Device for administration

Information

  • Patent Grant
  • 9278173
  • Patent Number
    9,278,173
  • Date Filed
    Friday, December 22, 2006
    17 years ago
  • Date Issued
    Tuesday, March 8, 2016
    8 years ago
Abstract
The application relates to a device for an intermittent or continuous administration of a therapeutical substance, such as insulin, comprising an injection part and a fluid delivery part (3,4). The fluid delivery part normally comprises a reservoir (4), transferal means e.g. in form of a pump and a house (3), and the injection part normally comprises a base plate (10), a cannula part (1,16) comprising a cannula (9) extending past the proximal side of the base plate and means for fixation of the base plate to the skin of the user. According to the application the device comprises a base plate (10), a cannula part (1, 1b) comprising a body providing a through-going opening leading liquid to a cannula (9) which cannula (9) extends past the proximal side of the base plate (10) and means (21) for fixation of the base plate to the skin of the user wherein a flexible part is arranged in an area between the subcutaneously positioned section of the cannula (9) and the fluid delivery part (3, 4).
Description
THE TECHNICAL FIELD

The invention relates to a device for an intermittent or continuous administration of a therapeutical substance, such as insulin, comprising an injection part and a fluid delivery part. The fluid delivery part normally comprises a reservoir, transferal means e.g. in form of a pump and a house, and the injection part normally comprises a base plate, a cannula part comprising a cannula extending past the proximal side of the base plate and means for fixation of the base plate to the skin of the user.


PRIOR ART

Both EP-A1-1.527.792 and EP-A1-1.495.775 describe a medical device comprising a transdermal access unit and a reservoir. The transdermal access unit comprises transdermal access means for transporting a fluid through a skin portion of a subject, and a mounting surface adapted for application to the skin of the subject. The reservoir unit comprises a reservoir adapted to contain a fluid drug and an outlet allowing the transdermal access means to be arranged in fluid communication with an interior of the reservoir. Also the device comprise means for expelling e.g. a pump which means during use expels a fluid drug out of the reservoir and through the skin of the subject via the transdermal access means. The transdermal access unit and the reservoir unit further comprise releasable mating coupling means allowing the reservoir unit to be secured to the transdermal access unit during use. The object of the invention is to provide a skin mountable drug delivery device or system which allows such a device or system to be used in a convenient and cost-effective manner.


According to this document the insertion needle (113, 212 or 412) of the described embodiments is pivotably arranged inside the needle housing and can be moved between an extended and an extracted position. When the injection needle is inserted it penetrates a membrane in order to penetrate the skin of the subject. After the needle has been inserted there is no flexible effect in the system.


US 2004/0204673 A1 describes a lightweight and low cost fluid delivery device capable of adjustable and programmable fluid delivering; the device includes a housing that surrounds a reservoir chamber. A dispenser is in fluid communication with the reservoir chamber for dispensing the fluid from the reservoir in finite amounts. The dispenser is controlled by an electronic microcontroller of the fluid delivery device. The fluid delivery device further includes a communication element that receives information from a remote control device not mechanically attached to the fluid delivery device of the present invention. Also included is an exit port assembly in fluid communication with the dispenser from which the liquid medication exits the fluid delivery device and enters the body of a mammalian patient transcutaneously.


The housings 702, 802 can each be made from flexible material, or can be provided with flexible hinged sections that allow the fluid delivery device 10 to flex during patient movement to prevent detachment and aid in patient comfort but there are no directions as to how such a hinged section should be constructed.


THE INVENTION

The object of the invention is to provide a device for delivering fluid including a pump, a reservoir and an injection part which device assures less discomfort to the wearer during use. The devices according to the present invention are constructed with means to reduce the transferal of actions from the relatively heavy delivering part to the injection part when the delivering part is affected by touches or movements.


According to claim 1 the invention comprises a device for delivering fluid comprising an injection part and a fluid delivery part where the fluid delivery part comprises a reservoir, transferal means e.g. in form of a pump and a house, and the injection part comprises a base plate, a cannula part comprising a body providing a through-going opening leading liquid to a cannula which cannula extends past the proximal side of the base plate and means for fixation of the base plate to the skin of the user wherein a flexible part is arranged in an area between the subcutaneously positioned section of the cannula and the fluid delivery part.


That a part is flexible means that it is resilient, able to be deformed without breaking, non-rigid, it is not purely a rigid material moving from one position to another, it has a certain degree of elasticity such that when one end of the flexible part is subjected to external influencing factors e.g. pushing and pulling effects these external effects are not transferred directly to the cannula when the cannula is inserted but the effects are at least partly absorbed. The flexibility need not be a result of the material characteristic but can be a result of the physical structure of the material e.g. the material is corrugated or the like. As the delivery part is susceptible for external influencing factors such as pulling and pushing effects when the user is moving around, it is desirable that these effects are not transferred to the cannula which is positioned through the user's skin. The flexible part will at least partly absorb these effects and assure that the cannula is not influenced i.e. pulled out or moved around thereby causing discomfort or pain for the user.


According to one embodiment the flexible part is integrated in the base plate according to this embodiment the base plate can be constructed either partially or completely by a flexible material.


According to a second embodiment the flexible part is integrated in the body of the cannula part providing a through-going opening leading liquid to a cannula according to this embodiment the body of the cannula part can be constructed either partially or completely by a flexible material.


According to a third embodiment the flexible part is integrated in the fluid delivery part.


According to a fourth embodiment the flexible part is a separate unit placed between the fluid delivery part and the injection part. According to this embodiment the separate unit can be constructed either partially or completely by a flexible material.


That the cannula part and/or a base plate and/or a separate unit is/are constructed partially by a flexible material can mean that a fraction of the full area of the part/plate/unit is e.g. made by a different material or made with a structure such as holes, which structure increases the elasticity of the material in one or more dimensions. If the part/plate/unit is constructed completely by a flexible material the choice of material together with the dimensions of the material e.g. the thickness of the part/plate/unit and/or the form of the periphery will define the flexibility.


A suitable flexible material for each of the mentioned units would be an elastomer.


When the flexible part is a separate unit it forms an interface between the injection part and the delivery part thereby providing a flexible transition which provides absorption of the transferable effects originating from the weight and volume of the fluid delivery device.


According to one embodiment the fluid delivery part and the injection part can be separated and rejoined.


According to one embodiment the base plate is provided with fastening means for connecting and disconnecting of the delivery device extending from the distal side of the base plate.


According to one embodiment the house of the fluid delivery part also provides a house for the injection part.


When the house is provided by the fluid delivery part it is possible for the user to visually check the complete fluid path as the house of the fluid delivery part can provide a fully removable protective cover. Also it is possible to create the flexible base part without a house or protective cover which could make the base part less flexible.


According to one embodiment the flexible part is constructed of an area with reduced material dimensions. “Reduced material dimensions” could be both reduction of thickness i.e. “height” of the material and reduction of transverse section i.e. “width” of the material.


According to a second embodiment the flexible part is constructed of an area made by a softer and more flexible/elastic material.


According to a third embodiment the flexible part is constructed of an area made of a material which by its form has an ability for extension and compression such as a material being pleated or folded or corrugated.


According to one embodiment the cannula and the delivery part are not interconnected by non-flexible areas.


According to one embodiment a fluid tight connection leading fluid from the reservoir to the cannula is formed when the delivery part and the injection part are joined together.


According to one embodiment the access of micro organisms to the reservoir of the fluid delivery part during periods when the fluid delivery part and the injection part are separated is prevented as the opening to the reservoir is blocked when the two parts are separated.


According to one embodiment the reservoir has two positions, a first position and a second position, in the first position the outlet from the reservoir is blocked with a first barrier which is not permeable for microorganisms and the inlet of the through-going opening in the cannula part is blocked with a second barrier which is not permeable for microorganisms, in the second position an open fluid connection is formed between the reservoir and the through-going opening in the cannula part by passing the first and the second barrier. According to this embodiment one or both of the barriers comprise a material which can be penetrated by a needle-like object where the opening close on retraction of the needle-like object. The needle-like object can be blunt or sharp-pointed. One or both of the barriers can comprise a hard surface which is moved forming an opening in the area positioned between the outlet of the outlet pipe and the inlet of the through-going fluid path.


According to one embodiment the means for fixation of the base plate to the skin of the user comprises a mounting pad adhered to the proximal side of the base plate and/or to the proximal side of the cannula part.


According to one embodiment the base plate has the form of a lattice with a peripheral coherent part and one or more bars interconnecting the peripheral part. The base plate can have a round or oval peripheral part and the bars have one end attached to the peripheral area and a second end attached to a central area. The base plate can have three or more bars.


According to one embodiment the base plate is not provided with a cannula holding part before use e.g. the base plate is provided with an opening through which a cannula holding part can be inserted.


According to one embodiment the cannula at one end is provided with a body which body comprises solid walls and a protective seal protecting the fluid entrance to the cannula.


According to one embodiment injection part comprising the base plate is provided with a first part of a cannula part acting as positioning controller for a second part which second part comprises a cannula and is to be inserted with an injection needle.


The cannula can be inserted with an inserter device provided with means corresponding to the surface of the base plate, and when said means of the inserter device are combined with the corresponding surface of the base plate, the inserter device is positioned in such way that the cannula, e.g. a cannula including a body, is inserted predictably and correct in relation to the base part. E.g. a first part of the cannula part is provided with means for locking a second part in a desired position.


According to one embodiment the base plate is unreleasably connected to a mounting pad.


A “reservoir” is the part of a device where the liquid is held, the liquid being any kind of medication which has to be delivered to the patient in a certain amount at certain time intervals. The “delivery part” is the part of the device which holds a liquid storage and assures transport of the liquids to the injection part by pumping and e.g. controlling the amount of added liquid. The “injection part” defines a kind of port which is fastened to the users skin and provided with means e.g. a cannula for transferring the liquid to the user and the injection part do not comprise any heavy or voluminous parts. The injection part can comprise two or more separable parts, where one or more parts are unreleasably connected to the base part and one or more parts can be fastened to the base part before or after fastening of the base part to the skin of the patient.


When the flexible areas are placed between the relatively heavy delivery device and the injection device, the transferal of actions from the delivery device to the injection device is prevented or at least significantly reduced, and the injection site of the subcutaneously placed cannula will be protected from the main part of any interaction resulting from pushing or touching the delivery part. Often the delivery part is separated physically from the injection part by a relatively long tube which prevents the transferal of actions but when the delivery part is positioned together with the injection device, the user will feel less discomfort when wearing a device according to the invention.


By using a connector it is possible to avoid the direct contact between the delivery part and the injection part and at the same time fasten both parts as one unit to the skin of the patient.


The cannula can protrude from the proximal side of the body of the injection part or from the side of the body. If the cannula protrudes from the side of the body as it does in the embodiments shown in FIG. 4 and FIG. 7, the cannula will normally be bending and it would be preferred to use a cannula which is at least partly formed of a soft and flexible material. If the cannula protrudes from the proximal side of the body as shown in FIG. 12, the cannula can be made of a hard material such as metal or it can be made of a soft and flexible material.


According to the invention the connector needle can be one end of a single needle which at the other end functions as the cannula. When the connector needle and the cannula is formed as one needle, the needle is normally made of metal or hard polymer but it can also be made of e.g. a polymer which is hardened in the connector end and unhardened and soft in the cannula end. Also the single needle can be composed of two different materials, a hard material for the connector end and a relatively soft material for the cannula end. Also the connector needle and the cannula can be separated into at least two needles. The injector part can then be provided with a commonly known soft cannula which cannula can be inserted by the help of an insertion needle attached to a separate inserter, and the connector needle can be made of a hard material and fastened to either the injector part or the delivery part.


