Information
-
Patent Grant
-
6254335
-
Patent Number
6,254,335
-
Date Filed
Thursday, October 9, 199727 years ago
-
Date Issued
Tuesday, July 3, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Look; Edward K.
- Nguyen; Ninh
Agents
- Fasth Law Offices
- Fasth; Rolf
-
CPC
-
US Classifications
Field of Search
US
- 415 98
- 415 116
- 415 117
- 415 1981
- 415 206
- 415 2161
- 366 1691
- 366 262
- 366 263
- 366 265
-
International Classifications
-
Abstract
A device for admixing a first fluid into a second fluid. The device has a housing with a rotationally symmetrical rotation chamber defined therein that is arranged with an inlet for the second fluid and an outlet for the mixed fluids. A distance from a center shaft of the housing to its inner wall is decreasing continuously from the inlet to the outlet. The device has rotation means for setting the second fluid in rotation along the inner wall of the rotation chamber. The device also has adding means for adding the first fluid into the vortex that is formed when the second fluid is rotating in the rotation chamber.
Description
TECHNICAL FIELD
The present invention relates to a device for mixing a first fluid into a second fluid, comprising a housing with a rotationally symmetrical rotation chamber having an inlet for the second fluid and an outlet for the mixed fluids, the internal diameter of the housing decreasing continuously from the inlet to the outlet in at least one section of the rotation chamber converging in the direction towards the shaft, and also means for setting the second fluid in rotation along the inner wall of the rotation chamber.
PRIOR ART
In the chemical pulp industry it is extremely common to admix different fluids into pulp suspensions at different stages in the process, for example chlorine dioxide or other bleaching agents in liquid or gaseous form in a bleaching department chain. In pressurized systems, such as these are, it has been found to be difficult to supply and admix these fluids, especially in gaseous form, since they are difficult to pressurize to system pressures, which may be up to
10
bar overpressure. To make the admixing easier, it would be desirable to reduce the pressure at the point of addition. However, since the pressure across a mixer device should preferably not change appreciably, it would be necessary to raise the pressure again after the said pressure reduction. To this day, as far as the inventors are aware, no device has been produced which is able to do this.
DESCRIPTION OF THE INVENTION
The object of the present invention is to overcome the difficulties encountered when admixing gas, in particular, in pressurized systems. This object is achieved by a device of the type mentioned in the introduction, which is characterized by means for adding the first fluid into the vortex which is formed when the second fluid is rotating in the said chamber. Further characteristics and aspects of the invention will be evident from the patent claims and from the following description of a preferred embodiment.
BRIEF DESCRIPTION OF THE FIGURES
A preferred embodiment of the present invention will be described hereinafter with reference to the drawing figures, in which:
FIG. 1
is a side view of the device according to the invention,
FIG. 2
is a partial view, in longitudinal section, of those parts of the device which participate in the admixing,
FIG. 3
is a view along the line III—III in
FIG. 2
,
FIG. 4
is a perspective view of that part of a rotor which is provided with acceleration vanes, and
FIG. 5
is a perspective view of that part of a rotor which is provided with pressure-intensifying vanes and vortex breakers.
DESCRIPTION OF A PREFERRED EMBODIMENT
A preferred embodiment of the device according to the invention will be described with reference to the figures. According to
FIG. 1
, it comprises a stand
10
on which a housing
12
is fitted. A shaft
14
runs through the housing
12
and is rotatably mounted in two bearing housings
16
, which are also fitted on the stand
10
. A suitable drive mechanism (not shown) is connected to the shaft
14
. The shaft
14
runs through two end walls
20
,
22
, here referred to as feed end wall
20
and discharge end wall
22
, respectively, which end walls are fitted in a detachable manner on the housing
12
with the aid of screws, for example, and are sealed off from the housing
12
. The through-passages for the shaft
14
in the end walls
20
,
22
are sealed off in a suitable manner. Arranged at the feed end wall
20
there is an inlet
24
for the fluid which is to be treated, here referred to as the second fluid, in the form of a pipe connection. The inlet pipe
24
merges into the feed end wall
20
in an inlet passage
26
,
FIG. 2
, which in this embodiment is directed obliquely in towards the shaft
14
.
