DEVICE FOR AMPLIFYING A FORCE, AND RELATED SYSTEMS AND METHODS

Information

  • Patent Application
  • 20230243370
  • Publication Number
    20230243370
  • Date Filed
    December 19, 2022
    a year ago
  • Date Published
    August 03, 2023
    10 months ago
  • Inventors
    • Tarapaski; Alan
Abstract
A device for amplifying a force includes a prime mover configured to receive a first force, and a secondary mover configured to generate a second force that is greater than the first force in response to the prime mover receiving the first force. The prime mover includes an output that, in response to the first force, rotates about a first axis through a power stroke defined by an angular displacement that is less than ninety degrees. The prime mover's output includes a first end that revolves about the first axis during the power stroke. The secondary mover includes an input, an output, and a body. The input includes a second end that is coupled with the first end of the prime mover's output, and that, as the first end of the prime mover's output revolves about the first axis through the power stroke, the second end of the secondary mover's input also revolves about the first axis and moves relative to the secondary mover's body. The secondary's mover's output is configured to apply the second force to an object. The secondary mover's body is releasably and pivotally anchored at a position such that as the first end of the prime mover's output revolves about the first axis through the power stroke, the body of the secondary mover pivots about a second axis that passes through the position, and such that as the first end approaches the end of the power stroke, the first end of the prime mover's output accelerates, without an additional force applied to the prime mover's output.
Description
BACKGROUND

Devices that receive a force input and, in response, generate a force output that is greater than the force input are ubiquitous. For example, a block and pulley, and/or a lever and fulcrum, are often used by a person to lift things that weigh much more than a person could lift with just his arms and legs. With such devices, a human body by itself can move things that it otherwise would not be able to by providing the force input to the device and having the device apply a force output to the thing. Sometimes forces that a human body might be able to generate by itself require the force to be generated for a long period of time or repeatedly generated over and over. If a human body generated such forces by itself, the body would tire quickly and not be able to sustain the force through the required duration or sustain the force through a series of repetitions.


These force-amplifying devices, however, typically do not include a component that accelerates, without any additional force input, to generate an output force. With acceleration, one can use momentum to help generate the output force, and further increase the difference between the output force and the input force.


Thus, there is a need for a device that uses acceleration and momentum to generate an output force from an input force that is less than the output force.


SUMMARY

In an aspect of the invention, a device for amplifying a force includes a prime mover configured to receive a first force, and a secondary mover configured to generate a second force that is greater than the first force in response to the prime mover receiving the first force. The prime mover includes an output that, in response to the first force, rotates about a first axis through a power stroke defined by an angular displacement that is less than ninety degrees. The prime mover's output includes a first end that revolves about the first axis during the power stroke. The secondary mover includes an input, an output, and a body. The input includes a second end that is coupled with the first end of the prime mover's output, and that, as the first end of the prime mover's output revolves about the first axis through the power stroke, the second end of the secondary mover's input also revolves about the first axis and moves relative to the secondary mover's body. The secondary's mover's output is configured to apply the second force to an object. The secondary mover's body is releasably and pivotally anchored at a position such that as the first end of the prime mover's output revolves about the first axis through the power stroke, the body of the secondary mover pivots about a second axis that passes through the position, and such that as the first end approaches the end of the power stroke, the first end of the prime mover's output accelerates, without an additional force applied to the prime mover's output.


With the device one can amplify the force input to the device and then apply the amplified force to do work. For example, one can lift a mass that weighs about three times the force input to the device. With the acceleration of the first end of the prime mover's output during the power stroke, the device can use the momentum generated in the prime mover's output to further increase the second force generated by the device. Thus, one can use the device to increase the amplification of a force input to the device to do more work than would otherwise be done. And with the secondary mover releasably anchored at a position, the secondary mover can be anchored at a first position to generate a first amount of force, and then be repositioned before starting a subsequent power stroke to generate a second amount of force that may be more or less then the first amount of force, depending on what is desired. The repositioning of the secondary mover may occur after finishing a power stroke but before starting a subsequent power stroke, or before the secondary mover finishes the power stroke.


In another aspect of the invention, a method for amplifying a force includes the following: a) rotating an output of a prime mover about a first axis, in response to applying a first force to the prime mover; b) revolving a first end of the prime mover's output through a power stroke defined by an angular displacement that is less than ninety degrees; c) revolving a second end of an input of a secondary mover about the first axis, wherein the second end is coupled with the first end of the prime mover's output; d) pivoting a body of the secondary mover about a second axis, wherein the body is releasably and pivotally anchored at a location and the second axis passes through the location; e) generating a second force in the output of the secondary mover, in response to the movement of the second end of the secondary mover's input, and the movement of the body of the secondary mover about the second axis, wherein the second force is greater than the first force.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows a view a device for amplifying a force, according to an embodiment of the invention.