The flexible areas are constructed of an area with reduced material dimensions, e.g. openings or cuts can be provided in a material or the thickness of a material can be reduced, or of an area made by a softer and more flexible material or it is constructed of an area made of a material which by its form or structure has ability for extension and compression such as a material being pleated or folded.


Access of micro organisms to the reservoir during a non-connected state, i.e. when the reservoir and the injection part are separated, is prevented as the opening to the reservoir is blocked when the two parts separate. When e.g. a connector needle is attached to the delivery device the opening in the septum of the connector will close upon removal of the connector needle.


In another embodiment the reservoir of the delivery part has two positions, a first position and a second position, in the first position the outlet from the reservoir is blocked with a first barrier which is not permeable for micro organisms and the inlet of the through going opening in the injection part is blocked with a second barrier which is not permeable for micro organisms, in the second position an open fluid connection is formed between the reservoir and the through going opening in the injection part by passing the first and the second barrier. The word “passing” comprise all possible ways to make a flow pass through or around a barrier, in most of the described embodiments of this invention the barrier is passed by penetrating the barrier with a needle but there is also an example (FIGS. 18A and B) where the barrier is passed by pushing aside a cover thereby creating a flow path.


If the barriers comprise a material which can be penetrated by a needlelike object, where the opening close on retraction of the needle like object, the needlelike object can be either blunt or sharp-pointed meaning that the needlelike object either pushes its way through the barrier or cuts its way through the barrier.


In another embodiment at least one of the barriers comprise a hard surface, i.e. a surface which cannot be penetrated by at least a blunt needle, which is moved forming an opening in the area positioned between the outlet of the outlet pipe and the inlet of the through going fluid path.


The device is often fastened to the patients skin by applying a mounting pad to the proximal side of the base part or to the proximal side of the infusion part, the adhering of the mounting pad to the base part or infusion part can include glue, Velcro, molding etc.


In one embodiment the base part has the form of a lattice with. The peripheral part can either be formed with opening or be formed as a coherent part constituting the circumference of the base part. That the base part has the form of a lattice means that is formed of one or more bars interconnecting with each other and with the peripheral part if present. A base part of this form can easily be provided with a desired flexibility and can take any desired form which might be needed in order to fit the injection part and the delivery part to the mounted device.


In one embodiment the injection part is constructed of at least two separable parts where the first part is unreleasably connected to the base part and the second part comprising the cannula is placed in the first part before or after mounting of the base part on the skin of the patient. The partitioning of the injection part has the advantage that it makes applying of the device much more flexible. The second part can comprise a relatively small body where from a cannula extend from the proximal end and a septum protects the distal end. The second part can e.g. be sold together with a base part already being mounted in an inserter.


If the injection part is constructed of more than one separable part the first part can be provided with means for locking the second part in a desired position. Also the second part can be provided with means for locking the second part to the first part in a desired position or the first and the second part can each be provided with corresponding locking means.





Embodiments of the invention will now be described with reference to the figures in which:



FIG. 1 shows a first embodiment of the invention from above at the B-B line shown in FIG. 3, where the delivery part is placed beside the injection part.



FIG. 2 shows an enlarged part, marked with a circle, of the embodiment in FIG. 1.



FIG. 3 shows the embodiment of FIG. 1 from the side indicating the line B-B.



FIG. 4 shows the first embodiment where the delivery part is separated from the injection part.



FIG. 5 shows an enlarged part, marked with a circle, of the embodiment in FIG. 4.



FIG. 6A shows a second embodiment of the invention seen from the side of the injection part.



FIG. 6B shows the same embodiment as in FIG. 6A seen from the cut made by the line B-B.



FIG. 7 shows an enlarged part, marked with a circle, of the embodiment in FIG. 6B.



FIG. 8A shows the injection part and the base part of the second embodiment separated from the delivery part.



FIG. 8B shows an enlarged part, marked with a circle, of the embodiment in FIG. 8A.



FIG. 9 shows both the delivery part and the injection part of the second embodiment.



FIG. 10A shows the same embodiment as FIG. 8A from a different angle.



FIG. 10B shows an enlarged part, marked with a circle, of the embodiment in FIG. 10A.



FIG. 11 shows a third embodiment of a delivery device according to the invention in a connected state, and in this embodiment the delivery part is placed on top of the injection part.



FIG. 12 shows the third embodiment of the device in a separated state.



FIG. 13 shows the two parts of the third embodiment from the upper and lower side, respectively.



FIG. 14 shows a fourth embodiment of the delivery device according to the invention. “A” shows the delivery part with the injection part prepared to be connected with the delivery part seen from the side, “B” shows the delivery part from beyond and “C” shows the injection part seen from above.



FIG. 15 shows the fourth embodiment seen from the side (line V-V) in a separated state.



FIG. 16 shows the fourth embodiment seen from the side (line V-V) in a connected state.



FIG. 17 shows a fifth embodiment of the delivery device according to the invention having a fluid tight lock between the delivery part and the injection part.



FIGS. 18A and 18B show an enlarged part of the fifth embodiment in two states; in the first state the device is closed for fluid flow, in the second state the device is open for fluid flow.



FIG. 19 shows another embodiment ensuring fluid tight transferal of fluid from the delivery part to the injection part.



FIG. 20 shows a sixth embodiment having a base part equipped with a central connector and peripheral injection part.



FIG. 21 shows the delivery device and the base part of the sixth embodiment in a joined state from above and from the side.



FIG. 22 shows a cut through view of the sixth embodiment in the joined state of FIG. 21.



FIG. 23 shows an enlargement of the connector part of FIG. 22.



FIG. 24 shows an enlargement of the injector part of FIG. 22.



FIG. 25 shows a view from below of the delivery part of the sixth embodiment.



FIG. 26 shows a seventh embodiment having a base part equipped with a central combined connector and injection part.



FIG. 27 shows the delivery device and the base part of the seventh embodiment in a joined state from the side and from above.



FIG. 28 shows a cut through view of the seventh embodiment in the joined state of FIG. 27 and an enlargement of the combined connector/injection part.



FIG. 29 shows a view from below of the delivery part of the seventh embodiment.



FIG. 30 shows an eighth embodiment having a base part equipped with a central combined connector and injection part where the combined part is divided into to units.



FIG. 31 shows the delivery device and the base part of the eighth embodiment in a joined state from above and from the side.



FIG. 32 shows a cut through view of the eighth embodiment in the joined state of FIG. 31 and an enlargement of the combined connector/injection part.



FIG. 33 shows a ninth embodiment having an oval base part equipped with a central connector and peripheral injection part.



FIG. 34 shows the delivery device and the base part of the ninth embodiment in a separated state from below and the reservoir and the base part from the side.



FIG. 35 shows the delivery device and the base part of the ninth embodiment in a joined state from the side and from above.



FIG. 36 shows a cut through view of the ninth embodiment in the joined state of FIG. 35 and an enlargement of the injection part.



FIG. 37 shows a tenth embodiment of a device for delivering fluid comprising an injection part and a fluid delivery part, in FIG. 37 the two parts are shown in a separated state.



FIG. 38 shows the injection part of the tenth embodiment seen from above.



FIGS. 39
a and 39b both shows the delivery part of the tenth embodiment seen from below, in FIG. 39 a the injection part without a mounting pad and the delivery part are joined, and in 39b only the delivery part is shown.



FIG. 40 shows an embodiment of the injection part having the fastening means for the delivery part placed centrally and peripherally.



FIG. 41
a-b shows different embodiments of the house of the delivery part which also function as house for the injection part.






FIGS. 1-3 show a first embodiment of a device according to the invention where the delivery part and the injection part are fastened to each other. In FIG. 1 the embodiment is seen from above at the B-B line shown in FIG. 3 and FIG. 2 show a small part of FIG. 1 in enlarge form. The device comprises an injection part which injection part comprises a base plate 10 which is not visible at FIG. 1, a cannula part 1 and a not shown mounting unit, normally a mounting pad. The cannula part 1 comprises a body providing a through-going opening leading liquid to a cannula 9 which after insertion is positioned subcutaneously. The device further comprises a connector 2 and a delivery part provided with a smooth cover 3, the delivery part comprises a not shown pump and a reservoir 4. A flexible tube 5 creates a fluid connection between the injection part and the delivery part and a connector needle 6 which can penetrate both a protective seal 7 covering the entrance of the connector 2 and a septum 8 covering the entrance of the reservoir secures the fluid path way from the delivery part to the injection part. In FIG. 1-3 the device is in a connected state where the injection part and the delivery part are joined together and ready for use.



FIG. 2 shows an enlargement of the connector 2 of FIG. 1. In this embodiment the connector 2 comprises a molded part in a non-flexible material with a through-going opening which in one end is connected to the flexible tube 5 and in the other end is provided with a connector needle 6. In a state where the connector 2 is not connected to the reservoir 4, the connector needle 6 extends into a closed room comprising walls formed respectively of a cylindrical extension of the connector 2 and of the elastic protective seal 7. In the connected state the protective seal 7 is pushed towards the inside wall of the connector 2 surrounding the connector needle 6 and when connecting the connector 2 to the reservoir 4 the connector needle 6 first penetrates the protective seal 7 and then the septum 8 in order to create a passage from the connector 2 to the inside of the reservoir 4. In this embodiment the connector 2 is fastened unreleasably to a base plate 10 which is an integrated part of the injection part.



FIG. 3 shows the embodiment of FIG. 1 from the side as it would look when the device is in use. A base plate 10 is placed along the skin of the patient and fastened to the patient e.g. by an adhesive pad. The cannula 9 protrudes from the proximal side of the base plate 10 below the injection part and the injection part is covered by a house 3 provided by the delivery part 3, 4. The delivery part 3, 4 is fastened to the distal side of the base plate 10 beside the injection part and is also covered by the house 3.


The base plate 10 will normally at the proximal side be fastened to the patient by an adhesive part or layer but any kind of mounting which will make the base plate 10 stick to the patient without allowing the device to move can be used. The adhesive part or layer can be fastened to the base plate 10 by glue, Velcro, molding or the like.


In a preferred embodiment the delivery part is fastened to the distal side of the base plate 10 by one or more magnets which are embedded in the base plate 10. The detachable delivery part has corresponding magnets which keeps the delivery part in position during use. By means of the magnets of the base plate 10 and/or the delivery part 3, 4 it will be possible to detect conditions of the system such as whether the delivery part is secured properly, if the flow through the device is acceptable, how long has the delivery part been fastened to the base plate, size of the volume which has passed the device, etc.



FIG. 4 shows the first embodiment in a separated state where it is possible to see the base plate 10 to which the injection part 1 is fastened, objects 11 for fastening of the delivery part to the base plate 10 and a flexible portion 12 of the base plate 10. In order to fastened the delivery part to the base part 10 the delivery part 3, 4 is pushed down towards the base part 10 from above. The flexible portion 12 is constructed of two thin connections formed as straight lines and made by removing material from the plane of the base part 10. This construction of the base part 10 together with the flexible tube 5 allows the subcutaneously injected cannula 9 to remain in a stationary position although the delivery part which is fastened to the opposite end of the base part 10 is touched or pushed or just moves as a result of the movements of the user.



