The present invention relates to a device for the supply of primary combustion air into the coking chamber of a coke oven of the “Non-Recovery” or “Heat-Recovery” type, with primary combustion air being introduced through one or several entry ports in the coke oven top, and with the entry port(s) being equipped with devices through which primary air in the gas space can be better distributed over the coke cake. The invention also relates to a method for the operation of a coke oven or coke oven battery, with primary air for coal carbonization being conducted through one or several entry ports in the top of each oven chamber above the oven into a gas-filled space located above the coke cake where partial combustion of the coking gas with primary air takes place, and wherein the primary air streams to the coke cake through the devices conducting the gas stream at an angle of less than 90°.
The production of coke from coal or carbonaceous materials is frequently carried-out in coke ovens of the “Non-Recovery” or “Heat-Recovery” type. With coke ovens of the “Non-Recovery” or “Heat-Recovery” type, coal is heated to a high temperature, whilst the gas thus generated is burnt with an under-stoichiometrical amount of so-called primary air. In general, combustion with primary air is incomplete and occurs in a gas-filled space above the coke cake. From this gas-filled space, incompletely burnt coking gas is conducted in so-called “downcomer” channels into secondary air soles underneath the coking chamber, where so-called secondary streams in and where the incompletely burnt coking gas is completely burnt. A more homogeneous heat distribution of the entire coke cake is achieved in this manner. With the “Heat-Recovery” type, heat from combustion is additionally utilized to generate energy.
Introduction of primary air into the combustion chamber is generally effected through openings in the top of the coke oven chamber. These ports are frequently so devised that they admit primary air vertically onto the coke cake without a further distribution into the gas-filled coke oven chamber. For a further admission of primary air, the coke oven walls, too, which are located above the coke oven doors can be equipped with openings for the admission of primary air. By applying this procedure, sufficient primary air is admitted into the chamber so that coking gas can be burnt to such an extent that sufficient heat develops in the gas space above the coking chamber.
An example of this ventilation technique is given in WO 2006128612 A1. The coking chamber of a coke oven has a plurality of entry ports in the top through which the coking gas developing during coal carbonization is evenly brought in contact with the desired quantity of primary air for partial combustion of coking gas. Above the oven, these entry ports for primary air can be grouped separately by way of an air admission system, and the air admission systems of the individual oven chambers are connected to an air admission system being common for many oven chambers. To modify the amount of primary air throughout the coking time, one control element each is provided between the air admission system and the air feeders of the individual oven chambers. A substantial homogenization in the distribution of primary air is achieved in this manner.
However, this technique has a disadvantage in that it requires a plurality of opening ports to achieve an even distribution of primary air. For this reason, it would be of some advantage if an even distribution of primary air in the gas space above the coke cake could be achieved with a substantially smaller number of opening ports for primary air. It is therefore the task to provide a supply system for primary combustion air that can work with a smaller number of opening ports in the top area and that nevertheless achieves an even distribution of primary combustion air.
The present invention solves this task by providing a distribution system for primary combustion air which admits primary combustion air through opening ports in the top of a coke oven, and wherein these opening ports have a distribution system that introduces the inflowing primary air at a chamfered angle into the gas space above the coke cake. It is thereby possible to achieve a better distribution of primary air. A distribution of primary air in a chamfered angle can be effected both with one opening port and with several opening ports. The distribution of air into the gas space of a coke oven chamber can be effected in one, in several and in all lateral horizontal directions.
In one embodiment of the invention is a device for the supply of primary combustion air for the combustion of coking gas in a coking chamber of a coke oven of the “Non-Recovery” or “Heat-Recovery” type, wherein
and which is characterized in that
The distribution of primary air in lateral directions can be effected both by gas-conducting devices located in the opening ports for primary air and by the opening ports themselves. In this case, the latter walls of the opening ports relative to a perpendicular plumb through the top have an outwardly directed angle which is greater than 0° and which is an opening angle. In a preferred embodiment of the present invention, the angle formed by the lateral walls of the opening ports relative to a perpendicular plumb through the top of the coke oven chamber is greater than 0° and smaller than 20°. The outwardly directed angle can be provided both directly with a permanent inclination and with a staggered arrangement.
The opening ports can be of any arbitrary shape. They can be covered on the top side in order to protect the opening port from weather impacts. The opening ports are advantageously configured as channels on the upper side of the oven top. These channels can also be closed to protect the coke oven interior from weather impacts. For example, this closure can be a simple cover, but it can also be a flap or a slide gate. The openings can also be configured as U-shaped tubes. To be able to improve control and regulation of the flow of primary air or to be able to intensify it, the tube can also be equipped with a blower 50.
The gas-conducting devices (or entry ports) can be of an arbitrary shape. They can be shaped as dishes or as a disk having several openings. In a preferred embodiment, the disk is round and has 2 to 6 openings. The disk can also be provided with sickle-shaped openings or with slots or notches in order to conduct air in a better way. However, the gas-conducting devices can also be of a turbine or star shape. The device for the supply of combustion air can be comprised of an ultra-high heat resistant steel, ceramics, silica or fireclay bricks or of a combination of these construction elements. In principle, however, they can be comprised of any arbitrary material that is suitable for the introduction of air into gas spaces of a high temperature.
