This application is a U.S. National Phase Application under 35 Usc 371 of International Application PCT/EP2004/013200 filed Nov. 20, 2004.
The invention concerns a device for actuating a sliding closure applied to a vessel containing molten metal according to the main description of Claim 1.
A device of this kind is for example known from EP-A-O 875 320. It comprises a piston/cylinder unit incorporating a drive shaft that can be coupled to a slide rod of the sliding closure, i.e. its sliding unit. The piston/cylinder unit with which the sliding closure can be opened and closed again is mounted on the sliding closure following the positioning of the vessel containing the molten metal on a ladle rotating tower, and removed again from the sliding closure following the emptying of the vessel, so that the vessel can once more be removed from the ladle rotating tower to a location where the same is once more filled with molten metal. The mounting and removing is carried out in such a way that the piston/cylinder unit is introduced from the side into a holding element affixed to the sliding closure transverse to the displacement direction of the sliding unit, i.e. pushed out of the holding element. The introducing and removing of this relatively heavy piston/cylinder unit is carried out manually, and is therefore somewhat cumbersome.
It is the purpose of this invention to create a device of the kind described above that enables an effortless introducing and removing of the piston/cylinder that can be coupled to the sliding unit of the sliding closure into the holding element of the sliding closure.
The fact that the piston/cylinder unit of the invention can be introduced into, i.e., removed from the holding element by means of a controllable manipulator affixed to the ladle rotating tower means that the affixing of the piston/cylinder unit to the sliding closure (and therefore also the actual actuating of the sliding closure) can be carried out effortlessly and precisely with very few steps. The removing of the same is just as easy. In addition the piston/cylinder unit removed from the sliding closure can just as easily be brought into a so-called parking position on the ladle rotating tower, where the same can be optimally protected against any damage caused by outside influence during the exchange of vessels.
The invention will now be described with reference to the drawings, whereby:
The ladle 1 filled with molten metal is positioned into the ladle rotating tower by means of a crane whilst the sliding closure 3 is closed. To empty the ladle 1 the sliding closure 3 must be opened. For this purpose a piston/cylinder unit 10 that can be coupled to the sliding unit of the sliding closure 3 is envisaged. Unlike the sliding closure 3 the piston/cylinder unit 10 is not mounted on the ladle 1, but remains in the injection moulding unit comprising the ladle rotating tower. It must therefore be mounted on the sliding closure 3 of the ladle 1 positioned in the ladle rotating tower and must be removed from the sliding closure 3 following the emptying of the ladle 1, so that the ladle 1 can be transported by the crane away from the ladle rotating tower to a location where the same can once again be filled with molten metal. The mounting and removing is carried out in such a way that the piston/cylinder unit 10 is introduced into, i.e. pushed out of the holding element 4 transverse to the displacement direction of the sliding unit by means of guiding elements described below into a holding element 4 affixed to the sliding closure 3. Following the introduction a drive shaft 11 of the piston/cylinder unit 10 is coupled to a slide rod of the sliding unit in coaxial alignment to the same. The way in which this is carried out as well as various embodiments of couplings envisaged for this are described in EP-A-O 875 320 mentioned above and are therefore not illustrated and described in detail here.
According to the invention the introducing, i.e. pushing of the piston/cylinder unit 10 into/out of the holding element 4 is achieved by means of a manipulator 20 located on the ladle rotating tower. The manipulator 20 can be seen on the rotating housing 21 affixed to the ladle rotating tower shown in
The manipulator 20 can be tilted backwards and forwards by preferably 90° between two positions. In a starting position which is not illustrated in the drawing, which is also called parking position, the entire manipulator 20, i.e. even the lifting frame 26 with the piston/cylinder unit 10, is located outside of the area of the ladle rotating tower envisaged for the ladle 1, namely below a rotating tower frame used for introducing the ladle 1. In this way the manipulator 20 as well as the piston/cylinder unit 10 are optimally protected against any damage caused by outside influences during the introducing of the ladle 1.
Following the introducing of the ladle 1 the manipulator 20 is tilted into the other working position shown in
The recesses 29 comprise a funnel-shaped insertion part 29′ that is wider at the bottom (
The manipulator 20, especially a preferably hydraulic rotating drive as well as a hydraulic lifting drive of the same, is controlled by means of a controller not shown in detail here. For normal operation (as opposed to emergency, i.e. maintenance operation) remote control is envisaged. The control box is located in a control room with visual access to the ladle that is to be poured. The drives can be hydraulically deactivated via a by-pass on the manipulator and mechanically de-coupled and moved in a freewheeling position.
The fact that according to the invention the piston/cylinder unit 10 can be introduced into the holding element 4, i.e. pushed out of the holding element 4 by means of a controllable manipulator 20 located on the ladle rotating tower means that the affixing of the piston/cylinder unit to the sliding closure 3 (and therefore the actual actuating of the sliding closure 3) can be carried out effortlessly and precisely with very few steps. Removing the same is just as simple. In addition the piston/cylinder unit 10 removed from the sliding closure 3 can be brought into a so-called parking position on the ladle rotating tower just as easily, where the same can be optimally protected against any damage caused by outside influence during the changeover of vessels.
The manipulator can of course also be of a different design, for example similar to a robot, where the piston/cylinder unit 10 is introduced into the holding element 4, i.e. removed from the same by means of a robot arm. However, a means for positioning the robot am on the holding element must once again be envisaged here as well. This could be similar to the embodiment described above and take the form of positioning bolts 27 and corresponding recesses 29, or consist of other electronic means such as for example a laser.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2004/013200 | 11/20/2004 | WO | 00 | 5/9/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/051574 | 6/9/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4042207 | Nehrlich et al. | Aug 1977 | A |
4596345 | Beckers | Jun 1986 | A |
6045015 | Waltenspuhl et al. | Apr 2000 | A |
Number | Date | Country |
---|---|---|
1000392 | Nov 1988 | BE |
2603003 | Jul 1976 | DE |
3233600 | May 1983 | DE |
0 875 320 | Nov 1998 | EP |
08 281417 | Feb 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20070051756 A1 | Mar 2007 | US |