FIG. 5 shows an enlargement of a part of the first embodiment of FIG. 4. FIG. 5 shows in greater detail how the cannula 9 is held in position by the body of the cannula part 1; the injection part is via the flexible tube 5 connected to the connector 2. The connector 2, which is fastened to the base part 10 on the same side of the base part 10 as the delivery part, is shown in a transparent form which makes it possible to see the connector needle 6. The connector 2 is preferably made of PP, ABS or similar materials.


In the first embodiment described in FIG. 1-5 one of the flexible areas between the delivery part 3, 4 and the injection part 1 is formed by the flexible tube 5. The flexible tube can be produced as a piece of extruded tube, and can be made of PUR (polyurethane), PP (polypropylene), PE (polyethylene), silicone or any other material which is adequately flexible or can be brought into a flexible form e.g. by providing the tube with folding.


The cannula 9 can together with the rest of the injection part be inserted subcutaneously either by the help of an inserter or manually.


The house 3 of the delivery part 3, 4 is made of a relatively hard material such as PP or ABS (Poly (Acrylo nitrile, Butadiene, Styrene)) which makes it possible for the house to resist impacts of the surroundings.



FIG. 6A shows a second embodiment of the device for delivering fluid according to the invention seen from the side facing the injection part. FIG. 6B shows the same embodiment seen from a cut through the device at the line B-B. FIG. 7 shows an enlargement of the section of the embodiment connecting the injection part to the delivery part 3, 4 through the connector 2. In FIGS. 6A, 6B and 7 the delivery part and the injection part are both connected to the base part 10 which is the state of the device when in use.


In the second embodiment the injection part 1 is connected to the delivery part 3, 4 by a flexible tube 5 which in this embodiment is formed as a bellows and preferably is made of silicone, PUR, PP/PE or the like. The flexible portions 12 of the base part 10 is formed as relatively thin V-shaped connections made by removing material from the plane of the base part 10. This embodiment is provided with sliding rails 11 acting as objects for fastening of the delivery part 3, 4 to the base part 10. In this embodiment the connector needle 6 is fastened to the delivery part 3, 4. The connector needle 6 penetrates a septum 7 when the delivery part is joined to the connector 2 and thereby creates a flow path from the reservoir 4 to the cannula 9.



FIGS. 8A and 8B shows the embodiment in a state where the delivery part 3, 4 is separated from the base part 10 which makes it possible to see the two sliding rails 11.


In FIG. 8B is shown an enlargement of the connector 2 of FIG. 8A. In this embodiment the connector 2 comprises a molded part in a non-flexible material with a through-going opening which in one end is connected to the flexible tube 5 and in the other end is provided with a septum 7. The flexibility of the flexible tube 5 can be obtained be using a soft and flexible material but in this embodiment the flexibility of the tube 5 is obtained by constructing the flexible tube 5 of a stable—that is a rather rigid—and corrugated material. The reservoir 4 is provided with a connector needle 6 and a cylindrical extension which extension protects the connector needle 6 and can be provided with a protective seal (not shown in FIG. 8B). In a state where the connector 2 is not connected to the reservoir 4, the connector needle 6 extends into a closed room comprising walls formed by the cylindrical extension of the reservoir 4 and possibly of a not shown elastic protective seal. In the connected state the protective seal if present is pushed towards the inside wall of the reservoir 4 surrounding the connector needle 6 and when connecting the connector 2 to the reservoir 4 the connector needle 6 first penetrates the protective seal and then the septum 7 in order to create a passage from the reservoir 4 to the inside of the connector 2. In this embodiment the connector 2 is fastened unreleasably to the base plate 10 which is an integrated part of the delivery part 3, 4.



FIGS. 9, 10A and 10B also show the device according to the second embodiment of the invention. FIG. 9 shows the delivery part 3, the base part 1 and the injection part and how they are positioned relatively to each other just before they are being joined and an arrow indicates the direction of movement when the delivery device 3, 4 is fastened to the objects 11 of the base part 10 in order to form a connection to the injection part 1. FIG. 10A shows the same embodiment as FIG. 8A from a different angle and FIG. 10B shows an enlargement of the connector 2, marked with a circle, of the embodiment in FIG. 10A. In this embodiment the cannula 9 protrudes laterally from the injector device and has been inserted perpendicularly to the users' skin. If the cannula 9 is made of a soft and flexible material it is necessary to use an insertion needle to penetrate the skin of the user. This can be done manually by providing the device with an insertion needle protruding through the proximal opening of the cannula 9. The sharp insertion needle exits from the proximal end of the cannula 9 and it is either entering the distal end of the cannula, e.g. through a septum covering the distal opening of the cannula 9, or it is entering the cannula through the side. In case the insertion needle enters the cannula 9 through the side it is necessary to provide the entering position with some kind of a closure in order to prevent micro organisms to enter the device when the insertion needle is removed after insertion. This embodiment of the device can be inserted with an inserter e.g. the inserter known from PCT application no. DK2005/050010 filed on Dec. 9, 2005. If the cannula was protruding from the proximal side of the injection part it could e.g. have been inserted with the inserter known from PCT application DK02/00640 filed on Sep. 27, 2002.



FIG. 11 illustrates an embodiment where the delivery part 3, 4 is placed on top of the injection part. In this embodiment the delivery part is fastened releasably to a portion of the base part 10 which surrounds the cannula part 1. The flexible portion 12 of the base plate 10 placed around the injection part is formed as a circular folded material which is either the same material as the central part of the injection part in a thinner form of a different material of a more soft or flexible nature. In FIG. 11 the delivery part 3, 4 and the injection part are joined together as they would be when the device is in use and a connection which allows for fluid to flow from the reservoir to the cannula 9 is formed. The left and the right versions show views of two different cuts along the lines D-D and E-E respectively at perpendicular angles through the device. In this embodiment the objects 11 for fastening of the delivery part 3, 4 to the injection part are formed as circular profiles standing upright from the base part 10 and having an outward projection which objects 11 fit with corresponding projections 13 on the delivery part. When the delivery part 3, 4 is to be fastened to the cannula part 1 two handle portions 14 are pushed together which makes the corresponding projection move outwards and allow the injection part to enter the central opening in the delivery part 3, 4. When the user let go of the handle portions 14 the corresponding parts return to the more central position and locks the cannula part 1 to the central opening of the delivery part 3, 4.


The delivery part 3, 4 is combined with a connector 2; the connector 2 has a through-going connector needle 6 and is influenced by a spring 15. When the user pushes the delivery part 3, 4 towards the injection part, the spring 15 is compressed and the through-going connector needle 6 is forced through a septum 8 protecting the content of the reservoir from being infected with micro organisms. At the same time or just before or afterwards the connector needle 6 will also be forced through a septum 7 protecting the access to the cannula 9 thereby forming a fluid connection between the not shown reservoir and the cannula 9. By choosing convenient materials for the spring 15, the septum 8 and other materials being in contact with the connector 2, it should be assured that there exists a flexible connection between the connector 2 and the delivery part 3, 4. Preferably the connector 2 is fastened to the spring 15 while the movement from one position to another is guided by the walls of the central extension of the delivery part 3, 4, and the septum 8 is made of a material which is adequately soft to assure that the connector 2 is flexibly connected to the delivery part 3, 4 when the device is in a connected state. In this embodiment the connector 2 does not have to be fastened to neither the delivery part 3, 4 nor the injector part 1, the connector 2 can be a separate unit which functions as an independent interface or it can be integrated with either the delivery part 3, 4 or the injection part.


In FIG. 12 the embodiment of FIG. 11 is shown in a state where the injection part is separated from the delivery part 3, 4 which leaves the spring 15 in a relaxed and extended state. In this state the through-going connector needle 6 has neither penetrated the septum 8 of the delivery part 3, 4 or the septum 7 of the cannula part 1.



FIG. 13 shows the embodiment of FIGS. 11 and 12 in a three dimensional form. The delivery part 3, 4 and the injection part 1 joined to the base part 10 are shown from the sides where the two parts correspond to each other when joined.


The embodiment shown in FIG. 11-13 can be inserted with an inserter of the type known from PCT application DK02/00640 filed on Sep. 27, 2002. After insertion of the injection part, the user fastened the base part 10 to the skin. With the injection part in position the user can then fastened the delivery part comprising at least one reservoir and transferring means e.g. in the form of a pump to the injection part 1. If the connector 2 has the form of a separate interface the connector should be placed before the delivery part 3, 4 is fastened to the injection part and the connector will then provide for a proper fitting between the chosen injection part and the chosen delivery part 3, 4.


When introducing the flexible areas as described in FIGS. 1-13 and as claimed it will be possible to move the releasable delivery part 3, 4 in all dimensions within certain boundaries defined by the size of the used parts as it will be possible to pull, push, lift and move the delivery part 3, 4 side wards without influencing the cannula 9 and disturbing the insertion site which would normally result in discomfort to the patient.


All the embodiments containing is fastened to the patients skin and this is normally done by applying a mounting pad adhered to the proximal side of the base part 10 or to the proximal side of the infusion part if the embodiment is not provided with a base part 10. The adhering of the mounting pad to the base part 10 or infusion part 1 can include glue, Velcro, molding etc.



FIG. 14 shows an embodiment of the invention according to which it is possible to assure a fluid tight transferal of fluid from the reservoir in the delivery part 3, 4 to the cannula 9 of the cannula part 1 and thereby to the patient.


In FIG. 14 “A” shows the device comprising both the delivery part 3, 4 and the injection part including the cannula part 1 seen from the side in a three dimensional form, “B” shows the delivery part 3, 4 from below in a three dimensional form and “C” shows the injection part seen from above in a three dimensional form.



FIG. 15 shows the same embodiment as in FIG. 14 and is a side view of the cut illustrated by the line V-V. In FIG. 15 the delivery part 3, 4 and the injection part are separated and the connector needle 6 is protected by a downward septum 8b preventing bacteria to enter the reservoir from this end. The septum 8a protecting the entrance of the reservoir is penetrated by the other end of the connector needle 6. In FIG. 15 the reservoir 4 is shown positioned above the connector needle 6 and above the reservoir 4 is a reservoir lid 4a shown. The reservoir lid 4a can be removed when e.g. an ampoule constituting the reservoir 4 has to be changed. In this embodiment the reservoir 4 has flexible walls and is surrounded by a ring 16 with which it is possible to reduce the volume of the reservoir and thereby pump fluid from the reservoir 4 to the patient. In this embodiment the cannula part 1 is also provided with an entrance septum 7 and with objects 11 for fastening of the delivery part 3, 4 to the injection part formed as a circular profile standing upright from the base plate 10 and being integrated with the outer surface of the housing of the injection part 1. The outward projection of the objects 11 fit with corresponding projections 13 on the delivery part 3, 4. When the delivery part 3, 4 is to be fastened to the injection part the two handle portions 14 are pushed together forcing the corresponding projections 13 outwards and allowing the injection part to enter the central opening in the delivery part 3, 4. When the user let go of the handle portions 14 the corresponding parts 13 return to the more central position and locks the injection part to the central opening of the delivery part 3, 4. In this embodiment the cannula part 1 can be made of a non-rigid material in order to provide a flexible part whose increased flexibility assures that the movements of the delivery part 3, 4 is not transferred to the cannula 9.



FIG. 16 shows the same embodiment as in FIGS. 14 and 15 but in FIG. 16 the delivery part 3, 4 and the injection part are joined together as they would be during use. In this position the connector needle 6 has penetrated all three septa 8a, 8b and 7 and has created a fluid connection between the reservoir 4 and the injection part.



