The present invention a device for activating a control unit according to the species defined in the independent claim. In automotive engineering, a plurality of operating elements are input in an analog manner in order to eliminate lines in a motor vehicle. In this context, depending on the control state of the operating elements, different voltages are generated at an analog input in that resistors different from the one used in the control unit are connected in series with the corresponding operating element. The resistor in the control unit and the resistor activated by the appropriate operating element form a voltage divider. The instantaneous state of the circuit elements and of the corresponding operating elements is able to be determined on the basis of the thus-established voltage. When one of the operating elements is operated, the activation operation of a control unit in rest mode is able to be introduced in order to power up the control unit.
If this operating element is encoded in an analog manner, an operating instance of the operating element would be able to be detected by a comparator or with the help of an analog-digital converter and a series-connected microcontroller. In the latter case, the microcontroller would either need to be permanently switched on for the voltage evaluation or regularly activated. This is associated with significant additional expenditure. However, if an operation is detected in connection with a comparator, the problem arises that voltage fluctuations, structural component tolerances, climatic influences, or also ageing or contamination cause the input level to shift so significantly that clear detection of a signal change is not able to be ensured over the entire lifetime. In particular, contamination of the operating element that is expressed, for example, in a parasitic resistor in parallel with the actual circuit element leads to problems regarding reliable operation detection. Therefore, an object of the present invention is to reliably detect operation of an analog encoded operating element in order to activate a control unit.
The device for activating a control unit of the present invention has at least one operating element able to be operated by a user. At least one analog encoding means is assigned to this operating element in order to detect operation of the operating element. In accordance with the present invention, deactivation means, which deactivate the analog encoding means and instead digitally, preferably binarily encode the operating element, are provided for generating an activation signal for a control unit Due to the clear, digital evaluation, operation of the operating element is able to be reliably detected even if different voltage levels or ageing processes significantly influence a signal encoded in an analog manner. Therefore, in particular, a comparator that compares the output signal influenced by the operating element with a fixed limiting value may be used for the evaluation. As a result of dispensing with a microcontroller for evaluating the signals, the need for closed-circuit current is able to be reduced.
In an advantageous further refinement, an electrical resistor is provided as the analog encoding means, a circuit element or a diode being connected in parallel thereto for its deactivation. If the control unit is in the normal mode, the operating elements are encoded in an analog manner. However, in the rest state of the control unit, the circuit element or the diode, being polarized in the forward direction, short-circuits the appropriate resistor or bridges it in a low-resistance manner. Due to the significantly reduced voltage drop, any operation of the operating element is able to be reliably detected. Not all analog encoding means have to be deactivated. For example, it could be provided for only the high-resistance resistors to be short-circuited. As such, it is ensured that when the operating element is operated, a sufficiently high voltage level is available for further evaluation for a possible activation of the control unit.
In an advantageous further refinement, a polarity-reversal means is provided for the purpose of deactivating the analog encoding means, the polarity-reversal means reversing the polarity of the diode in the rest state of the control unit in the forward direction, so that the appropriate analog encoding means is deactivated or short-circuited. In particular in the case of a plurality of operating elements connected in parallel, it may be achieved in a particularly simple manner that all analog encoding means are deactivated by simply reversing the polarity of the connection points. During normal operation of the control unit, the polarity-reversal means switch the diodes back to the blocking mode, so that the analog encoding is activated again.
In the exemplary embodiment according to
In the exemplary embodiment according to
The exemplary embodiment in
In the related art (
Parasitic shunt resistors 16 may occur due to ageing processes, for example. Since microcontroller 19 ensures a high degree of flexibility, ageing operations and voltage levels shifting as a result are able to be learned for the standard operation. However in the rest mode of control unit 20, microcontroller 19 is to be deactivated in order to lower the need for closed-circuit current. Then other reliable evaluation methods for detecting operation of an operating element 31 through 34 are performed in order to activate control unit 20 in the case of operation of an operating element 31 through 34, i.e., to bring it from the rest mode into normal operation. This is described in connection with
As seen in
Only an opening or a closing of any operating element is apparent from output signal 11. Output signal 11 may, for example, be compared by comparator 62 to a reference voltage 64. Reference voltage 64 is selected such that when any one of operating elements 31 through 34 is operated, the reference voltage is reliably exceeded. The output signal of comparator 62 changes its state when any operating element 31 through 34 is operated, thereby activating microcontroller 19 and, consequently, control unit 20. For example, a door handle contact of a motor vehicle could be provided as operating element 31 through 34. Therefore, control unit 20 is already activated when the door handle is operated. As such, the powering-up operation of control unit 20 is already able to be successfully completed when the driver wishes to start the vehicle. Any other sufficiently known operating elements may also be evaluated in the manner described.
In the exemplary embodiment according to
Microcontroller 19 is able to control the deactivation or activation of the analog encoding as a function of a command signal on the basis of which control unit 20 enters the rest state. The signal “ignition on/off” is also suitable for this purpose. If the vehicle is turned off via the signal “ignition off,” the deactivation of the analog encoding is able to be triggered by this signal. At the latest when the signal “ignition on” occurs the analog encoding is again permitted.
It is not absolutely necessary for every resistor 21 through 24 to be short-circuited. However, it is particularly advantageous when resistors 21 through 24 are relatively high-resistance in comparison with the contaminant resistors/capacitive shunt resistors 16.
Although as a result of the indicated configuration, the evaluation is preferably able to be performed by a comparator 62, an analog/digital converter 18 having a series-connected microcontroller 19 is also conceivable. The evaluation reliability is also increased in this case.
Number | Date | Country | Kind |
---|---|---|---|
100 44 087 | Sep 2000 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE01/03302 | 8/29/2001 | WO | 00 | 8/6/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/21223 | 3/14/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4016483 | Rudin | Apr 1977 | A |
4580138 | Morrison | Apr 1986 | A |
4583189 | Koyama | Apr 1986 | A |
4651138 | Morrison | Mar 1987 | A |
4817010 | Dobbins | Mar 1989 | A |
4872008 | Ohtsuka et al. | Oct 1989 | A |
4884070 | Hannaford | Nov 1989 | A |
4918634 | Nishimori | Apr 1990 | A |
5146172 | Mehr-Ayin et al. | Sep 1992 | A |
5424731 | Kronberg | Jun 1995 | A |
5521575 | Pack | May 1996 | A |
5699857 | Flaishans et al. | Dec 1997 | A |
5939998 | Caporuscio et al. | Aug 1999 | A |
6178388 | Claxton | Jan 2001 | B1 |
6639523 | Kaikuranta et al. | Oct 2003 | B1 |
6970752 | Lim et al. | Nov 2005 | B1 |
Number | Date | Country |
---|---|---|
39 07 432 | Sep 1990 | DE |
0 577 567 | Jan 1994 | EP |
2 653 279 | Apr 1991 | FR |
Number | Date | Country | |
---|---|---|---|
20030015920 A1 | Jan 2003 | US |