This invention relates to a device for a timepiece comprising a movable element that can assume multiple specified positions under the action of a control cam. More particularly, this invention relates to a coupling device, in particular for a chronograph.
In a chronograph, a coupling device makes it possible to transmit the movement of a moving object of the going train to the chronograph wheel that carries the chronograph hand. The coupling device comprises a coupling wheel that can occupy an coupled position, corresponding to the operating position of the chronograph, where the chronograph wheel is driven by a moving object of the going train via the coupling wheel, and a uncoupled position, corresponding to the stop position of the chronograph, where the chronograph wheel is not driven by a moving object of the going train via the coupling wheel.
A coupling lever carrying the coupling wheel works with a control element to move the coupling wheel into its coupled and uncoupled positions. Jumpers, springs, and stops ensure that the elements of the coupling device are in their coupled position or uncoupled position, in particular when the chronograph is in operation.
However, a sudden movement or a shock creating a greater force than the return force exerted by the control spring of the coupling lever can bring about a movement of the coupling lever and thus a movement of the coupling wheel. The entrainment of the chronograph wheel can then be interrupted for a moment, distorting the measurement.
The object of this invention is to produce a device for a timepiece comprising a movable element that can assume at least two specified positions and that makes it possible to prevent said movable element from leaving one of its specified positions under the action of a shock. In particular, an object of this invention is to produce a coupling device for a timepiece and in particular for a chronograph making it possible to solve the above-described problem and to prevent the inadvertent disengagement of the coupling device in the event of a shock or a sudden movement and consequently to guarantee the measurement.
For this purpose, this invention has as its object a device for a timepiece comprising a movable element that can assume at least two specified positions and a control cam working with said movable element to define said at least two specified positions, characterized by the fact that the device also comprises a locking element that is integral with the control cam and an intermediate element controlled by the movable element and designed to work with the locking element to prevent or to limit the movement of said movable element under the action of a shock when the movable element is in one of these specified positions, thus preventing said movable element from leaving its specified position.
This invention also has as its object a chronograph mechanism according to Claim 17 as well as a timepiece according to Claim 18.
Other characteristics and advantages of this invention will emerge from reading the following detailed description of an embodiment of the invention to which reference is made in the accompanying drawings in which:
In the embodiment illustrated in
The coupling device according to the illustrated embodiment of the invention comprises a coupling lever 1 pivoted at A (for example on a bridge or on the movement plate comprising the chronograph mechanism) and carrying a coupling wheel 2. The coupling wheel 2 is permanently meshed with a moving object of the base movement of the timepiece. In this embodiment, the driving of the coupling wheel 2 by the base movement is done via the driving wheel 3 that is also pivoted at A. This driving wheel 3 is connected to the going train (for example to the seconds-wheel) of the movement in a conventional manner.
The coupling lever 1 pivots at A between a first position, illustrated in
At one of its ends, the coupling lever 1 has a beak 5 (
The coupling lever 1 is subjected to the action of a lever spring 7 that makes it possible to move the lever 1 and that tends to keep it in contact with the column wheel 6. In the coupled position shown in
According to an essential aspect of the invention, the coupling lever 1 also controls an arm 9. In the illustrated embodiment, the arm 9 is attached to the coupling lever 1. The free end of the arm 9 has the shape of a first hook 10. The arm 9 and the first hook 10 are arranged to work with a locking element that is integral with the column wheel 6. In the illustrated embodiment, the locking element is a hook wheel 12 having hooks 11 that are radially distributed on its circumference.
In the coupled position illustrated in
In the uncoupled position illustrated in
In the illustrated embodiment, the hook wheel 12 has as many second hooks 11 as there are columns 6b on the column wheel 6.