FIG. 17 shows an exploded view of an embodiment of a device comprising a second fluid tight connection between the reservoir of the delivery part 3, 4 and the injection part. This embodiment comprises a delivery part comprising a pump and a reservoir, a first spring 15, an upper packing 17, a lower packing 18, a second spring 19, and an injection part comprising a cannula part 1 including a cannula 9, an insertion needle 20, an outer wall 26 and a mounting pad 21. Further the outward surface of the delivery part, the cover or house 3, is provided with grooves 24 and the outward surface of the outer wall 26 of the injection part is provided with corresponding tongues 25.


In FIG. 18 it is shown how the individual parts of the embodiment in FIG. 17 works together. In this figure the insides of the injection part and the delivery part 3, 4 are illustrated. In FIG. 18 is shown a possible placement of the reservoir 4 in the delivery part 3 and an outlet pipe 22 from the reservoir 4. At the outlet end, in FIG. 18 the lowest end, the outlet pipe 22 is provided with a sideway directed opening and a packing which packing assures fluid tight contact between the wall of the central part of the cannula part 1 and the outlet of the outlet pipe 22. The inside of the cannula part 1 comprises a through-going fluid path 23 with an inlet opening sideways through the upright wall of the central part of the injection part. In order to provide a flexible part the cannula part 1 and the outer wall 26 can be made of a resilient or non-rigid material. The degree of elasticity which is desired will depend on the physical appearance of the delivery device i.e. size and weight.


In a first position the delivery part comprising the reservoir 4 and the pump is retracted from the injection part, the first spring 15 is extended and the outlet from the outlet pipe 22 is blocked by the wall of the central part of the injection part i.e. the cannula part 1. The lower packing 18 is in a high position where it blocks the inlet of the fluid path 23 and the second spring 19 is extended.


In a second position the delivery part 3, 4 is pushed towards the injection part and both the first spring 15 and the second spring 19 are compressed. The lower packing 18, which in the first position functions as a barrier for bacteria, is pushed down by the lower edge of the delivery part 3, 4 and thereby opens the inlet of the fluid path 23. When the tongues 25 of the injection part touch the upper side of the grooves 24 of the delivery part 3, 4 the downward movement of the delivery part stop and in this position the opening of the outlet pipe 22 corresponds to the inlet of the fluid path 23.



FIG. 19 shows an embodiment of a fluid tight connection between the reservoir and the injection part. In this embodiment the flexible part can be provided by elastic “bubbles” 26 and 27. This device comprises a delivery part 3, 4 e.g. as shown in FIG. 1-10 but only the reservoir 4 is shown in FIG. 19. The device is constructed of a reservoir where the outlet is covered by a bubble shaped deformable membrane 26; this membrane prevents that micro organisms access the reservoir when the delivery part is not joined to the injection part 1. That the membrane is bubble shaped means that the membrane not has flat inner and outer surfaces but has convex inner and outer surfaces, and that the membrane does not only cover the tip of the connector needle 6 but covers a larger part of the connector needle 6. The inlet of the injection part 1 is also covered by a deformable bubble shaped membrane 27. In this embodiment the connector needle 6 is fastened to the injection part 1 but the connector needle 6 could also be fastened to the delivery part 3, 4, if the connector needle 6 is fastened to the delivery part it is necessary to provide the combined device with two needles: a connector needle 6 and a cannula 9. If the device is provided with a connector needle 6 separate from the cannula 9 it is possible to use a soft cannula.



FIG. 19A shows a three dimensional view of the device in a state where the delivery part 3, 4 and the injection part 1 are separated and fluid can not flow between the two parts. FIG. 19B shows the same state as FIG. 19A but seen from a vertical cut through the device. In FIG. 19C the delivery part 3, 4 and the injection part 1 has been pushed together and the fluid of the reservoir 4 can now flow through the injection part 1 and the cannula 9 to the patient. When the two membranes are pushed together membranes are deformed and the pointy connector needle 6 penetrates both membranes and forms a fluid connection, it is possible to form each of the bubble shaped membranes 26 and 27 with a varying hardness in order to control where it is desirable to penetrate the membranes by using the varying hardness to shape a base for the least deformable membrane when it is pushed against the most deformable membrane.


The membranes 26 and 27 can be made of silicone or polyurethane (PUR) or other soft polymers which can be penetrated by a needle but not by micro organisms.


The connector needle 6 is made of a relatively hard material such as metal or a hard polymer, “a relatively hard material” means that the material should at least have the strength, i.e. be hard enough, to penetrate the membranes 26 and 27.


In the embodiment of FIGS. 19A, B and C the connector needle 6 is one end of a single needle which at the other end functions as the cannula 9. When the connector needle 6 and the cannula is formed as one needle it will normally be made of metal or hard polymer but it can also be made of e.g. a polymer which is hardened in the connector end and unhardened and soft in the cannula end. Also the single needle can be composed of two different materials, a hard material for the connector end and a relatively soft material for the cannula end.


It is also possible to separate the connector needle 6 and the cannula 9 and produce the device according to the invention with two needles. The injector part 1 can then be provided with a commonly known soft cannula which cannula can be inserted by the help of an insertion needle attached to a separate inserter, and the connector needle 6 is made of a hard material and fastened to either the injector part 1 or the delivery part 3, 4.


In this embodiment the single needle is bend, i.e. the connector needle 6 points in a direction parallel to the patients skin while the cannula 9 points in a direction perpendicular to the patients skin. According to the present invention the connector needle 6 can point in any direction parallel or away from the patient and the cannula 9 can point in any direction according to which the cannula can be inserted into the patient's skin.


The device according to the invention can be used in connection with all kinds of medicaments and all kind of conditions where patients can benefit from a continuous intake of a drug product; preferably it is the intention to provide patients suffering from diabetes with a secure and easy-to-handle device which can provide the patient with continuously regulated doses of insulin.


In one embodiment the reservoir is divided into several separate chambers where each chamber can be provided with different drug products or e.g. an active drug substance in one chamber and a solvent in another chamber, the different chambers can contain drugs of different concentrations or drugs with different active substances.



FIG. 20-25 show an embodiment of the invention where the connector 2 has been placed in a central position of the base plate 10 and the cannula part 1b is fastened to a peripheral part of the base plate 10. The peripheral placement of the cannula part 1b makes it possible for the user to observe the injection site. Further the cannula part of this embodiment is arranged in such a way that the cannula 9 is to be injected at an angle A deviating from 90° in relation to the distal surface of the base plate 10, normally the angle A will be between 110° and 170° where the distal surface of the base plate 10 form one side of the angle and the inserted cannula 9 form the other side of the angle.


In this embodiment the flexible part is integrated in the base plate 10 by providing a flexible portion 12 constructed from the base plate 10 and formed like four spokes in a wheel. It is possible to vary the elasticity of the flexible portions 12 by varying the width of the portions 12, the thickness of the base plate material 10 or the number of portions 12 (spokes).


The cannula part is a two-part unit comprising a first part 1a which is fastened unreleasably to the base plate 10 and a second part 1b comprising a body providing a through-going opening leading liquid to the cannula 9 which cannula 9 extends at the proximal side of the base plate 10 after insertion. The cannula part 1a, 1b partly forms the fluid connection between the patient and the reservoir 4.


It is possible to position this embodiment on the skin of the patient applying at least two different methods. According to one method the base plate 10 comprising the first part 1a is first positioned on the skin of the patient and thereafter the cannula-holding second part 1b of the cannula part 1 is injected e.g. with an especially adapted inserter, this method makes it possible for the user to exercise more care when positioning the base plate 10 which is normally equipped with an adhesive pad. According to a second method the base plate 10 comprising both the first part 1a and the cannula-holding second part 1b is injected all together with an inserter adapted to hold the entire device, this method comprises one less mounting step compared to the earlier described method.


In this embodiment the first part 1a is provided with inward projecting parts 1c and the second part 1b is provided with outward projecting, pivotably fastened hooks 1d. When the second part 1b is positioned in the first part 1a, the outward projecting hooks 1d are first pushed outward by the inward projecting parts 1c and after having passed the projecting parts 1c, the projecting hooks 1d return to their original position and locks the first part 1a inside the second part 1a.


The base plate 10 is provided with three upright positioned objects 11 for fastening of the delivery part 3, 4 to the base plate 10; the numbers of objects 11 are optional and the objects 11 can be either molded together with the base plate 10 or fastened to the base plate 10 after the base plate 10 has been formed e.g. by gluing or welding. The objects 11 are provided with sliding grooves 11a which sliding grooves 11a define the direction in which to move the delivery part 3, 4 when securing the delivery part 3, 4 to the base plate 10. The sliding grooves 11a correspond to protruding parts 1b on the delivery part 3, 4. In this embodiment the sliding grooves 11a are not parallel with the surface of the base plate 10 but differs in an angle B: 0°<B<45° where one side of the angle B is the distal surface of the base plate 10 and the other side of the angle B is the distal edge of the sliding grooves 11a. The angle B—together with the round shape of the delivery part 3, 4 and the central position of the connector 2—makes it possible to screw the delivery part 3, 4 on to the base plate 10.


The connector 2 is constructed of a molded body fastened unreleasably to the base plate 10 and provided with an interior compartment to which access is protected by a septum 7. The septum 7 is penetrated by the connector needle 6 when the delivery part 3, 4 is fastened to the base plate 10. From the lower part of the interior compartment and opening 5a allows fluid to enter into the flexible tube 5 and pass onto the patient through the cannula 9. The flexible tube 5 is connected to the first part 1a of the injection part and when the second part 1b of the cannula part is positioned in the first part 1a a fluid path is created from the flexible tube 5 to the cannula 9.


The reservoir 4 of the shown embodiment will normally hold between 0.5-3 ml of fluid for transferal to the patient.



FIG. 26-29 shows an embodiment of the invention where the connector needle 6 is inserted directly into the injection part i.e. there is no separate connection part. The cannula part 1 is placed in a central position of the base plate 10 and therefore it is not possible for the user to observe the injection site.


In this embodiment the flexible portion 12 is also constructed from the base plate 10 and formed like four spokes in a wheel.


The cannula part 1 is one unit comprising a molded body with an interior compartment. The interior compartment can be accessed through the protective seal 7 by the connector needle 6 when the delivery part including the reservoir 4 is placed in correct position. From the interior compartment fluid can be channeled out through the cannula 9.


The base plate 10 is like the embodiment of FIG. 20-25 provided with three upright positioned objects 11 for fastening of the delivery part 3, 4 to the base plate 10; the numbers of objects 11 are optional.


In the embodiment of FIG. 26-29 the base plate 10 is placed on the skin of the patient simultaneously with injection of the cannula 9 of the injection part and the cannula 9 is inserted in a 90° angle. In order to insert the device an inserter of the type shown in EP 1 429 826 can be used.



FIG. 30-32 shows an embodiment of the invention which as the embodiment of FIG. 26-29 is without a separate connector. The cannula part 1a, 1b is placed in a central position of the base plate 10 and therefore it is not possible for the user to observe the injection site.


In this embodiment the flexible portion 12 is also constructed from the base plate 10 and formed like four spokes in a wheel.


The cannula part is a two-part unit comprising a first part 1a which is fastened unreleasably to the base plate 10 and a second part 1b comprising the cannula 9. According to this embodiment the base plate 10 is positioned on the skin of the patient first and then the cannula-holding part 1b of the cannula part is injected in the allocated position. Like the embodiment shown in FIG. 20-25 the first part 1a of this embodiment is provided with inward projecting parts 1c and the second part 1b is provided with outward projecting and pivotably fastened hooks 1d which corresponding parts can lock the second part 1b in the desired position.



