The present invention relates to the field of devices for altering the tension of the strings of stringed musical instruments.
Particularly, the present invention relates to a device for altering the tension of the strings of a guitar during use thereof.
Such devices are also known as “tremolo devices”, “vibrato devices” or simply “tremolo” or “vibrato”, among other terms.
For a better understanding of the invention and to provide greater clarity thereof, the following terms are defined below:
Tremolo or vibrato devices usually consist of a bridge unit that is movable about an axis and upon which are arranged the saddles corresponding to each string of the guitar, said bridge unit comprising an arm that acts as a lever upon which the guitarist can apply pressure in order to move said bridge unit and thereby alter the tension of the strings. Tremolo devices tend to have one or more springs that act directly on the actuation mechanism via the lever, facilitating the return of the lever to the neutral position.
However, many bridge units in the state of the art are bulky units of considerable weight, and are therefore very troublesome for the guitarist. In addition, many of these units are not suitable for all types of guitar and, in many cases, require at least one perforation to be made in the body of the guitar in order to incorporate the spring mechanism associated with said bridge units. Moreover, many tremolo units fail to maintain a constant equilibrium between the tension exerted by the strings and the opposing tension exerted by the springs, leading to loss of the tuning of the guitar strings.
It is an aim of the present invention to disclose a tremolo device that solves the problems raised above and that makes it possible to obtain a tremolo device that is more compact and convenient for the user and does not result in loss of the tuning of the guitar strings. More particularly, an aim of the present invention is to disclose a tremolo device that makes it possible to act only on certain strings at the choice of the user.
In particular, the present invention discloses a device for altering the tension of the strings of a stringed musical instrument, of the type that comprises a structural element, with at least one element for securing to the body of the instrument, said structural element comprising at least two runners capable of moving on said structural element, each of said runners being secured to at least one string of the musical instrument, and an actuation mechanism for actuating the runners in order to alter the tension of the strings of the instrument, comprising at least one slide carriage that can be moved in a sliding motion by the action of at least one lever. Said device is characterised in that said actuation mechanism for actuating the runners further comprises a runner selection mechanism that comprises, in turn, a clutch for each of said runners for selective connection between the actuation mechanism and said runners. Thus, the device makes it possible to act only on certain strings selected by the user by means of the corresponding clutch.
Preferably, each runner has at least one spring that acts with a tension opposite to the tension action of the strings on each runner.
In particular, said springs are located between a first stop, secured on said structural element, and a runner actuating member. More particularly, there is a second stop, secured on said structural element between said first stop and said runner actuating member, which limits the possibility of extension of the spring. This feature allows selection in such a way that the maximum length of the springs permitted by the device between said stops is less than the natural length of said springs at rest. This, in turn, ensures that the properties of the spring will not alter with use, as tends to happen when the springs are forced to work in extension, i.e. deforming in such a way as to exceed their natural length at rest.
According to a preferred embodiment of the invention, each runner is secured to a longitudinal rod, which in turn is connected to said runner actuating member. Preferably, each longitudinal rod moves through the inside of each spring arranged between the first stop and said actuating member. More preferably, each longitudinal rod moves through the inside of each spring arranged between the first and second stops.
According to another preferred embodiment of the invention, each runner is connected directly to said runner actuating member. Preferably, each runner moves along the outside of each spring, arranged between the first stop and said actuating member, by means of a system of ball bearings. More preferably, each runner moves along the outside of each spring, arranged between the first and second stops, by means of a system of ball bearings. In this way, a smooth movement of the runner with minimal friction is achieved.
Preferably, said runner selection mechanism engages with said runner actuating member, for example at one end of said member, allowing said runner actuation mechanism to act on said actuating member or said selection member, and therefore on the runner and the string corresponding to said actuating member.
According to a particular embodiment, the runner actuating member is a sleeve that surrounds the rod, the rod has at least one recess, the actuating member has at least one hole, and the selection mechanism surrounds the actuating member and has at least one housing, said rod, actuating member and selection mechanism having the ability to slide relative to one another, so that they present a position in which the recess, hole and housing coincide, there being a ball having the ability to be fully housed, alternatively between the recess and the hole or between the hole and the housing, in such a way that the ball is housed between the recess and the hole and the recess and the selection mechanism are located in such a way that the housing does not coincide with the hole, the ball serving as a transmitter of movements between the actuating member and the rod.