From the coupled position of the coupling wheel 2 illustrated in
From the uncoupled position illustrated in
The hook wheel 12, the arm 9 and its first hook 10 are therefore shaped to work together when the coupling lever 1 is in its first coupled position in such a way as to limit or to prevent any movement of said lever 1 against the action of its lever spring 7 under the action of a shock that would tend to make it return to its uncoupled position. Thus, even in the event of a shock creating a greater force than the force of the lever spring 7, the coupling lever 1 is held in its first position by the hook wheel 12, and the coupling wheel 2 remains meshed with the chronograph wheel 4 without interrupting the measurement. In addition, when the column wheel 6 pivots from a first stable position corresponding to the coupled position of the coupling wheel 2 to a second stable position corresponding to the uncoupled position of the coupling wheel 2, the hook wheel 12 pivots simultaneously with the column wheel 6 in such a way as to release the first hook 10 before the column wheel 6 raises the coupling lever 1 and thus makes it possible for the coupling lever 1 to return to its second position in which the coupling wheel 2 is in the uncoupled position.
In a first variant illustrated in
In a second variant illustrated in
In the illustrated embodiment, the arm 9 is positioned on the coupling lever 1 by two guide pins 16 and held by two holding screws 13 each screwed through a corresponding groove 15 into the coupling lever 1. An eccentric 14 makes it possible to move the first hook 10 of the arm 9 in relation to the coupling lever 1. The adjustment of the coupling device and in particular the penetration of the teeth of the coupling wheel 2 in relation to the teeth of the chronograph wheel 4 is then done as follows: in the coupled position of the coupling wheel 2, with the beak 5 of the coupling lever 2 being located between two columns 6b of the column wheel 6 and the end of the arm 9 abutting the hook wheel 12, the holding screws 13 are first loosened; the eccentric 14 is then rotated, if necessary, driving the movement of the arm 9 to adjust the position of the lever 1 and therefore of the coupling wheel 2. Once the desired position is found, the holding screws 13 are retightened. The coupling lever 1 and its arm 9 are then perfectly adjusted.
The embodiment above was described by way of example. In particular, the chronograph mechanism is well known to one skilled in the art and can comprise any other traditional device (control, resetting, . . . ) without a connection to the invention. Likewise, the invention is limited neither to a coupling device for a chronograph nor to a coupling mechanism.
In the above-described embodiment, the arm 9 is elastically deformable and is carried by the coupling lever. As a variant, said arm could be a rigid finger that is movable in rotation and subjected to the action of a suitable elastic force such as a spring. Said finger could be pivoted on the coupling lever. It could also be pivoted elsewhere on the movement and be arranged to be controlled by said lever and to work with said lever and with the hook wheel in such a way that when said lever is in its coupled position, said finger prevents or limits any movement of the lever under the action of a shock.
In a general manner, the invention relates to a device for a timepiece comprising a movable element that can assume at least two specified positions and a control cam that works with said movable element to define said at least two specified positions. The device also comprises a locking element that is integral with the control cam and an intermediate element that is controlled by the movable element. The intermediate element is designed to work with the locking element to prevent or to limit the movement of said movable element under the action of a shock when the movable element is in one of its specified positions, thus preventing said movable element from leaving its specified position.
A multi-positional device, such as, for example, a coupling device, which withstands shocks and whose operational safety and precision are improved, while remaining simple and easy to adjust, is thus produced.
Number | Date | Country | Kind |
---|---|---|---|
14168485 | May 2014 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/060713 | 5/13/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/173372 | 11/19/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4445783 | Dodane | May 1984 | A |
20040246820 | Girardin | Dec 2004 | A1 |
20110002198 | Wyssbrod | Jan 2011 | A1 |
20120069717 | Mertenat | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
1 296 205 | Mar 2003 | EP |
1 430 367 | Apr 2008 | EP |
2 228 692 | Sep 2010 | EP |
2899967 | Jun 1999 | JP |
Entry |
---|
International Search Report, dated Dec. 2, 2015, from corresponding PCT Application. |
Number | Date | Country | |
---|---|---|---|
20170068223 A1 | Mar 2017 | US |