FIG. 33-36 shows an embodiment of the invention where the cannula part 1 is fastened to a peripheral part of the base plate 10 from which position it is possible to perform an angled injection and thereby making it possible for the user to observe the injection site. In this embodiment the cannula part is of the two-part type comprising a first part 1a which is fastened unreleasably to the base plate 10 and a second part 1b comprising the cannula 9. The first part 1a is provided with inward projecting parts 1c and the second part 1b is provided with outward projecting and pivotably fastened hooks 1d.


The flexible portion 12 of this embodiment is also constructed from the base plate 10 but here the flexible portion 12 is formed like a lattice. According to this embodiment it is also possible to vary the flexibility of the flexible portions 12 by varying the width of the portions 12, the thickness of the base plate material 10 or the number of portions i.e. bars 12.


The base plate 10 is provided with two upright positioned objects 11 for fastening of the delivery part 3, 4 to the base plate 10; the numbers of objects 11 are optional and the objects 11 can be either molded together with the base plate 10 or fastened to the base plate 10 after the base plate 10 has been formed e.g. by gluing or welding. The objects 11 are provided with sliding grooves 11a which sliding grooves 11a define the direction in which to move the delivery part 3, 4 when securing the delivery part 3, 4 to the base plate 10. In this embodiment each object 11 is provided with two sliding grooves 11a, and each sliding groove 11a is inclined in an angle B: 0°<B<90°. The sliding grooves 11a correspond to protruding parts 11b on the delivery part 3, 4. The interaction between the sliding grooves 11a of the base plate 10 and the protruding parts 11b of the delivery part 3 assures correct insertion of the connector needle 6 through the protective seal 7 of the injection part 1b as the delivery part 3 moves along a well defined path during fastening to the base plate 10.


Generally when the cannula part 1 is constructed of a two-part unit 1a, 1b the method for fastening the device to the skin of the patient will comprise the following step:

    • If the base plate 10 is provided with an adhesive surface e.g. unreleasably combined to an adhesive pad, the adherent side of the base plate 10 is exposed e.g. by removing a release liner,
    • the base plate 10 comprising a part of the injection part 1a is positioned on the skin of the patient,
    • a second part of the injection part 1b is inserted into the position defined by the first part 1a, normally by use of an insertion device which could be a multi-use insertion device or a single-use insertion device,
    • the delivery part 3 is positioned on top of the base plate 10.



FIGS. 37-39 show an embodiment of the invention where the cannula part 1 has been placed in a central position of the base plate 10 of the injection part. The base plate 10 is in this embodiment constructed as three flexible portions 12 which are formed e.g. molded together with the cannula part 1 and unreleasably attached to the mounting pad 21 which pad also provides a certain degree of stability to the injection part. The portions 12 are relatively flat i.e. there height is smaller than there width and they are made of a material which provides the injection part with a structure of the desired flexibility.


It is possible to vary the elasticity of the flexible portions 12 by varying the number of the portions 12 and the width and thickness of the portions 12.


The cannula part 1 comprises a body providing a through-going opening leading liquid to a not shown cannula 9 which cannula 9 extends at the proximal side of the injection part after insertion, i.e. the cannula part 1 partly forms the fluid connection between the patient and the reservoir 4. The cannula part 1 is also provided with a round-going upright wall 11 which in this embodiment constitutes the fastening means for the delivery device 3.


The delivery part and the injection part of this embodiment are joined by just pressing the two parts together.



FIG. 40 shows another embodiment of the injection part without the mounting pad where the delivery part is fastened to the injection part both by turning the delivery part down on the central cannula part and by clicking it on to the peripheral upright objects 11. The peripheral objects 11 will secure the delivery part in a position close to the skin of the user.


In this embodiment the flexible portion 12 is constructed from the base plate 10 and formed like three spokes in a wheel.


The cannula part 1 is one unit comprising a molded body with an interior compartment. The interior compartment can e.g. be accessed through a protective seal by a connector needle when a delivery part including a house 3 and the reservoir 4 is placed in correct position.


The base plate 10 is like the embodiment of FIG. 20-25 provided with three upright positioned objects 11 for fastening of the delivery part 3, 4 to the base plate 10; and further the outside wall of the cannula part 1 is provided with sliding grooves 11a which sliding grooves 11a define the direction in which to move the delivery part 3, 4 when securing the delivery part 3, 4 to the base plate 10. The sliding grooves 11a correspond to protruding parts on the delivery part 3, 4. When the delivery part reaches the base plate 10 the upright peripheral parts 11 are pivoted outwards and the delivery part reaches its end position with a clicking sound as the upright peripheral parts 11 pivot back in upright position. The snap lock provided by the corporation between the delivery part and the peripheral parts 11 also keeps the device close to the skin of the user.



FIGS. 41
a-b show different embodiments of the house 3 of the delivery part.

Claims
  • 1. A device for delivering fluid which before injection comprises three separate parts: an injection part, a cannula part and a fluid delivery part and after injection the device comprises two separable parts: an injection part and a fluid delivery part as the cannula part is attached to the injection part when inserted into a subcutaneous position; the fluid delivery part comprising a reservoir, a pump and a housing,the injection part further comprises a base plate, the base plate comprises an adhesive portion for fixation of the base plate to the skin of the user, the base plate further comprising a connector for releasably connecting the fluid delivery part to the base plate such that the fluid delivery part is separable from the base plate during use, the connector extending from a distal side of the base plate, the base plate further comprising a surface on the distal side corresponding to an inserter device for the cannula part for attaching the cannula part to the injection part; andthe cannula part is before injection placed in a separate inserter device and comprises a body and a cannula, the cannula is made of a soft material and configured to be inserted by an injection needle of the inserter device, the body providing a through-going opening configured to lead liquid to the cannula, the cannula part configured to be inserted into and attached to the base plate after the base plate has been positioned on the skin of the patient, the cannula part comprising a cannula part locking mechanism configured to attach the cannula part to the base plate independent of the fluid delivery part, the cannula extending past a proximal side of the base plate after injection of the cannula into a use position,wherein the device further comprises a flexible tube connecting the connector of the injection part at one end and the body of the cannula part at a second end to provide fluid communication between the reservoir and cannula.
  • 2. A device according to claim 1, wherein the base plate is constructed either partially or completely from a flexible material.
  • 3. A device according to claim 1, wherein the body of the cannula part is constructed either partially or completely from a flexible material.
  • 4. A device according to claim 1, wherein the housing of the fluid delivery part also provides a housing for the injection part.
  • 5. A device according to claim 1, wherein the cannula and the delivery part are not interconnected by non-flexible areas.
  • 6. A device according to claim 1, wherein a fluid tight connection leading fluid from the reservoir to the cannula is formed when the delivery part and the injection part are joined together.
  • 7. A device according to claim 6, comprising a sealing member configured to seal an opening of the reservoir to prevent access of micro organisms to the reservoir of the fluid delivery part during periods when the fluid delivery part and the injection part are separated.
  • 8. A device according to claim 7, wherein the reservoir has two positions, a first position wherein an outlet from the reservoir is blocked with a first barrier which is not permeable for microorganisms and an inlet of the through-going opening in the cannula part is blocked with a second barrier which is not permeable for microorganisms, and a second position wherein an open fluid connection is formed between the reservoir and the through-going opening in the cannula part.
  • 9. A device according to claim 8, wherein one or both of the barriers comprise a material which can be penetrated by a needle-like object where an opening formed in the material re-closes on retraction of the needle-like object.
  • 10. A device according to claim 9, characterized in that the needle-like object is blunt.
  • 11. A device according to claim 9, characterized in that the needle-like object is sharp-pointed.
  • 12. A device according to claim 8, wherein one or both of the barriers comprise a hard surface which is moved forming an opening in an area positioned between an outlet of an outlet pipe and the inlet of the through-going fluid path.
  • 13. A device according to claim 1, wherein the adhesive portion for fixation of the base plate to the skin of the user comprises a mounting pad adhered to the proximal side of the base plate or to a proximal side of the cannula part.
  • 14. A device according to claim 1, wherein the base plate comprises a lattice with a peripheral coherent part and one or more bars interconnecting the peripheral part.
  • 15. A device according to claim 14, wherein the base plate has a round or oval peripheral part and the bars have one end attached to the peripheral area and a second end attached to a central area.
  • 16. A device according to claim 14 wherein the base plate has three or more bars.
  • 17. A device according to claim 1, wherein the cannula comprises a cannula housing having a first end including solid walls and a protective seal protecting the entrance to the cannula.
  • 18. A device according to claim 1, wherein the base plate comprises a first part of a cannula part configured to position a second part comprising the cannula.
  • 19. A device according to claim 18, wherein the first part of the cannula part comprises the locking mechanism and the locking mechanism is configured to releasably lock the second part to the base plate in a desired position.
  • 20. The device according to claim 1, wherein the base plate comprises a through opening, the cannula part comprising the cannula is insertable into the opening and allows for the injection needle of the inserter device to be removed from the injection part.
  • 21. The device according to claim 1, wherein the cannula is inserted with the inserter device provided with a surface corresponding to the surface of the base plate and an inserter device connector, wherein connection of the inserter device connector to the base plate connector positions the inserter device so that the cannula including a body providing a fluid pathway to the cannula is inserted in correct relation to the base plate.
  • 22. The device according to claim 1, wherein the base plate comprises a connector needle, the connector needle configured to penetrate a protective seal covering an entrance of a connector hub and a septum covering an entrance of a reservoir of the delivery part.
  • 23. The device according to claim 22, wherein the protective seal comprises a deformable bubble-shaped membrane.
  • 24. The device according to claim 23, wherein the reservoir and the deformable membrane are configured to be pushed together so that the deformable membrane is deformed and the connector needle penetrates the membrane and forms a fluid connection.
Priority Claims (1)
Number Date Country Kind
2006 00103 Jan 2006 DK national
Parent Case Info