The inlet passage
26
is in communication with a rotation chamber
30
in the housing
12
, which rotation chamber
30
is rotationally symmetrical. The circular inner side
32
of the feed end wall
20
is essentially plane and at right angles to the longitudinal direction of the shaft
14
. Viewed in the direction from the feed end wall
20
towards the discharge end wall
22
, the rotation chamber
30
has a first cylindrical wall section
34
which runs essentially parallel to the longitudinal direction of the shaft
14
and at a distance D
1
from the shaft
14
. The first wall section
34
merges into a second conical wall section
36
which forms an angle a with respect to a plane parallel to the longitudinal direction of the shaft
14
, so that the distance from the second wall section
36
to the shaft
14
decreases in the direction towards the discharge end wall
22
. The second wall section
36
finishes in a rounded part
38
with a radius of curvature R
1
in order to merge into a third plane wall section
40
which is essentially at right angles to the longitudinal direction of the shaft
14
. The rounded part
38
is at a distance D
2
from the shaft which is less than D
1
, and the second wall section
36
thus acquires a funnel-shaped appearance in this section of the rotation chamber
30
. The third wall section
40
merges at its periphery into the contact surface for the discharge end wall
22
.
The rotation chamber
30
continues in the discharge end wall
22
via a fourth cylindrical wall section
42
, which also runs essentially parallel to the longitudinal direction of the shaft
14
and at a distance D
3
from the shaft. The rotation chamber
30
finishes with a fifth plane, circular wall section
44
which is at right angles to the longitudinal direction of the shaft
14
. A pipe connection
46
is arranged on the discharge end wall
22
, which pipe connection
46
acts as an outlet for the mixed media. The outlet
46
is arranged tangentially at a site on the fourth wall section
42
.
A rotationally symmetrical body
50
, hereinafter referred to as the rotor, is secured on the shaft
14
with the aid of, for example, key joints inside the rotation chamber. In the preferred embodiment, the rotor
50
is divided in two along a cut S transverse to the longitudinal direction of the shaft in order to allow the rotor to be fitted in the rotation chamber
30
. The two parts
50
A and
50
B of the rotor are fitted together in a suitable way, for example with screw connections. Viewed from the feed end wall
20
to the discharge end wall
22
, the rotor
50
has a first wall section
52
which is parallel with the first wall section
32
of the rotation chamber
30
and at a distance from the latter, so that a column-shaped space
54
is formed between these wall sections, viewed in a longitudinal section along the shaft
14
. The first, plane wall section
52
of the disc
50
A of the rotor
50
merges into a second wall section
56
which is in turn essentially parallel to the second conical wall section
36
of the rotation chamber, and at a distance from this, so that here too a column-shaped, converging space
58
is obtained. The second wall section
56
of the rotor
50
merges, at its inner part nearest the shaft
14
, into a rounded third wall section
60
with a radius of curvature R
2
in order thereafter to continue, in the second disc
50
B, in an essentially conical fourth wall section
62
which forms an angle β with respect to the longitudinal direction of the shaft
14
, in such a way that the distance from the fourth wall section
62
of the rotor to the shaft
14
increases when viewed from the feed end wall
20
towards the discharge end wall
22
.
The fourth wall section
62
of the rotor merges into a fifth wall section
64
which is essentially parallel to the third wall section
40
of the rotation chamber and at a distance form this wall. A gap
66
is formed between the rounded section
38
of the rotation chamber and the fourth wall section
62
of the rotor, and a gap
68
is also formed between the third wall section
40
of the rotation chamber and the fifth wall section
64
of the rotor. As a result of the above-described configuration of the walls of the rotation chamber and the rotor, a column-shaped passage is obtained, in longitudinal section, which runs through the whole housing from the inlet to the outlet.
The shaft
14
is provided with a longitudinal cavity
80
for the fluid which is to be admixed, here referred to as the first fluid, for at least some distance into the rotation chamber. This cavity
80
communicates with a transverse passage
82
, which passage also extends through the rotor
50
and opens out approximately at the transition between the third rounded wall section
60
of the rotor and its fourth wall section
62
. In the preferred embodiment, the passage
82
does not open out in the wall surfaces of the rotor at right angles to these, but instead tangentially with respect to the direction of rotation,
FIG. 3
, that is to say the passage
82
bends off just before it reaches the third wall section
60
. In the embodiment shown, the rotor
50
is arranged with one outlet for the first fluid, but it can of course be provided with several tangentially directed outlets on the periphery of the rotor. The first fluid is supplied from a source (not shown) via pipe lines
84
,
FIG. 1
, to a packing box
86
which bears sealingly around the shaft
14
, and it is conveyed thence into the cavity
80
in the shaft. The space
66
downstream of the passages for the second fluid, viewed in the direction of flow, is referred to here as the mixing zone.
The rotor is provided with a first set of vanes
90
, here referred to as acceleration vanes,
FIG. 4
, secured on the first wall section
52
of the rotor. The vanes
90
extend from the shaft
14
out towards, and closely adjacent to, the first wall section
32
of the rotation chamber. The vanes
90
are in addition drawn round the corner between the first and second wall sections
52
and
56
, respectively, of the rotor and extend some distance along the second wall section
34
of the rotation chamber. The space in which the acceleration vanes
90
move during rotation is referred to here as the activation zone. According to
FIG. 3
, the acceleration vanes
90
are designed straight and radial, but they can of course be curved.
