/or flux amplification in machines and machine parts which include superconducting elements. Examples are contactless bearings which also include superconducting structural elements which hold a rotating machine shaft in a floating position without contact in a bearing shell by means of magnetic repulsion forces. In this context, reference is made, for example, to German Utility Model U 9403202.5“Magnetische Lagerungsein-richtung mit Hoch-Tc-Supraleitermaterial” [Magnetic bearing device which includes high Tc superconductor material] and to U.S. Pat. No. 5,777,420“Superconducting Synchronous Motor Construction”.
[0005] Therefore, it is an object of the present invention to use a material which, at the low operating temperatures required, has sufficient strength, even in the long term, for the expected mechanical loads, e.g. does not become brittle at the low temperatures, and moreover has ferromagnetic properties for the purpose of magnetic flux guidance and/or amplification, for a component of the device which is of relevance in this context. This object is achieved by the features of patent claim 1 and by refinements as described in the sub claims.
[0006] It was determined as a result of tests being carried out that a nickel steel X8Ni9, DIN 1.5662, U.S. standard ASTM A353, A553 has ferromagnetic properties for the abovementioned purposes even at temperatures below 77 K. This is a temperature range which is preferably of relevance to the invention. Even at these low temperatures, this material has so little tendency to become brittle that it does not suffer any ductile fracture even under mechanical load. Nickel steel containing from 3.5 to 8% of nickel also has a sufficiently high ferromagnetic property for the abovementioned applications to enable it to be used for elements for magnetic flow guidance and/or amplification. The same is also true of nickel steel containing 12 to 13% of nickel.
[0007] Not only does the mechanical strength of the material with ferromagnetic properties required in accordance with the object play a role in, for example, rotating machine parts, on account of the centrifugal forces which occur, but also reliably mechanical stable material is advantageous or even imperative for the encapsulation and holding of magnet with high-temperature superconductor coils. This is the case, for example, if the holder also acts as a flux-guiding means.
[0008] Further explanations of the invention are given on the basis of the exemplary embodiments of the invention described below and of the relevant figures.
[0009]
FIG. 1 shows a cross section through a rotor of an electric motor with superconducting field excitation in the rotor and a rotor core as component made from material which is used in accordance with the invention.
[0010]
FIG. 2 shows a high magnetic field device with superconducting magnet field coil, as is known in principle, for example, from DE-C 19813211.
[0011]
FIG. 3 shows a magnetic bearing of a rotor shaft using high-temperature superconductor material, as is known in principle from DE-C 4436831.
[0012]
FIG. 4 shows a superconducting magnet coil as is known from WO 96/08830.
[0013] In FIG. 1, 1 denotes, as the device of the invention, the rotor, which in FIG. 1 is illustrated in cross section perpendicular to the axis, of an electric motor with superconducting excitation winding. The superconducting coils, which are arranged or designed in stepped form, are shown in one half of the illustration and denoted by 2. They comprise, in a known way, strip conductor windings made from a high-temperature superconducting material used for this purpose. Materials of this type are well known. A current which is excited in a coil 2 of this type generates a magnetic field with a magnetic field H or magnetic flux density B which in the inner cross-sectional region of the coil is directed axially with respect to the coil. This rotor also includes, in a manner which is known for rotors for electric motors, a core 3 which guides the magnetic flux, as a component which is advantageously made from ferromagnetic material. 4 denotes magnetic flux guidance of this type in this core 3. With the structure of the in this case 4-pole rotor which is illustrated, there are then two north poles N and two south poles S as poles of the core 3 or rotor 1 of the motor, as is known. According to the invention, this core 3 consists of nickel steel as claimed, with a nickel content of 9 to 13%, or is DIN standard steel X8 Ni9 DIN 1.5662.
[0014]
FIG. 2 shows a magnet 11 with superconducting coils 12 which is known in terms of its design principles. These coils are located in a cryostat housing 13 with a correspondingly thermally insulated holder. Two steel rings as a component of the invention are denoted by 14 and 15 and in this case are used for magnetic flux guidance and shaping. These components are exposed to considerable magnetically induced mechanical forces. Therefore, these rings are made from nickel steel as claimed. This flux-guidance measure makes it possible to improve the homogeneity of the magnetic field between the poles 16 of the magnet 11.