This application claims the benefit under 35 U.S.C. §371 of International Application No. PCT/DK2006/000737, filed Dec. 22, 2006, which claims the benefit of U.S. Provisional Application Ser. No. 60/753,684, filed Dec. 23, 2005, Danish Patent Application No. PA 2006 00103, filed Jan. 24, 2006, and U.S. Provisional Application Ser. No. 60/762,231, filed Jan. 25, 2006 and 60/816,767, filed Jun. 27, 2006. These references are incorporated herein in their entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/DK2006/000737 12/22/2006 WO 00 11/26/2008
Publishing Document Publishing Date Country Kind
WO2007/071255 6/28/2007 WO A
US Referenced Citations (563)
Number Name Date Kind
1592462 MacGregor Jun 1926 A
2047010 Dickinson Jun 1936 A
2295849 Kayden Sep 1942 A
2690529 Lindblad Sep 1954 A
2972779 Cowley Feb 1961 A
3059802 Mitchell Oct 1962 A
3074541 Roehr Jan 1963 A
3149186 Coanda Sep 1964 A
3221739 Rosenthal Dec 1965 A
3221740 Rosenthal Dec 1965 A
3306291 Burke Feb 1967 A
3485352 Pilger Dec 1969 A
3509879 Bathish et al. May 1970 A
3519158 Anderson Jul 1970 A
3547119 Hall et al. Dec 1970 A
3575337 Bernhardt Apr 1971 A
3610240 Harautuneian Oct 1971 A
3615039 Ward Oct 1971 A
3670727 Reiterman Jun 1972 A
3783895 Weichselbaum Jan 1974 A
3788374 Saijo Jan 1974 A
3810469 Hurschman May 1974 A
3835862 Villari Sep 1974 A
3840011 Wright Oct 1974 A
3893448 Brantigan Jul 1975 A
3937219 Karakashian Feb 1976 A
3986507 Watt Oct 1976 A
3986508 Barrington Oct 1976 A
3995518 Spiroff Dec 1976 A
4022205 Tenczar May 1977 A
4188950 Wardlaw Feb 1980 A
4201406 Dennehey et al. May 1980 A
4227528 Wardlaw Oct 1980 A
4259276 Rawlings Mar 1981 A
4267836 Whitney et al. May 1981 A
4296786 Brignola Oct 1981 A
4315505 Crandall et al. Feb 1982 A
4333455 Bodicky Jun 1982 A
4334551 Pfister Jun 1982 A
D267199 Koenig Dec 1982 S
4378015 Wardlaw Mar 1983 A
4402407 Maly Sep 1983 A
4415393 Grimes Nov 1983 A
4417886 Frankhouser et al. Nov 1983 A
4464178 Dalton Aug 1984 A
4473369 Lueders et al. Sep 1984 A
4484910 Sarnoff et al. Nov 1984 A
4500312 McFarlane Feb 1985 A
4508367 Oreopoulos et al. Apr 1985 A
4525157 Vaillancourt Jun 1985 A
4530695 Phillips et al. Jul 1985 A
4531937 Yates Jul 1985 A
4543088 Bootman et al. Sep 1985 A
4563177 Kamen Jan 1986 A
4610469 Wolff-Mooij Sep 1986 A
4617019 Fecht Oct 1986 A
4713059 Bickelhaupt et al. Dec 1987 A
4734092 Millerd Mar 1988 A
4755173 Konopka et al. Jul 1988 A
4817603 Turner et al. Apr 1989 A
RE32922 Levin et al. May 1989 E
4838871 Luther Jun 1989 A
4840613 Balbierz Jun 1989 A
4850974 Bickelhaupt et al. Jul 1989 A
4850996 Cree Jul 1989 A
4863016 Fong et al. Sep 1989 A
4878897 Katzin Nov 1989 A
4890608 Steer Jan 1990 A
4894054 Miskinyar Jan 1990 A
4895570 Larkin Jan 1990 A
4917669 Bonaldo Apr 1990 A
4935010 Cox et al. Jun 1990 A
4950163 Zimble Aug 1990 A
4950252 Luther et al. Aug 1990 A
4956989 Nakajima Sep 1990 A
4970954 Weir et al. Nov 1990 A
4978338 Melsky et al. Dec 1990 A
4982842 Hollister Jan 1991 A
4986817 Code Jan 1991 A
4994042 Vadher Feb 1991 A
4994045 Ranford Feb 1991 A
5011475 Olsen Apr 1991 A
5020665 Bruno Jun 1991 A
5024662 Menes et al. Jun 1991 A
5067496 Eisele Nov 1991 A
5092853 Couvertier, II Mar 1992 A
5098389 Cappucci Mar 1992 A
5112313 Sallee May 1992 A
5116319 Van den Haak May 1992 A
5116325 Paterson May 1992 A
5121751 Panalletta Jun 1992 A
5129884 Dysarz Jul 1992 A
5135502 Koenig, Jr. et al. Aug 1992 A
5137516 Rand et al. Aug 1992 A
5137524 Lynn et al. Aug 1992 A
5141496 Dalto et al. Aug 1992 A
5147375 Sullivan et al. Sep 1992 A
5163915 Holleron Nov 1992 A
5172808 Bruno Dec 1992 A
5176643 Kramer et al. Jan 1993 A
5176650 Haining Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5186712 Kelso et al. Feb 1993 A
5188611 Orgain Feb 1993 A
RE34223 Bonaldo Apr 1993 E
5205820 Kriesel Apr 1993 A
5222947 D'Amico Jun 1993 A
5232454 Hollister Aug 1993 A
5248301 Koenig et al. Sep 1993 A
5256149 Banik et al. Oct 1993 A
5256152 Marks Oct 1993 A
5257980 Van Antwerp et al. Nov 1993 A
5267963 Bachynsky Dec 1993 A
5269799 Daniel Dec 1993 A
5271744 Kramer et al. Dec 1993 A
5279579 D'Amico Jan 1994 A
5279591 Simon Jan 1994 A
5282793 Larson Feb 1994 A
5300030 Crossman et al. Apr 1994 A
5312359 Wallace May 1994 A
5312369 Arcusin et al. May 1994 A
5316246 Scott et al. May 1994 A
5324302 Crouse Jun 1994 A
5342319 Watson et al. Aug 1994 A
5342324 Tucker Aug 1994 A
5344007 Nakamura et al. Sep 1994 A
5350392 Purcell et al. Sep 1994 A
5354280 Haber et al. Oct 1994 A
5354337 Hoy Oct 1994 A
5366469 Steg et al. Nov 1994 A
5372592 Gambale Dec 1994 A
5372787 Ritter Dec 1994 A
5376082 Phelps Dec 1994 A
5379895 Foslien Jan 1995 A
5384174 Ward et al. Jan 1995 A
5387197 Smith et al. Feb 1995 A
5390669 Stuart et al. Feb 1995 A
5391151 Wilmot Feb 1995 A
5403288 Stanners Apr 1995 A
5405332 Opalek Apr 1995 A
5425715 Dalling et al. Jun 1995 A
5429607 McPhee Jul 1995 A
5429613 D'Amico Jul 1995 A
5439473 Jorgensen Aug 1995 A
D362718 Deily et al. Sep 1995 S
5449349 Sallee et al. Sep 1995 A
5451210 Kramer et al. Sep 1995 A
5478316 Bitdinger et al. Dec 1995 A
5490841 Landis Feb 1996 A
5501675 Erskine Mar 1996 A
5505709 Funderburk et al. Apr 1996 A
5507730 Haber et al. Apr 1996 A
5514117 Lynn May 1996 A
5520654 Wahlberg May 1996 A
5522803 Teisson-Simony Jun 1996 A
5527287 Miskinyar et al. Jun 1996 A
5533974 Gaba Jul 1996 A
5540709 Ramel Jul 1996 A
5545143 Fischell Aug 1996 A
5545152 Funderburk et al. Aug 1996 A
5549577 Siegel et al. Aug 1996 A
5554130 McDonald et al. Sep 1996 A
5558650 McPhee Sep 1996 A
5562629 Haughton et al. Oct 1996 A
5562636 Utterberg Oct 1996 A
5573510 Isaacson Nov 1996 A
5575777 Cover et al. Nov 1996 A
5584813 Livingston et al. Dec 1996 A
5586553 Halili Dec 1996 A
5591188 Waisman Jan 1997 A
5599309 Marshall et al. Feb 1997 A
5599315 McPhee Feb 1997 A
5599318 Sweeney et al. Feb 1997 A
5628765 Morita May 1997 A
5643214 Marshall Jul 1997 A
5643216 White Jul 1997 A
5643220 Cosme Jul 1997 A
5658256 Shields Aug 1997 A
5662617 Odell et al. Sep 1997 A
5665071 Wyrick Sep 1997 A
5665075 Gyure et al. Sep 1997 A
5676156 Yoon Oct 1997 A
5681323 Arick Oct 1997 A
5695476 Harris Dec 1997 A
5697907 Gaba Dec 1997 A
5700250 Erskine Dec 1997 A
5702371 Bierman Dec 1997 A
5704920 Gyure Jan 1998 A
5709662 Olive et al. Jan 1998 A
5714225 Hansen et al. Feb 1998 A
5738641 Watson et al. Apr 1998 A
5741288 Rife Apr 1998 A
5752923 Terwilliger May 1998 A
5807316 Teeple Sep 1998 A
5807348 Zinger et al. Sep 1998 A
5810835 Ryan et al. Sep 1998 A
5817058 Shaw Oct 1998 A
5820598 Gazza et al. Oct 1998 A
5827236 Takahashi Oct 1998 A
5833666 Davis et al. Nov 1998 A
5843001 Goldenberg Dec 1998 A
5848990 Cirelli et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5865806 Howell Feb 1999 A
5899886 Cosme May 1999 A
5911705 Howell Jun 1999 A
5913846 Szabo Jun 1999 A
5916199 Miles Jun 1999 A
5919167 Mulhauser et al. Jul 1999 A
5919170 Woessner Jul 1999 A
5925032 Clements Jul 1999 A
5935109 Donnan Aug 1999 A
5947931 Bierman Sep 1999 A
5947935 Rinehart et al. Sep 1999 A
5951523 Osterlind et al. Sep 1999 A
5954643 VanAntwerp et al. Sep 1999 A
5957892 Thorne Sep 1999 A
5957897 Jeffrey Sep 1999 A
5968011 Larsen et al. Oct 1999 A
5971966 Lav Oct 1999 A
5975120 Novosel Nov 1999 A
5980488 Thorne Nov 1999 A
5980506 Mathiasen Nov 1999 A
5984224 Yang Nov 1999 A
5984897 Peterson et al. Nov 1999 A
D417733 Howell et al. Dec 1999 S
6017328 Fischell et al. Jan 2000 A
6017598 Kreischer et al. Jan 2000 A
D421119 Musgrave et al. Feb 2000 S
6024727 Thorne et al. Feb 2000 A
6039629 Mitchell Mar 2000 A
6042570 Bell et al. Mar 2000 A
6045533 Kriesel et al. Apr 2000 A
6045534 Jacobsen et al. Apr 2000 A
6050976 Thorne et al. Apr 2000 A
6053893 Bucher Apr 2000 A
6053930 Ruppert Apr 2000 A
6056718 Funderburk et al. May 2000 A
6056726 Isaacson May 2000 A
6074369 Sage et al. Jun 2000 A
6074371 Fischell Jun 2000 A
6077244 Botich et al. Jun 2000 A
6079432 Paradis Jun 2000 A
6086008 Gray et al. Jul 2000 A
6086575 Mejslov Jul 2000 A
6090068 Chanut Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6093179 O'Hara et al. Jul 2000 A
6099503 Stardella Aug 2000 A
6105218 Reekie Aug 2000 A
6106498 Friedli et al. Aug 2000 A