The second disc
50
B of the rotor
50
is also provided with a second set of vanes
92
, here referred to as pressure-intensifying vanes,
FIG. 5
, which are secured on the fourth wall section and fifth wall section
62
,
64
of the rotor and in cross-section take up in principle the whole of column
68
. The pressure-intensifying vanes
92
can be designed in a similar way to the acceleration vanes
90
. The rotor
50
is also provided with vane blades
94
, here referred to as vortex breakers, which extend into the space
66
between the fourth wall section
62
of the rotor and the curve
38
of the wall section in the rotation chamber and finish immediately downstream of the inlet for the first fluid, viewed in the direction of flow.
The vortex breakers
94
are preferably arranged on the pressure-intensifying vanes
92
close to the fifth wall section
64
of the rotor
50
, in such a way that they form a continuation of these vanes into the mixing zone and are preferably arranged essentially at right angles to the direction of rotation. If necessary, the vortex breakers
94
can also be arranged on the fourth wall section
62
of the rotor
50
between the pressure-intensifying vanes
92
. In the figures, both the acceleration vanes
90
and the pressure-intensifying vanes
92
are designed as six blades, although they can of course be present in another number. In addition, it may be advantageous to have different numbers of first and second vanes
90
,
92
in order to prevent pulsing within the system. In this case, the first disc
50
A with the acceleration wheel can be conceived of having seven vane blades
90
and the second disc
50
B with the pressure-intensifying wheel of having six vane blades
92
, although other designs are of course conceivable.
The device functions as follows. The shaft
14
, and consequently the rotor
50
, and the acceleration vanes
90
and pressure-intensifying vanes
92
on this rotor
50
, are brought into rotation with the aid of a suitable drive mechanism (not shown) which is connected to the shaft
14
. The suspension which is to be treated is led in via the pipe connection
24
to the inlet passage
26
and then into the column-shaped activation zone
54
near the shaft
14
. The suspension is brought into rotation by the acceleration vanes
90
and is thrown out towards the periphery. The acceleration of the suspension means that the latter acquires a higher peripheral velocity than the velocity of the rotor
50
. The rotating suspension is then led down along the funnel-shaped converging wall section
36
in the rotation chamber
30
where its peripheral velocity increases the nearer it comes to the centre. The funnel-shaped wall section
36
thus comes to act as a cyclone, and the suspension comes to gyrate around in this part, with an epicentre around the shaft
14
.
The increase in peripheral velocity in this part gives rise to a considerable reduction in the pressure of the suspension, and this reduction in pressure is greater the closer to the epicentre. This reduction in pressure is desirable for the addition of the first fluid, and especially gas, since gas, such as chlorine dioxide, is difficult to pressurize. The inlet
82
for the first fluid is therefore arranged as near to the epicentre as possible, where the pressure is lowest. The first fluid is introduced through the cavity
80
in the shaft
14
and the passage
82
in the rotor. Since the outlet or the outlets are angled tangentially with respect to the direction of rotation, the first fluid is, so to speak, spread out around the narrowest section of the rotor and is entrained by the gyrating suspension. It is important that the first fluid to be admixed is introduced as smoothly as possible since the least disturbance immediately gives rise to an increase in pressure and poorer possibilities of good admixing. Tests have shown that the pressure of the suspension nearest the shaft in the area where the first fluid is added is atmospheric pressure or even below this, that is to say that a negative pressure is created there. This means that the first fluid is in principle sucked in or is at least supplied at extremely low pressure.
The vortex breakers
94
are arranged immediately downstream of the mixing zone, and since the suspension has a greater velocity than the rotor, the suspension strikes the side surfaces of the vortex breakers
94
and is decelerated. This deceleration gives rise to considerable turbulence in this area and consequently good admixing of the first fluid into the second, and good homogenization. The kinetic energy which the gyrating suspension possesses is therefore used for mixing of the two fluids. Since the pressure of the suspension after this has dropped substantially, it is led out to the pressure-intensifying vanes
92
where its pressure is intensified. Depending on the configuration of the pressure-intensifying vanes and their radius, the suspension is returned to the desired pressure. The pressure-intensified, mixed suspension is then led out through the tangential outlet in the discharge end wall and is conveyed onwards in the system. In the illustrated embodiment, the distance D
3
is approximately equal to the distance D
1
, that is to say the diameter of the pressure-intensifying wheel is approximately equal to that of the acceleration wheel, which means that the pressure will be approximately the same at the discharge side as at the admission side.
