The present disclosure relates to a device detection system and method. More particularly, the present disclosure relates to a system and method with which devices connected to various hosts of a network can be detected from a central control point.
In most office settings, a plurality of computing devices or hosts are inter-connected through a network, for example, a local area network (LAN). Such hosts can include, for instance, personal computers (PCs), network servers, and the like. Normally, many or all of these hosts comprise devices that are directly connected to the hosts. Such devices can include, for example, disk drives, tape drives, tape libraries, modems, etc.
It is often useful for the network manager and/or technician to know what hosts are connected to the network and what devices are connected to these hosts. For instance, this information is useful in maintaining an inventory of the network devices. However, it can be difficult to keep track of all the devices connected to the network, particularly where the network is large and comprises many different hosts. Presently, the existence of such devices is determined by manually scanning each host of the network separately. Once each host has been scanned in this manner, the various devices can be located from a central point and, if desired, can be accessed for use from this central point or from another point in the network.
Clearly, the procedure described above can be time-consuming, especially where the network is large. Therefore, it would be desirable to have a system and method for detecting devices connected to the network from a central control point so as to simplify and at least partially automate the device detection procedure.
The present disclosure relates to a system and method for detecting devices connected to a network. The method comprises sending a scan request to a remote command process running on a remote network host, scanning the network host with the remote command process to determine if devices are connected to the host, and receiving a response to the scan request from the remote command process that indicates whether a device is connected to the network host. In a preferred arrangement, the remote command process sends a scan request to a host application program interface to receive device addresses. With these addresses, the remote command process requests information from the devices.
The device detection system typically comprises a controller process stored on a first network host, the controller process being configured to send a scan request to a remote network host, and a remote command process stored on a second network host, the remote command process being configured to receive the scan request sent by the controller process and initiate a scan of the second network host to determine whether devices are connected to the second network host. Preferably, the system further comprises a host lookup process that maintains an updated list of every network host that is running a remote command process.
The features and advantages of the invention will become apparent upon reading the following specification, when taken in conjunction with the accompanying drawings.
The invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention.
Referring now in more detail to the drawings, in which like numerals indicate corresponding parts throughout the several views,
In the context of this disclosure, a “computer readable medium” can be a means that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus or device. A compute readable medium can be, for example, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific examples of compute readable media include the following: an electrical connection having one or more wires, camera memory card, affordable computer diskette, a random access memory (RAM), a read only memory (ROM), an erasable programmable read only memory (EPROM or Flash memory), an optical fiber, and a portable compact disk read only memory (CD ROM). It is to be noted that the computer readable medium can even be paper or another suitable medium upon which the program is printed as the program can be electronically captured, via for instance optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner if necessary, and then stored in a computer memory.
With reference to
The RCP 104 comprises a process that is provided on at least each host that comprises devices to be detected. Normally, the RCP 104 is arranged as a service that continuously runs in the background of the host. Therefore, the RCP 104 normally runs in an idle state until called upon to scan the host to determine which devices are connected to the host. In particular, the RCP 104 normally is called upon to interface with the host upon receiving a scan request from the CP 102. In addition to scanning the host to detect devices, the RCP 104 further registers with the HLP 106. Normally, this registration initially occurs upon start-up of the RCP 104. Accordingly, when the RCP is initiated, the RCP sends a message to the HLP 106 to inform the HLP of the RCP's existence. In addition to this initial registration, the RCP 104 normally reconfirms its registration with the HLP 106 periodically (e.g., once every minute) such that its registration is periodically updated with the HLP.
The HLP 106 maintains a list of the registered RCPs 104 of the network. In use, the HLP 106 receives the registration messages from the RCPs 104 and registers the RCPs' existence. Due to the periodic reconfirmation of registration received from the RCPs 104, the HLP 106 normally maintains an up-to-the-minute inventory of the hosts within the network that include RCPs 104. The HLP 106 shares the information contained within the list with the CP 102 upon receiving requests for this information from the CP. Normally, the HLP 106 will time-out a host if the HLP does not receive a confirmation from the host's RCP 104 after a predetermined length of time. In particular, if a confirmation of an RCP's existence is not obtained after the expiration of this time period, the HLP 106 assumes that the RCP's host has shut down.
As indicated in
As indicated in
With further reference to
Once the host list request has been delivered to the HLP 106, the HLP transmits the list to the CP 102 and the host list is received by the CP as indicated in block 306. Once the hosts to be scanned have been identified, the CP 102 initializes a device scan across the network as indicated in block 308. Where the host list is not to be consulted prior. to conducting the device scan, i.e., where the CP 102 or the user already knows which hosts to scan without the list, flow continues from 302. directly to block 308.
The CP 102 sends scan requests to each of the selected hosts as identified in block 310. Normally, the scan requests are issued from the CP 102 to the various RCPs 104 in parallel. In particular, a thread (i.e., a flow of execution within a process) can be directed to each RCP 104 that is to be scanned for devices.
Once some or all of the device detection information has been collected by the CP 102, this information can be communicated to the user, as indicated in block 314 with, for instance, the control point host (Host 1 in
While particular embodiments of the invention have been disclosed in detail in the foregoing description and drawings for purposes of example, it will be understood by those skilled in the art that variations and modifications thereof can be made without departing from the spirit and scope of the invention as set forth in the following claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 5548722 | Jalalian et al. | Aug 1996 | A |
| 5821937 | Tonelli et al. | Oct 1998 | A |
| 5835720 | Nelson et al. | Nov 1998 | A |
| 6076106 | Hamner et al. | Jun 2000 | A |
| 6101555 | Goshey et al. | Aug 2000 | A |
| 6324656 | Gleichauf et al. | Nov 2001 | B1 |
| 6359557 | Bilder | Mar 2002 | B2 |
| 6442144 | Hansen et al. | Aug 2002 | B1 |
| 6473783 | Goshey et al. | Oct 2002 | B2 |
| 6490617 | Hemphill et al. | Dec 2002 | B1 |
| 6714974 | Machida | Mar 2004 | B1 |
| 6718378 | Machida | Apr 2004 | B1 |
| 6772204 | Hansen | Aug 2004 | B1 |
| 6789111 | Brockway et al. | Sep 2004 | B1 |
| 6795403 | Gundavelli | Sep 2004 | B1 |
| 6795846 | Merriam | Sep 2004 | B1 |
| Number | Date | Country |
|---|---|---|
| 0854605 | Jul 1998 | EP |