6120482 Szabo Sep 2000 A
6123690 Mejslov Sep 2000 A
6132755 Eicher et al. Oct 2000 A
6139534 Niedospial, Jr. Oct 2000 A
6159181 Crossman et al. Dec 2000 A
6183464 Sharp et al. Feb 2001 B1
6191338 Haller Feb 2001 B1
6193694 Bell et al. Feb 2001 B1
6210420 Mauze et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6221058 Kao et al. Apr 2001 B1
6248093 Moberg Jun 2001 B1
6293925 Safabash et al. Sep 2001 B1
6302866 Marggi Oct 2001 B1
6319232 Kashmer Nov 2001 B1
6322535 Hitchins et al. Nov 2001 B1
6322808 Trautman et al. Nov 2001 B1
6334856 Allen et al. Jan 2002 B1
6355021 Nielsen et al. Mar 2002 B1
6364113 Faasse et al. Apr 2002 B1
6378218 Sigwart et al. Apr 2002 B2
6379335 Rigon et al. Apr 2002 B1
6387076 Van Lunduyt May 2002 B1
6387078 Gillespie, III May 2002 B1
6405876 Seshimoto et al. Jun 2002 B1
6440096 Lastovich et al. Aug 2002 B1
6447482 Rønborg et al. Sep 2002 B1
6450992 Cassidy, Jr. Sep 2002 B1
6485461 Mason et al. Nov 2002 B1
6488663 Steg Dec 2002 B1
6503222 Lo Jan 2003 B2
6517517 Farrugia et al. Feb 2003 B1
6520938 Funderburk et al. Feb 2003 B1
D472316 Douglas et al. Mar 2003 S
D472630 Douglas et al. Apr 2003 S
6572586 Wojcik Jun 2003 B1
6579267 Lynch et al. Jun 2003 B2
6582397 Alesi et al. Jun 2003 B2
6595962 Perthu Jul 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6607511 Halseth et al. Aug 2003 B2
6613064 Rutynowski et al. Sep 2003 B2
6620133 Steck Sep 2003 B1
6620136 Pressly, Sr. et al. Sep 2003 B1
6620140 Metzger Sep 2003 B1
6629949 Douglas Oct 2003 B1
6645181 Lavi et al. Nov 2003 B1
6645182 Szabo Nov 2003 B1
6659982 Douglas et al. Dec 2003 B2
6685674 Douglas et al. Feb 2004 B2
6699218 Flaherty et al. Mar 2004 B2
6702779 Connelly et al. Mar 2004 B2
6726649 Swenson et al. Apr 2004 B2
6736797 Larsen et al. May 2004 B1
6743203 Pickhard Jun 2004 B1
6749587 Flaherty Jun 2004 B2
6749589 Douglas et al. Jun 2004 B1
6755805 Reid Jun 2004 B1
6776775 Mohammad Aug 2004 B1
6790199 Gianakos Sep 2004 B1
6805686 Fathallah et al. Oct 2004 B1
6808506 Lastovich et al. Oct 2004 B2
6811545 Vaillancourt Nov 2004 B2
6814720 Olsen et al. Nov 2004 B2
6824530 Wagner et al. Nov 2004 B2
6824531 Zecha, Jr. et al. Nov 2004 B1
6830562 Mogensen et al. Dec 2004 B2
6837877 Zurcher Jan 2005 B2
6837878 Smutney et al. Jan 2005 B2
6840922 Nielsen et al. Jan 2005 B2
6880701 Bergeron et al. Apr 2005 B2
6923791 Douglas Aug 2005 B2
6926694 Marano-Ford et al. Aug 2005 B2
6939324 Gonnelli et al. Sep 2005 B2
6939331 Ohshima Sep 2005 B2
6949084 Marggi et al. Sep 2005 B2
6959812 Reif et al. Nov 2005 B2
6960193 Rosenberg Nov 2005 B2
6979316 Rubin et al. Dec 2005 B1
6991619 Marano-Ford et al. Jan 2006 B2
6991620 Marano-Ford et al. Jan 2006 B2
6994213 Giard et al. Feb 2006 B2
6997907 Safabash et al. Feb 2006 B2
7014625 Bengtsson Mar 2006 B2
7018344 Bressler et al. Mar 2006 B2
7022108 Marano-Ford et al. Apr 2006 B2
7047070 Wilkenson et al. May 2006 B2
7052483 Wojcik May 2006 B2
7055713 Rea et al. Jun 2006 B2
7056302 Douglas Jun 2006 B2
7070580 Nielsen Jul 2006 B2
7074208 Pajunk et al. Jul 2006 B2
D526409 Nielsen et al. Aug 2006 S
7083592 Lastovich et al. Aug 2006 B2
7083597 Lynch et al. Aug 2006 B2
7097631 Trautman et al. Aug 2006 B2
7109878 Mann et al. Sep 2006 B2
7115108 Wilkenson et al. Oct 2006 B2
7115112 Mogensen et al. Oct 2006 B2
7141023 Diermann et al. Nov 2006 B2
7147623 Mathiasen Dec 2006 B2
7186236 Gibson et al. Mar 2007 B2
7211068 Douglas May 2007 B2
7214207 Lynch et al. May 2007 B2
7214215 Heinzerling et al. May 2007 B2
7250037 Shermer et al. Jul 2007 B2
7258680 Mogensen et al. Aug 2007 B2
D554253 Kornerup Oct 2007 S
7303543 Maule et al. Dec 2007 B1
7309326 Fangrow, Jr. Dec 2007 B2
7322473 Fux Jan 2008 B2
7407491 Fangrow, Jr. Aug 2008 B2
7407493 Cane′ Aug 2008 B2
7431876 Mejlhede et al. Oct 2008 B2
7441655 Hoftman Oct 2008 B1
7569262 Szabo et al. Aug 2009 B2
7648494 Kornerup et al. Jan 2010 B2
7766867 Lynch et al. Aug 2010 B2
7846132 Gravesen et al. Dec 2010 B2
7850652 Liniger et al. Dec 2010 B2
8012126 Tipsmark et al. Sep 2011 B2
8087333 Oishi Jan 2012 B2
8123724 Gillespie, III Feb 2012 B2
8303549 Mejlhede et al. Nov 2012 B2
20010004970 Hollister et al. Jun 2001 A1
20010016714 Bell et al. Aug 2001 A1
20010021827 Ferguson et al. Sep 2001 A1
20010039387 Rutynowski et al. Nov 2001 A1
20010039401 Ferguson et al. Nov 2001 A1
20010041875 Higuchi et al. Nov 2001 A1
20010049496 Kirchhofer Dec 2001 A1
20010053889 Marggi Dec 2001 A1
20010056284 Purcell et al. Dec 2001 A1
20020022798 Connelly Feb 2002 A1
20020022855 Bobroff et al. Feb 2002 A1
20020026152 Bierman Feb 2002 A1
20020055711 Lavi et al. May 2002 A1
20020068904 Pluth et al. Jun 2002 A1
20020072720 Hague et al. Jun 2002 A1
20020074345 Scheider et al. Jun 2002 A1
20020077599 Wojcik Jun 2002 A1
20020082543 Park et al. Jun 2002 A1
20020107489 Lee Aug 2002 A1
20020111581 Sasso Aug 2002 A1
20020156424 Suzuki et al. Oct 2002 A1
20020156427 Suzuki et al. Oct 2002 A1
20020161322 Utterberg et al. Oct 2002 A1
20020161332 Ramey Oct 2002 A1
20020161386 Halseth et al. Oct 2002 A1
20020165493 Bierman Nov 2002 A1
20020169419 Steg Nov 2002 A1
20020173748 McConnell et al. Nov 2002 A1
20020173769 Gray et al. Nov 2002 A1
20020183688 Lastovich et al. Dec 2002 A1
20020189688 Roorda Dec 2002 A1
20020193737 Popovsky Dec 2002 A1
20020193744 Alesi et al. Dec 2002 A1
20030014018 Giambattista et al. Jan 2003 A1
20030060781 Mogensen et al. Mar 2003 A1
20030069548 Connelly et al. Apr 2003 A1
20030088238 Poulsen et al. May 2003 A1
20030105430 Lavi et al. Jun 2003 A1
20030109829 Mogensen et al. Jun 2003 A1
20030125669 Safabash et al. Jul 2003 A1
20030125678 Swenson et al. Jul 2003 A1
20030130619 Safabash et al. Jul 2003 A1
20030139704 Lin Jul 2003 A1
20030158520 Safabash et al. Aug 2003 A1
20030176843 Wilkinson Sep 2003 A1
20030176852 Lynch et al. Sep 2003 A1
20030181863 Davis et al. Sep 2003 A1
20030181868 Swenson Sep 2003 A1
20030181873 Swenson Sep 2003 A1
20030181874 Bressler et al. Sep 2003 A1
20030187394 Wilkinson et al. Oct 2003 A1
20030187395 Gabel Oct 2003 A1
20030199823 Bobroff et al. Oct 2003 A1
20030216686 Lynch et al. Nov 2003 A1
20030220610 Lastovich et al. Nov 2003 A1
20030225373 Bobroff et al. Dec 2003 A1
20030225374 Mathiasen Dec 2003 A1
20030229308 Tsals et al. Dec 2003 A1
20030229316 Hwang et al. Dec 2003 A1
20040002682 Kovelman et al. Jan 2004 A1
20040006316 Patton Jan 2004 A1
20040044306 Lynch et al. Mar 2004 A1
20040049159 Barrus et al. Mar 2004 A1
20040059316 Smedegaard Mar 2004 A1
20040068231 Blondeau Apr 2004 A1
20040069044 Lavi et al. Apr 2004 A1
20040087913 Rogers et al. May 2004 A1
20040092865 Flaherty et al. May 2004 A1
20040092875 Kochamba May 2004 A1
20040111068 Swenson Jun 2004 A1
20040112781 Hofverberg et al. Jun 2004 A1
20040116865 Bengtsson Jun 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040138612 Shermer et al. Jul 2004 A1
20040138620 Douglas et al. Jul 2004 A1
20040143216 Douglas et al. Jul 2004 A1
20040143218 Das Jul 2004 A1
20040158202 Jensen Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040162518 Connelly et al. Aug 2004 A1
20040162521 Bengtsson Aug 2004 A1
20040171989 Horner et al. Sep 2004 A1
20040178098 Swenson et al. Sep 2004 A1
20040186446 Ohshima Sep 2004 A1
20040193143 Sauer Sep 2004 A1
20040199123 Nielsen Oct 2004 A1
20040204673 Flaherty et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040204690 Yashiro et al. Oct 2004 A1
20040215151 Marshall et al. Oct 2004 A1
20040220528 Garcia, Jr. Nov 2004 A1
20040236284 Hoste et al. Nov 2004 A1
20040238392 Peterson et al. Dec 2004 A1
20040243065 McConnell et al. Dec 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040260235 Douglas Dec 2004 A1
20040260250 Harris et al. Dec 2004 A1
20050035014 Cane Feb 2005 A1
20050038378 Lastovich et al. Feb 2005 A1
20050043687 Mogensen et al. Feb 2005 A1
20050049571 Lastovich et al. Mar 2005 A1
20050065466 Vedrine Mar 2005 A1
20050065472 Cindrich et al. Mar 2005 A1
20050075606 Botich et al. Apr 2005 A1
20050080386 Reid Apr 2005 A1
20050101910 Bowman et al. May 2005 A1
20050101912 Faust et al. May 2005 A1
20050101932 Cote et al. May 2005 A1
20050101933 Marrs et al. May 2005 A1
20050107743 Fangrow, Jr. May 2005 A1