FIG. 2 shows a schematic view of the power stroke of the device in FIG. 1, according to an embodiment of the invention.



FIG. 3 shows a view of another device for amplifying a force, according to another embodiment of the invention.


Each of the FIGS. 4A and 4B shows a view of yet another device for amplifying a force, according to yet another embodiment of the invention. FIG. 4A shows a perspective view of the device, and FIG. 4B shows a partial elevation view of the device.



FIG. 5 shows a view of another device for amplifying a force, according to another embodiment of the invention.



FIG. 6 shows a view of still another device for amplifying a force, according to still another embodiment of the invention.



FIG. 7 shows a view of yet another device for amplifying a force, according to yet another embodiment of the invention.





DETAILED DESCRIPTION


FIG. 1 shows a view of a device 10 for amplifying a force, according to an embodiment of the invention. The device 10 includes a prime mover 12 and a secondary mover 14. The prime mover 12 includes an output 16 that can rotate about a first axis 18, and that includes a first end 20 that revolves about the first axis 18 as the output rotates about the axis 18. The secondary mover 14 includes an input 22, an output 24, and a body 26. The input 22 includes a second end 28 that is coupled with the first end 20 of the prime mover's output 16. The secondary's mover's output 24 is configured to apply a force to an object (here fluid pressure to a piston and cylinder to raise the weight 30), and the secondary mover's body 26 is releasably and pivotally anchored at a position (here the ground).


In operation, an input force or first force is applied to the prime mover 12. This force may be a mass 32 placed on top of the prime mover's output 16, or a torque applied about the first axis 18. In response to this force or torque, the output 16 rotates about the first axis 18 in the direction shown by the arrow labeled 34. This causes the first end 20 to revolve about the axis 18. This, in turn, causes the secondary mover's input 22 to move relative to the first axis 18 in the direction shown by the arrow 34, and relative to the secondary mover's body 26 in the direction shown by the arrow labeled 36. The secondary mover 14 uses this movement of its input 22 to generate an output force or second force that is greater than the input force or first force. As shown and discussed in greater detail in conjunction with FIG. 2, the angular displacement that the first end 20 of the prime mover's output 16 travels through to move the secondary mover's input 22 toward the secondary mover's body 26 is the power stroke of the device 10. As the output 16 of the prime mover 12 approaches the end portion of the power stroke (here about 20 to 45 degrees below the output 16), the rotation of the prime mover's output 16 accelerates, which increases the momentum of the prime mover's output 16. This increase in momentum, in turn, urges the secondary mover's input to convey more force to the secondary mover 14, and thus, allow the secondary mover to increase the amount of force that it generates.


With the device 10 one can amplify the force input to the device and then apply the amplified force to do work. For example, one can lift the mass 30 that weighs about three times the force input to the device. With the acceleration of the first end 20 of the prime mover's output 16 during the power stroke, the device 10 can use the momentum generated in the prime mover's output 16 to further increase the second force generated by the device 10. Thus, one can use the device 10 to increase the amplification of a force input to the device 10 to do more work than would otherwise be done. Additional examples of such work that become more economical with the device 10 include: 1) storing hydrogen gas, 2) compressing fluids, 3) crushing solids, 4) generating energy independent of or off the grid, and 5) pumping fluids.


The prime mover 12 may be configured as desired. For example, in this and other embodiments, the prime mover 12 includes a beam 38 that is pivotally coupled via a pin 40 through which the first axis 18 passes. In this configuration, the pin 40 is a fulcrum of the prime mover 12, and the beam 38 is the output 16 of the prime mover 12. In response to an input force, the beam 38 rotates about the pin 40 in the direction of the arrow 34, but does not translate relative to the pin 40. In addition, the output 16 is balanced about the pin 40 such that if the beam 38 were not coupled to the input 22 of the secondary mover 14, the beam 38 (without the mass 32 lying on top of it) would lie level (as shown in FIG. 1). In this and other embodiments, the beam is stiff—i.e., it maintains its shape as it rotates about the pin 40, it does not buckle or bend. In this configuration, the distance between the pin 40 and the first end 20, where the secondary mover's input 22 is coupled, remains the same as the prime mover's output 16 travels through the power stroke. Here, the distance between the pin 40 and the first end 20 where the input 22 is coupled is about 4.5 feet. This distance, however, may be less than 4.5 feet or more than 4.5 feet.


Other embodiments are possible. For example, the prime mover 12 may include two or more beams, each coupled to the same fulcrum or to a respective one of many fulcrums. For another example, the beam 34 may be flexible enough to change its shape, such as bend or slightly deflect, in response to the prime mover 12 receiving an input force.