[0015]
FIG. 3 shows a magnetic floating bearing, which is known from the abovementioned patent, of a rotor shaft 31. 34 denotes annular permanent magnets which are in this case arranged on the shaft 31 and are axially polarized as shown. These permanent magnets 34 are oriented in such a way with respect to one another that the axial magnetic field of two adjacent magnets 34 are opposite one another in these magnets and are then together oriented radially outside the magnets.
[0016] For radial guidance of the magnetic flux 134 which originates from the permanent magnets, the rings made from ferromagnetic material, which are denoted by 33 and are illustrated in section, are provided on the shaft 31.
[0017] A layer or sleeve of superconducting material is denoted by 35. It is positioned on or at the inner side of the sleeve-shaped outer bearing shell. This superconducting material is cooled to the low temperature required for superconduction by means of a coolant, e.g. liquid nitrogen. This coolant flows inside the coolant passages which are denoted by 132 and are in this case provided in the stationary outer bearing shell 36.
[0018] The electrical shielding currents which occur in the superconducting material when the bearing shaft with the permanent magnets on it rotates effect the magnetomotive forces required for the floating bearing of the shaft.
[0019] The gap between the rotating parts and the stationary parts of an arrangement of this type is known to be made as small as possible. However, this has the effect that the permanent magnets and the rings 33 are also cooled to low temperatures. For this reason, it is provided that the rings 33, as components which are subject to mechanical loads as a result of the centrifugal force which occurs, consist of ferromagnetic nickel steel as claimed in the invention.
[0020] As illustrated, the magnetic field coil 40 shown in FIG. 4 comprises superconducting coils 42 positioned on top of one another in the axial direction. At the ends of the coils there are rings 43, the shape and dimensions of which are matched to the coils and which consist of ferromagnetic nickel steel used in accordance with the invention, as the component. The magnetic flux which is known to emanate from this coil produces optimized flux guidance.
Claims
- 1. A device which includes superconducting material (2, 12, 35, 42) which is contained in it and is held in the cryogenic temperature range in operation, for the occurrence of mechanical forces in conjunction with a magnetic field with a high field strength which is generated in the device, and which includes a component (3; 14, 15; 33; 43) for magnetic field guidance, which, when the device is operating, is able to withstand even high mechanical loads which occur, characterized in that a component (3; 14, 15; 33; 43) of this type consists of steel which contains 9-13% of nickel.
- 2. The device as claimed in claim 1, characterized in that this component (3; 14, 15; 33; 43) consists of 9% nickel steel X8Ni9, DIN1.5662.
- 3. The device as claimed in claim 1 or 2, characterized in that a component of this type, in the form of a disk or a ring (14, 15; 42), is arranged at at least one superconducting coil (12, 40) which is provided and acts as the source of a magnetic field (34):
- 4. The device as claimed in claim 1 or 2, characterized in that a component (33) of this type is arranged adjacent to a permanent magnet (34), which acts as a source of a magnetic field (134).
- 5. The device as claimed in claim 1, 2, 3 or 4, characterized in that in operation the component (3; 14, 15; 33) is exposed to high rotational speed of a rotating body and/or to high mechanical compressive force.
- 6. The device as claimed in claim 1 or 2, characterized in that a component of this type is the core (3) of the rotor (1) of an electric motor with superconducting coils (2) as the rotor winding.
- 7. The device as claimed in one of claims 1 to 5, characterized in that a component (33) of this type is provided in a device with magnetic floating bearing (FIG. 3) of a shaft (31).
- 8. The device as claimed in one of claims 1 to 4, characterized in that a component (14, 15) of this type, as a field-guiding part, is also part of a holder which is provided.
- 9. The device as claimed in one of claims 1 to 8, which can also be used in the temperature range which is below the temperature of liquid air.
Priority Claims (1)
Number |
Date |
Country |
Kind |
100 50 371.3 |
Oct 2000 |
DE |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/DE01/03730 |
9/28/2001 |
WO |
|