20050113761 Faust et al. May 2005 A1
20050119611 Marano-Ford et al. Jun 2005 A1
20050119619 Haining Jun 2005 A1
20050119637 Lundgren et al. Jun 2005 A1
20050124936 Mogensen et al. Jun 2005 A1
20050131347 Marano-Ford et al. Jun 2005 A1
20050159709 Wilkinson Jul 2005 A1
20050159714 Gibson Jul 2005 A1
20050165382 Fulford Jul 2005 A1
20050192560 Walls et al. Sep 2005 A1
20050203461 Flaherty et al. Sep 2005 A1
20050215979 Kornerup et al. Sep 2005 A1
20050240154 Mogensen et al. Oct 2005 A1
20050251098 Wyss et al. Nov 2005 A1
20050256456 Marano-Ford et al. Nov 2005 A1
20050261629 Marano-Ford et al. Nov 2005 A1
20050277892 Chen Dec 2005 A1
20050283114 Bresina et al. Dec 2005 A1
20060015063 Butikofer et al. Jan 2006 A1
20060015076 Heinzerling et al. Jan 2006 A1
20060030815 Csincsura et al. Feb 2006 A1
20060036214 Mogensen et al. Feb 2006 A1
20060041224 Jensen Feb 2006 A1
20060069351 Safabash et al. Mar 2006 A9
20060069382 Pedersen Mar 2006 A1
20060069383 Bogaerts et al. Mar 2006 A1
20060095003 Marano-Ford et al. May 2006 A1
20060095014 Ethelfeld May 2006 A1
20060106346 Sullivan et al. May 2006 A1
20060129123 Wojcik Jun 2006 A1
20060135908 Liniger et al. Jun 2006 A1
20060135913 Ethelfeld Jun 2006 A1
20060142698 Ethelfeld Jun 2006 A1
20060161108 Mogensen et al. Jul 2006 A1
20060173410 Moberg et al. Aug 2006 A1
20060173413 Fan Aug 2006 A1
20060184104 Cheney, II et al. Aug 2006 A1
20060184140 Okiyama Aug 2006 A1
20060200073 Radmer et al. Sep 2006 A1
20060241551 Lynch et al. Oct 2006 A1
20060247553 Diermann et al. Nov 2006 A1
20060247574 Maule et al. Nov 2006 A1
20060253085 Geismar et al. Nov 2006 A1
20060253086 Moberg et al. Nov 2006 A1
20060264835 Nielsen et al. Nov 2006 A1
20060264890 Moberg et al. Nov 2006 A1
20070005017 Alchas et al. Jan 2007 A1
20070016129 Liniger et al. Jan 2007 A1
20070016159 Sparholt et al. Jan 2007 A1
20070021729 Mogensen et al. Jan 2007 A1
20070049865 Radmer et al. Mar 2007 A1
20070049870 Gray et al. Mar 2007 A1
20070051784 Money et al. Mar 2007 A1
20070066955 Sparholt et al. Mar 2007 A1
20070088271 Richards et al. Apr 2007 A1
20070093754 Mogensen Apr 2007 A1
20070104596 Preuthun et al. May 2007 A1
20070112301 Preuthun et al. May 2007 A1
20070112303 Liniger May 2007 A1
20070129688 Scheider et al. Jun 2007 A1
20070173767 Lynch et al. Jul 2007 A1
20070179444 Causey et al. Aug 2007 A1
20070185441 Fangrow, Jr. Aug 2007 A1
20070191772 Wojcik Aug 2007 A1
20070191773 Wojcik Aug 2007 A1
20070203454 Shermer et al. Aug 2007 A1
20070213673 Douglas Sep 2007 A1
20070244448 Lastovich et al. Oct 2007 A1
20070299409 Whitbourne et al. Dec 2007 A1
20080269687 Chong Oct 2008 A1
20080312601 Cane′ Dec 2008 A1
20090062767 Van Antwerp et al. Mar 2009 A1
20090326456 Cross et al. Dec 2009 A1
20100004597 Gyrn et al. Jan 2010 A1
20100137829 Nielsen et al. Jun 2010 A1
20100228226 Nielsen Sep 2010 A1
20100262078 Blomquist Oct 2010 A1
Foreign Referenced Citations (193)
Number Date Country
4 342 329 Jun 1994 DE
196 31 921 Mar 1997 DE
299 05 072 Sep 1999 DE
101 17 285 Nov 2002 DE
203 20 207 Nov 2004 DE
0117632 Sep 1984 EP
0239244 Feb 1987 EP
0272530 Jun 1988 EP
0451040 Oct 1991 EP
0544837 Jun 1993 EP
0615768 Sep 1994 EP
0651662 May 1995 EP
0652027 May 1995 EP
0657184 Jun 1995 EP
0688232 Dec 1995 EP
0714631 Jun 1996 EP
0744183 Nov 1996 EP
0747006 Dec 1996 EP
0799626 Oct 1997 EP
0 937 475 Aug 1999 EP
0956879 Nov 1999 EP
1086718 Mar 2001 EP
1125593 Aug 2001 EP
0775501 Jun 2002 EP
1329233 Jul 2003 EP
1350537 Oct 2003 EP
1360970 Nov 2003 EP
1380315 Jan 2004 EP
1407747 Apr 2004 EP
1407793 Apr 2004 EP
1421968 May 2004 EP
1177802 Sep 2004 EP
1475113 Nov 2004 EP
1 495 775 Jan 2005 EP
1502613 Feb 2005 EP
1525873 Apr 2005 EP
1 527 792 May 2005 EP
1527792 May 2005 EP
1559442 Aug 2005 EP
1616594 Jan 2006 EP
1704889 Sep 2006 EP
1719537 Nov 2006 EP
1762259 Mar 2007 EP
1764125 Mar 2007 EP
1776980 Apr 2007 EP
1970091 Sep 2008 EP
2272559 Jan 2011 EP
2725902 Oct 1994 FR
906574 Sep 1962 GB
2 088 215 Jun 1982 GB
2 230 702 Oct 1990 GB
2 423 267 Aug 2006 GB
2 450 872 Jul 2007 GB
10179734 Aug 1991 JP
7051251 Nov 1995 JP
8187286 Jul 1996 JP
03-191965 Jul 1998 JP
2002-028246 Jan 2002 JP
2 238 111 Dec 2003 RU
933 100 Jun 1982 SU
WO 8101795 Jul 1981 WO
WO 8203558 Oct 1982 WO
WO 9204062 Mar 1992 WO
WO 9305840 Apr 1993 WO
WO 9311709 Jun 1993 WO
WO 9420160 Sep 1994 WO
WO 9519194 Jul 1995 WO
WO 9632981 Jul 1996 WO
WO 9620021 Oct 1996 WO
WO 9826835 Jun 1998 WO
WO 9833549 Aug 1998 WO
WO 9858693 Dec 1998 WO
WO 9907435 Feb 1999 WO
WO9922789 May 1999 WO
WO 9933504 Jul 1999 WO
WO 0002614 Jan 2000 WO
WO 0003757 Jan 2000 WO
WO 0044324 Aug 2000 WO
WO 0112746 Feb 2001 WO
WO 0130419 May 2001 WO
WO 0168180 Sep 2001 WO
WO 0172353 Oct 2001 WO
WO 0176684 Oct 2001 WO
WO 0193926 Dec 2001 WO
WO 0202165 Jan 2002 WO
WO 0207804 Jan 2002 WO
WO 0240083 May 2002 WO
WO 0240083 May 2002 WO
WO 02053220 Jul 2002 WO
WO 02081012 Oct 2002 WO
WO 02081013 Oct 2002 WO
WO 02083206 Oct 2002 WO
WO 02094352 Nov 2002 WO
WO 02100457 Dec 2002 WO
WO 02102442 Dec 2002 WO
WO 02068014 Jan 2003 WO
WO 03015860 Feb 2003 WO
WO 03026728 Apr 2003 WO
WO 03068305 Aug 2003 WO
WO 03075980 Sep 2003 WO
WO 03095003 Nov 2003 WO
WO 2004012796 Feb 2004 WO
WO 2004026375 Apr 2004 WO
WO 2004029457 Apr 2004 WO
WO 2004030726 Apr 2004 WO
WO 2004037325 May 2004 WO
WO 2004054644 Jul 2004 WO
WO 2004056412 Jul 2004 WO
WO 2004064593 Aug 2004 WO
WO 2004071308 Aug 2004 WO
WO 2004087240 Oct 2004 WO
WO 2004098683 Nov 2004 WO
WO 2004101016 Nov 2004 WO
WO 2004101071 Nov 2004 WO
WO 2004110527 Dec 2004 WO
WO 2005002649 Jan 2005 WO
WO 2005004973 Jan 2005 WO
WO 2005018703 Mar 2005 WO
WO 2005037184 Apr 2005 WO
WO 2005037350 Apr 2005 WO
WO 2005039673 May 2005 WO
WO 2005046780 May 2005 WO
WO 2005065748 Jul 2005 WO
WO 2005068006 Jul 2005 WO
WO 2005072795 Aug 2005 WO
WO 2005092410 Oct 2005 WO
WO 2005094920 Oct 2005 WO
WO 2005118055 Dec 2005 WO
WO 2006003130 Jan 2006 WO
WO 2006015507 Feb 2006 WO
WO 2006015600 Feb 2006 WO
WO 2006024650 Mar 2006 WO
WO 2006032689 Mar 2006 WO
WO 2006032692 Mar 2006 WO
WO 2006061027 Jun 2006 WO
WO 2006061354 Jun 2006 WO
WO 2006062680 Jun 2006 WO
WO 2006062912 Jun 2006 WO
WO 2006075016 Jul 2006 WO
WO 2006077262 Jul 2006 WO
WO 2006077263 Jul 2006 WO
WO 2006089958 Aug 2006 WO
WO 2006097111 Sep 2006 WO
WO 2006108775 Oct 2006 WO
WO 2006120253 Nov 2006 WO
WO 2006121921 Nov 2006 WO
WO 2006122048 Nov 2006 WO
WO 2007000162 Jan 2007 WO
WO 2007002523 Jan 2007 WO
WO 2007020090 Feb 2007 WO
WO 2007065944 Jun 2007 WO
WO 2007071255 Jun 2007 WO
WO 2007071258 Jun 2007 WO
WO 2007093051 Aug 2007 WO
WO 2007093182 Aug 2007 WO
WO 2007122207 Nov 2007 WO
WO 2007140631 Dec 2007 WO
WO 2007140783 Dec 2007 WO
WO 2007140785 Dec 2007 WO
WO 2007141210 Dec 2007 WO
WO 2008014791 Feb 2008 WO
WO 2008014792 Feb 2008 WO
WO 2008048631 Apr 2008 WO
WO 2008052545 May 2008 WO
WO 2008065646 Jun 2008 WO
WO 2008092782 Aug 2008 WO
WO 2008092958 Aug 2008 WO
WO 2008092959 Aug 2008 WO
WO 2008135098 Nov 2008 WO
WO 2008148714 Dec 2008 WO
WO 2008155145 Dec 2008 WO
WO 2008155377 Dec 2008 WO
WO 2009004026 Jan 2009 WO
WO 2009007287 Jan 2009 WO
WO 2009010396 Jan 2009 WO
WO 2009010399 Jan 2009 WO
WO 2009016635 Feb 2009 WO
WO 2009098291 Aug 2009 WO
WO 2009098306 Aug 2009 WO
WO 2009101130 Aug 2009 WO
WO 2009101145 Aug 2009 WO
WO 2009103759 Aug 2009 WO
WO 2009106517 Sep 2009 WO
WO 2009144272 Dec 2009 WO
WO 2010003885 Jan 2010 WO
WO 2010003886 Jan 2010 WO
WO 2010030602 Mar 2010 WO
WO 2010034830 Apr 2010 WO
WO 2010072664 Jul 2010 WO
WO 2010112521 Oct 2010 WO
WO 2011012465 Feb 2011 WO
WO 2011015659 Feb 2011 WO
WO 2011121023 Oct 2011 WO
Non-Patent Literature Citations (3)
Entry
“Why inset®?” inset® infusion set product overview; http://web.archive.org/web/20040906102448/http://www.infusion- set.com/Default.asp?ID=108; two pages.
International-Type Search Report for Danish Application No. DK 2006/00103 completed Sep. 20, 2006.
International Search Report for International Application No. PCT/DK2006/000737 completed Feb. 14, 2007.
Related Publications (1)
Number Date Country
20090076453 A1 Mar 2009 US
Provisional Applications (3)
Number Date Country
60753684 Dec 2005 US
60762231 Jan 2006 US
60816767 Jun 2006 US