The gas-conducting devices can be manufactured arbitrarily. For example, they can be worked-in directly into the coke oven top. It is possible, for instance, to manufacture a disk with special openings, entry ports or conducting elements and to insert these into the destined openings. For example, this can be realized with a ceramic adhesive, mortar or cement. The fastening is then carried-out so as to be resistant to temperatures. The openings can also be equipped with a blower upstream to or downstream of the gas-conducting device in order to improve the admission of primary air. The gas-conducting devices can also be held in place by splints, bolts or any other suitable holding device in the opening for the supply of primary air.
The gas-conducting devices can also be so configured that they are exchangeable so that they can be inserted or exchanged during an interruption of operation. A suitable configuration for this purpose is a disk with gas-conduction entry ports which can be inserted by means of splints or with a suitable mortar, depending on demand. To achieve a particularly efficient streaming-on, the gas-conducting devices are comprised of channels which have a length vs. diameter ratio greater than 0.8 and smaller than 10. In a particularly preferred embodiment, the gas-conducting devices are comprised of channels which have a length vs. diameter ratio greater than 3.
The gas-conducting devices can comprise twisting elements in order to give the inflowing primary air a twisting motion. The twisting elements, for example, can be made of a high-temperature resistant steel or be bricked-up. But these may also comprise elements that increase the gas velocity. For example, these elements may be Venturi elements or constraints by which the tangential velocity component of the inflowing primary air can be increased. A better intimate mixing of primary air with the coking gas in the gas space of the coking chamber may be achieved.
To improve the supply of primary air into the gas space above the coke cake, the coke oven chamber walls above the coke oven chamber doors or the coke oven doors themselves may also have openings for admission of primary air. An example for a coke oven chamber battery, the coke oven chambers of which have nozzle jet shaped openings in the coke oven chamber walls for an improved supply of primary air, is given by DE 1020 07042502. These openings, too, can be equipped with gas-conducting facilities. If the nozzle jets are linearly directed and not provided with gas-conducting facilities, then the air streams in parallel to the coke cake and can hardly distribute itself properly in the *gas space of the coke oven chamber. But if the opening in the coke oven chamber wall has a gas-conducting device which relative to a perpendicular plumb through the frontal closing coke oven wall above the coke oven door has an outwardly directed angle which is greater than 0°, then the coke cake is streamed-on not in parallel but in a directed way at an angle of greater than 0° and the primary air can thus distribute itself better in the gas space of the coke oven chamber. These devices can be exactly shaped like the gas-conducting devices in the coke oven top. Both the frontal, closing coke oven chamber wall above the coke oven chamber door and the coke oven chamber door itself may comprise these gas-conducting devices.
It is also possible to provide the openings above the coke oven chamber door as well as the openings in the coke oven chamber door itself with an outwardly directed opening angle which relative to a vertical plumb through the frontal closing coke oven wall above the coke oven door has an angle directed outwardly to the opening that is greater than 0°. Thereby the inflowing primary air streams to the coke cake not in parallel but in a directed way at an angle greater than 0°, thus allowing the primary air to distribute itself better in the gas space of the coke oven chamber. The coke oven chamber wall as well as the coke oven chamber door may comprise both one and several opening(s) which are provided with the inventive opening angle or with an inventive gas-conducting device.
According to another embodiment of the invention, a method is disclosed for the supply of combustion air for the combustion of coking gas into a coking chamber of a coke oven of the “Non-Recovery” or “Heat-Recovery” type, wherein
and which is characterized in that
The method for the supply of primary air into the gas space of a coking chamber can be applied with all conditions that are typically and especially suitable for the execution of coal carbonization. Typical conditions for the execution of coal carbonization are temperatures of 900° C. to 1550° C. To execute coal carbonization, any arbitrary feedstock materials, too, may be used. For example, hard coal can preferably be used, but it is also possible to use lignite, charcoal or biological materials.
The openings in the frontal closing coke oven wall, too, can be equipped with gas-conducting devices. In this case, the method also covers the supply of primary air through openings in the wall of a coke oven chamber above the coke oven chamber door with an improved an improved distribution of primary air.
The inventive device and the inventive method provide the benefit of an even distribution of primary air in the gas space of a coke oven battery. An inventive device can also be installed at low expenditure on existing primary air facilities and it is non-sensitive to high temperatures and chemical influences.
The inventive device is elucidated by way of seven drawings, these drawings just representing examples of embodiments for the design and construction of the inventive device.
As noted above, the entry port (5) may take the form of a disk having apertures for allowing air to pass through.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 025 437 | May 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/003077 | 4/28/2009 | WO | 00 | 2/4/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/143948 | 12/3/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
523602 | Christie | Jul 1894 | A |
1058550 | Shrewsbury | Apr 1913 | A |
20090152092 | Kim et al. | Jun 2009 | A1 |
20100300867 | Kim et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
1255528 | Jun 2000 | CN |
2435394 | Jun 2001 | CN |
81916 | Jul 1894 | DE |
10 2007 042502 | Mar 2009 | DE |
WO 2006103043 | Oct 2006 | WO |
WO 2006128612 | Dec 2006 | WO |
Entry |
---|
Machine translation of CN 1255528 (Jun. 2000). |
Machine translation of CN 2435394 (Jun. 2001). |
Number | Date | Country | |
---|---|---|---|
20110120852 A1 | May 2011 | US |