The device can be manufactured using any suitable material whatsoever. However, it is expedient for the wall surfaces of the rotation chamber to be clad with a hard-wearing material, especially in the admixing zone, since the suspension gyrates at a high velocity along these surfaces and the suspension often contains a certain, albeit small, amount of sand and similar particles which wear the walls of the chamber, since the density of these particles causes them to lie in a layer furthest to the outside in the gyrating suspension.
It will be understood that the device according to the present invention is not limited to the embodiment which has been described above and which is shown in the figures, and instead it can be modified within the scope of the attached patent claims. Thus, it is possible for the suspension to be set in rotation in the chamber in another way, for example by means of tangential inlets. It is also possible to add the first fluid using other suitable members which are able to introduce the first fluid at or near to the epicentre. It is also conceivable for the vortex breakers to be arranged and/or designed in any desired way which is capable of breaking up the rotation of the second fluid. The same applies to the intensification of the pressure of the mixed suspension, which can be effected in a number of different ways so as to achieve the desired pressure after mixing. In addition, the wall sections of the rotation chamber and of the rotor, and the angles and curvatures of the wall sections, can be designed in different ways so as to achieve the desired flow and admixing.
Claims
- 1. A device for admixing a first fluid with a second fluid, comprising:a housing having a rotationally symmetrical chamber defined therein, the housing having an inner wall; an inlet conduit in fluid communication with the chamber for conducting the second fluid into the chamber; an outlet conduit in fluid communication with the chamber; a central shaft disposed in the housing, the central shaft being disposed a distance from a wall section of the inner wall so that the distance is continuously decreasing from the inlet conduit towards the outlet conduit; a first vane member disposed in the housing for setting the second fluid in rotation along the inner wall so that the second fluid forms a vortex and for increasing a pressure of the second fluid before the first fluid is added; a passage defined in the rotation member for adding a first fluid into the vortex; and a second vane member disposed in the housing for breaking up the rotation of the second fluid at a point that is downstream of the passage.
- 2. A device according to claim 1 wherein the first vane member is disposed adjacent to the inlet conduit to urge the second fluid outwardly and towards the wall section to bring the second fluid into rotation and the passage is located adjacent a rounded portion of the inner wall.
- 3. A device according to claim 1 wherein the passage comprises a cavity defined in the first vane member and an opening defined in the rotor.
- 4. A device according to claim 1 wherein an outlet of the passage is tangentially directed relative to a direction of rotation of the first vane member.
- 5. A device according to claim 2 wherein the second vane member is disposed downstream of the passage.
- 6. A device according to claim 2 wherein the first vane member is disposed upstream of the passage.
- 7. A device according to claim 6 wherein the first vane member is substantially perpendicular to a direction of rotation of the second fluid.
- 8. A device according to claim 5 wherein the first vane member is integral with the second vane member.
- 9. A device according to claim 1 wherein the device has a first number of first vane members and a second number of second vane members, the second number is greater than the first number.
- 10. A device according to claim 1 wherein the inner wall is clad with a wear resistant material.
- 11. A device for admixing a first fluid with a second fluid, comprising:a housing having a rotationally symmetrical chamber defined therein, the housing having an inner wall; an inlet conduit in fluid communication with the chamber for conducting the second fluid into the chamber; an outlet conduit in fluid communication with the chamber; a rotational shaft disposed in the housing, the rotational shaft being disposed a distance from a wall section of the inner wall so that the distance is continuously decreasing from the inlet conduit towards the outlet conduit, the rotational shaft extending through a center portion of the chamber; a rotationally symmetrical rotor attached to the rotational shaft, the rotor having a first vane member attached thereto that is disposed adjacent to the inlet conduit to urge the second fluid outwardly and towards the wall section to bring the second fluid into rotation for setting the second fluid in rotation along the inner wall so that the second fluid forms a vortex; a passage defined in the rotational shaft for adding a first fluid into the vortex, the passage comprising a cavity defined in the rotational shaft and an opening defined in the rotor, the passage being located adjacent a rounded portion of the inner wall; the first vane member disposed in the housing for increasing a pressure of the second fluid before the first fluid is added; and a second vane member disposed in the housing for breaking up the rotation of the second fluid at a point that is downstream of the passage.
Priority Claims (1)
Number |
Date |
Country |
Kind |
9501458 |
Apr 1995 |
SE |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
102e Date |
371c Date |
PCT/SE96/00443 |
|
WO |
00 |
10/9/1997 |
10/9/1997 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO96/33007 |
10/24/1996 |
WO |
A |
US Referenced Citations (4)
Foreign Referenced Citations (1)
Number |
Date |
Country |
0320480 A1 |
Jun 1989 |
EP |