The present application is the U.S. national stage application of International Application PCT/NO2004/000022, filed Jan. 26, 2004.
This invention relates to a pulling tool, in particular for use in the positioning of equipment and acquisition of measured data in pipelines and boreholes for the production of oil and gas.
In long pipelines and boreholes there is often a need for putting down different equipment and collect measured data. For this purpose pulling tools of different embodiments are used, having wheels or chains that roll on the wall of the pipe or borehole. The rollers or the chain are/is pressed against the wall of the pipe/borehole with a force sufficient to achieve the desired axial propulsive force in varying frictional conditions. The supply of power is effected through a cable connection to the surface.
An optimum pulling tool must be formed to be able to negotiate restrictions and sharp curvatures without getting stuck. In order to achieve these important functions, a solution has been reached in the present invention, which makes it possible in a simple and robust way to meet these functional requirements. To achieve this object the pulling tool is provided with 3 axially longitudinal chains, offset 120 degrees relative to each other viewed in a section perpendicular to the longitudinal axis. The chains run on longitudinal links which are interlocked, so that the radial movement will be the same for all three chains when they are moved radially. With this construction is achieved that the pulling tool is always kept centred within a pipe or a borehole. This is a condition for allowing efficient positioning of equipment and operation of measuring tools.
A limitation in the length of the tool is achieved by all three links with chains being arranged in such a way that they have a radial movement out from the centre. In addition, the links are arranged 120 degrees offset relative to each other and with the same extent longitudinally. In most other known structures the pulling devices are arranged one behind the other, which makes the pulling tool long and unsuitable in sharp curvatures. In boreholes which have not been lined with steel pipes, the walls are often rough and it is difficult for wheels to achieve sufficient grip. In such events the use of chains would be advantageous.
Most known pulling tools utilize electric/hydraulic operation. This means that an electric motor drives a hydraulic pump, which again supplies power to hydraulic motors in the driving wheels. Such a system will be technically complex and low efficiency is achieved. With a limited supply of power through long cables, this will limit the traction substantially. In several operations great tractive power is desirable. In the present invention propulsion is effected through direct electric drive, without the use of hydraulics. Thereby a substantially higher performance is achieved for the pulling tool.
The invention will now be explained in further detail in connection with a description of an exemplary embodiment and with reference to drawings, in which:
The main structure of the tool consists of an elongate, cylindrical element (1). To this cylindrical element are arranged links (2), (4) and (5) connected with linkages (6). The links can be moved radially in milled grooves (11) in the main element (1) in such a way that the links (2) are forced against the borehole wall (20) in a position parallel to the longitudinal axis of the main part (1). Radial displacement of the links (2) is brought about by the terminal element (9), to which the links (5) are connected, being moved axially. To obtain the greatest possible radial force against the borehole wall, the links (5) are terminated at the terminal element (9) through the bolt (12) in a bolt hole (10) at a distance (14) on the opposite side of the centre line (13). A corresponding termination is made for all three end links (5) placed 120 degrees offset from each other. Axial movement for the activation of the links (5) through the terminal element (9) is effected by an actuator (24) and a spring element (7) placed between the actuator and the terminal element (9). The supply of energy to the actuator and the driving of the chains (3) is effected through a cable connection (23) from the surface.
The chain (3) is made up of side links (21) with rollers (22) held in place by through bolts (26). The chain runs in milled grooves (27) in the links and across pulleys (25) and driving wheels (15).
The driving of the chains (3) is provided by three chain wheels (15) arranged to a bevel gear (17) engaging the bevel gear (18) connected to the shaft (19). The shaft (19) communicates with the electric motor (8), so that the electric motor is mechanically connected to the chain wheel (15) for direct mechanical drive of the chains (3).
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NO2004/000022 | 1/26/2004 | WO | 00 | 3/17/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/071216 | 4/8/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2742259 | Boucher | Apr 1956 | A |
3125464 | Harmes | Mar 1964 | A |
4085808 | Kling | Apr 1978 | A |
4112850 | Sigel-Gfeller | Sep 1978 | A |
4192380 | Smith | Mar 1980 | A |
4670862 | Staron et al. | Jun 1987 | A |
4770105 | Takagi et al. | Sep 1988 | A |
6227313 | Davis et al. | May 2001 | B1 |
6910533 | Guerrero | Jun 2005 | B2 |
7150318 | Freeman | Dec 2006 | B2 |
7156192 | Guerrero et al. | Jan 2007 | B2 |
Number | Date | Country |
---|---|---|
109021 | Aug 1917 | GB |
2362405 | Nov 2001 | GB |
Number | Date | Country | |
---|---|---|---|
20070012485 A1 | Jan 2007 | US |