According to a particularly advantageous embodiment, said runner actuation mechanism comprises a slide carriage and two lateral guides for guiding the movements of said slide carriage, and an arm or lever and a cam for moving said slide carriage by pushing, by the actuation of an arm or lever, in both directions, along the path provided by said lateral guides.
According to another particularly advantageous embodiment, said runner actuation mechanism comprises a slide carriage that comprises, in turn, a transverse shaft between two lateral guides for guiding the movements of said slide, said transverse shaft having a cam to allow said slide carriage to be moved by pushing, by the actuation of a lever, in both directions, along the path provided by said lateral guides.
Preferably, each runner slides by means of a system of ball bearings.
For a better understanding of the invention, some drawings of various embodiments of the present invention are attached by way of non-limitative explanatory example.
Said tremolo device -1- is formed by a structural element -10-, such as, for example, a flat structure made of metal plate that supports all of the separate elements comprised by said device -1-. Said structure -10- can be secured to the body -301- of the guitar -300- by means of securing elements such as, for example, threaded elements (-11-, -12-) arranged in the longitudinal sides of said structure -10-. Said threaded elements (-11-, -12-) may, in some cases, be inserted into pre-existing holes in the guitar provided for securing standard guitar bridges.
Additionally, said metal plate structure -10- is secured to the strap button -303- of the guitar -300- by means of a bracket -304-, also made of metal plate, that has an elongated hole -305- and a pin (not shown in the figures) for engaging with a hole -306- (see
In addition, the structure -10- comprises, at the end opposite to the hole -306-, two elongated holes -13-, one on each side of the structure -10-, to allow the structure -10- to be secured to the guitar -300- by means of said threaded elements -12-. Said elongated holes -13- also allow variable adjustment of said structure -10- according to the dimensions of the guitar -300- and the point of location of the device -1- with respect to the guitar -300-.
The tremolo device -1- of this first embodiment comprises, in the end portion of the structure -10- nearest to the fingerboard or neck of the guitar -300-, five runners -40- arranged parallel to the longitudinal axis of the structure -10-. Each runner -40- is arranged on at least one longitudinal groove (not shown), arranged along the longitudinal axis of each runner -40-, that comprises at least one ball bearing (not shown) which allows the runner -40- to slide with minimal friction relative to its longitudinal axis.
On the end of each runner -40- nearest to the fingerboard or neck of the guitar -300- is provided a saddle -42- on which each string -302- respectively sits. Behind the saddle -42- and in said runner -40- is provided a pulley -41- for securing each string -302- to the runner -40-.
The end portion of each runner -40- furthest from the fingerboard of the guitar -300- is secured respectively to a rod -43- parallel to the longitudinal axis of the device -1- by means of a coupling element -44-. Said rod -43-, as can be seen in
As mentioned in the preceding paragraph, said spring -45- is arranged between said first wall -46- and said second wall -46′-. The ends of said spring -45- are secured respectively to two ferrules (-48-, -49-), each ferrule having a collar with a larger diameter than the rest of the ferrule. The diameter of said collars is greater than that of said through-holes of said walls -46-, -46′-, so that the spring -45- is trapped between said walls -46-, -46′-, limiting the possibility of extension of said spring -45-.
Additionally, the smaller diameter of each respective circular section of each ferrule (-48-, -49-) has a suitable diameter to be capable of passing through the through-holes of said walls -46-, -46′-. The ferrule -48-, in this first embodiment, comprises in its smaller-diameter section a threaded area for engaging with a mating threaded area in the through-hole of the wall -46-. Said ferrule -48- serves as a fixed stop for the spring -45-. At the other end of the spring -45-, the smaller-diameter circular section of the ferrule -49- passes through the inside of the through-hole until the collar of said ferrule -49- abuts against the wall -46′-. It should be noted that the rod -43- runs through the inside of the ferrules -47-, -48- and the spring -45- without any contact with said components, and therefore without suffering any friction.
When the ferrule -49- comes into contact with the actuating end -47-, as can be seen in
The location of the spring -45- between two walls (-46-, -46′-) defining two stops makes it possible to limit the travel of the spring -45-, especially when the tremolo device -1- is actuated, ensuring that the spring -45- always works in the compression position, which facilitates the maintenance of the tuning (constant tuning) of the guitar after repeated actuation of the tremolo device -1-. Additionally, the wall -46′- that limits the possibility of extension of the spring -45- considerably reduces the frequency of extensions of said spring, allowing a longer useful life for each spring -45- in the device -1-.
As can be seen in
Additionally, said slide carriage -52- comprises push-buttons -51- corresponding to each runner -40- to allow individual selection of each string -302- that it is desired to actuate with the tremolo device -1-. In the resting position and without any push-button -51- activated (
As can be seen in
As mentioned previously,
Said tremolo device -2- is formed by a structural element -20-, such as, for example, a flat structure made of metal plate that supports all of the separate elements comprised by said device -2-. Said structure -20- can also be secured to the body -301- of the guitar -300- in the same way (by means of a bracket, threaded elements and elongated holes) as in the first embodiment of the device -1-, allowing variable adjustment of said structure -20- according to the dimensions of the guitar -300- and the point of location of the device -2- with respect to the guitar -300-.
In this second embodiment, the tremolo device -2- comprises five longitudinal -70- platens arranged parallel to the longitudinal axis of the structure -20-. Each platen -70- is arranged on at least one longitudinal groove (not shown), arranged along the longitudinal axis of each platen -70-, that comprises ball bearings (not shown) which allow the platen -70- to slide with minimal friction relative to its longitudinal axis.
On the end of each platen -70- nearest to the fingerboard or neck of the guitar -300- a saddle -75- is provided on which each string -302- respectively sits by means of its corresponding pulley for securing each string -302-. As can be seen in the sectional view of
Additionally, between the two ends of each platen -70- and above each of them is arranged a slide carriage -60- with springs -71-, in such a way that each spring -71- is arranged above each platen -70-. Each spring -71- is arranged between a first wall -61- and a second wall -62- of the slide carriage -60-. In this case, the ends of said spring -71- are also secured respectively to two ferrules (-73-, -68-), each ferrule having a collar with a larger diameter than the rest of said ferrule. The diameter of the collars is greater than that of said through-holes of said walls (-61-, -62-), so that each spring -71- is trapped between said walls (-61-, -62-).
Additionally, the smaller diameter of each respective circular section of each ferrule (-73-, -68-) has a suitable diameter to be capable of passing through the through-holes of said walls (-61-, -62-). The ferrule -73-, according to this second embodiment, comprises in its smaller-diameter section a threaded area intended to engage with a mating threaded area in the through-hole of the wall -61-. Said ferrule -73- serves as a fixed stop for the spring -71-. At the other end of the spring -71-, the smaller-diameter circular section of the ferrule -68- can pass through the inside of the through-hole of the wall -62- of the slide carriage -60- until a larger-diameter collar abuts against the wall -62-. Additionally, said ferrule -68-, at its smaller-diameter circular section end, is threaded into another ferrule -63-, which serves, in turn, as a stop with a quadrangular projection -64- arranged on the platen -70- between said ferrule -63- and the push-button -66-.
When the quadrangular projection -64- comes into contact with the ferrule -63-, as can be seen in
Once again, the location of the spring -71- between two walls (-61-, -62-) defining two stops makes it possible to limit the travel of the spring -71-, especially when the tremolo device -2- is actuated, ensuring that the spring -71- always works in the compression position, which facilitates the maintenance of the tuning (constant tuning) of the guitar after repeated actuation of the tremolo device -2-. Additionally, the wall -62- that limits the possibility of extension of the spring -71- considerably reduces the frequency of extensions of said spring, allowing a longer useful life for each spring -71- in the device -2-.
As can be seen in
Additionally, said slide carriage -80- comprises push-buttons -65- corresponding to each platen -70- to allow individual selection of each string -302- that it is desired to actuate with the tremolo device -2-. In the resting position and without any push-button -65- activated, the tremolo device -2- is adjusted so that the pins -80- of the respective push-buttons -65- are arranged just above the respective holes in the ends of the platens -70- corresponding to each string -302-.
According to this second embodiment, a transverse shaft is arranged between the lateral guides (-621, -622-). On said shaft a cam -91- is provided which moves the slide carriage -80- by pushing, by the actuation of a lever -53-, in both directions on the lateral guides (-621-, -622-).
As mentioned previously,
In the figures, elements that are the same as or equivalent to those shown in the previous examples have been identified with the same numerals and will therefore not be described in depth.
Unlike the previous examples, only the tremolo device is shown in
As can be seen in the figures, the embodiment of
In particular, as can be seen in
As can be seen in said figures, in this embodiment the actuating end or actuating member -47′- takes the form of a sleeve that surrounds the rod -43-. The rod is connected to the runner -40- that receives the string (not illustrated), having in an intermediate position the system of springs -45- and stops -46-, -46′-, which is similar to that of the previous embodiments and therefore will not be described in detail. The actuating member -47′- has a series of holes -471- arranged peripherally with respect to a transverse cross-section. A ball -472- is housed in said holes -471-. In the figures, for reasons of clarity, two balls -472- are illustrated, one in an upper position and the other in a lower position, but it should be understood that there may be a single or several balls surrounding the rod -43-, preferably uniformly distributed and more advantageously being three or more balls.
The rod -43- also has an indentation or recess -431- to receive the ball -471-. Preferably, the recess -431- will be an indentation that covers the entire perimeter of the rod, but a specific recess could be created for each ball -472-.
The ball -472-, the hole or holes -471-, the housing or housings -512- and the recess or recesses -431- are dimensioned so that each ball can be completely housed either between a hole -471- and a recess -512- or between a hole -471- and a housing -512- and so that, in addition, the ball is capable of moving from one position to the other under the pushing forces produced by the different actuations of the system, such as the actuation of the arm that in turn moves the slide carriage -52-, or the actuation of the push-button -51-. When the ball or balls -472- that surround a rod -43- are completely housed between the recess -431- of the rod and the hole -471- of the actuating member -47′-, said balls -472- transmit the movement of the actuating member -47′- to the rod -43-. On the other hand, when the ball or balls -472- are completely housed between the housing -512- and said hole or holes -471-, there is no transmission of movement between the actuating member -47′- and the rod -43-.
Furthermore, as can be seen in the figure, the actuating member -47′- is joined integrally to the slide carriage -52-, which in turn is actuated by the arm (not shown in
Thus, when the arm is actuated, the slide carriage -52- moves, causing the movement seen in
As can be seen in
If, on the other hand, before actuating the arm, the push-button -51- is actuated by sliding, the situation shown in
The recovery of the spring -45-, which is compressed by the action of the rod -43-, returns the system to its initial position when the tremolo ceases to be actuated.
In addition, as can be seen, in this embodiment the runner -40- has no ball bearings and is situated in the air.
In this embodiment, the spring is located between two stops, in such a way that it always works under compression, i.e. the greatest working length that the device allows it is less than its natural length at rest. This ensures that the properties of the springs are not modified by deformations caused by extensions that result in spring lengths greater than their natural length at rest. This embodiment can be created regardless of whether or not a system exists for selecting which string or strings will be actuated by the tremolo.
Changes to the particular embodiments shown are possible without departing from the spirit of the invention. Thus, for example, although in the examples shown the tremolo can be actuated selectively on each individual string, embodiments are possible in which the tremolo acts simultaneously on different predetermined groups of strings. Embodiments are also possible without the system of springs shown, or with the system of springs but without the ability to select the string, strings or groups of strings to be acted upon by the tremolo. It is also possible, for example, to create combinations of the two embodiments shown.
Although the invention has been described with respect to preferred embodiments, said embodiments must not be regarded as limitative of the invention, which will be defined by the broadest interpretation of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
P201430161 | Feb 2014 | ES | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/ES2015/070036 | 1/21/2015 | WO | 00 |