Still referring to FIG. 1, the secondary mover 14 may also be configured as desired. For example, in this and other embodiments, the secondary mover 12 includes a piston-and-cylinder assembly 42 that has a piston 44, and a cylinder (not shown) disposed in the secondary mover's body 26. The piston has an end 48 that is pivotally coupled to the prime mover's first end 20, and a head (also not shown) disposed inside the cylinder. In this configuration, the secondary mover's input 22 includes the piston 44, the secondary mover's body 26 includes the cylinder, and the secondary mover's output 24 includes a cavity (not shown) in the cylinder whose volume changes as the piston's head moves inside the cylinder. More specifically, the cavity holds a fluid (here hydraulic fluid) whose pressure increases as the movement of the piston's head reduces the cavity's volume. Thus, when the end 48 of the piston revolves about the prime mover's pin 40, the piston's head is urged in the direction of the arrow 36 and reduces the volume of the cavity in the cylinder. This, in turn, increases the pressure of the fluid held in the cavity. When the pressure of the fluid increases, the pressure of the fluid inside the other piston-and-cylinder 50 on which the mass 30 sits, also increases. When this pressure is sufficient to move the mass 30, the piston in the other piston-and-cylinder 50 moves in the direction shown by the arrow 52.


Other embodiments are possible. For example, the secondary mover 14 may include two or more piston-and-cylinders, each coupled to the same first end 20 of the prime mover 12, or to a respective first end 20 of many beams 38 of the prime mover 12. For another example, two or more piston-and-cylinders may each be coupled to a single beam 38 of the prime mover 12, but at a respective one of many different distances away from the prime mover's pin 40. For yet another example, the secondary mover may be small in size or large in size.


Still referring to FIG. 1, the body 26 of the secondary mover 14 may be releasably and pivotally anchored at any desired position relative to the prime mover 12 that allows the first end 20 of the prime mover's output 16 to accelerate while the first end travels through the end portion of the power stroke. For example, in this and other embodiments the secondary mover's body 26 is releasably and pivotally anchored at a position that is farther away from the first axis 18 than the prime mover's first end 20. More specifically, this position is also less than twice the distance from the first axis 18 to the prime mover's first end 20. Moreover, the secondary mover 14 may be released from this first position; moved to a second position that is different than the first position; and then releasably anchored at the second position. By repositioning the secondary mover 14, the output force generated by the secondary mover 14 may be increased or decreased, as desired.


For example, in this and other embodiments the secondary mover's body 26 may be moved from the position shown in FIG. 1 (here a first position) in the direction indicated by either of the arrows 53a or 53b to a second position that is different than the first position, before, after, or while the first end 20 of the prime mover's output 16, and thus the secondary mover's input 22, travels through the power stroke. More specifically, in this and other embodiments, the secondary mover 14 includes a slide 54 that is pivotally mounted to the secondary mover's body 26 to allow the secondary mover 14 to be repositioned relative to the prime mover 12. An actuator 55 of the device 10 moves the secondary mover's body 26 to a variety of different positions and then anchors the body 26 at any of the desired positions. To do this the actuator 55 is anchored at one end 55a, and coupled with the slide 54 at the other end 55b. The actuator 55 may be any desired mechanism capable of performing this function. For example, in this and other embodiments the actuator is a hydraulic piston whose movement in either of the directions indicated by the arrows 53a and 53b is controller by hydraulic fluid. In this manner, the actuator 55 can releasably hold or anchor the secondary mover 12 at any desired location along its path of travel. Here, with the actuator 55 anchored at the end 55a, the path of travel is linear or a straight line. In other embodiments, the actuator's path of travel may also include a curved path, such as along a portion of a circular path.


Other embodiments are possible. For example, the secondary mover 14 may include a wheel in lieu of the slide to allow repositioning the secondary mover 14 consume less power, and/or to facilitate repositioning the secondary mover over rougher terrain. For another example, the actuator 55 may include a ball (or yoke) and screw to reposition the secondary mover and then hold the secondary mover 14 in the new position. In such embodiments, the ball (or yoke) is coupled with the secondary mover's body 26, and the screw. To reposition the secondary mover 14, the screw is rotated to urge the ball (or yoke) travel along the length of the screw.


The output of the actuator 55 may be controlled to allow the device 10 to adjust or account for changes in the situation requiring the device to amplify a force. For example, if the force generated by the device 10 is no longer needed because the specific work is accomplished, then the secondary mover 12 may be repositioned in the direction indicated by the arrow 53b to a position in which the secondary mover 14 will generate little if any force from the movement of the prime mover 12. Or, if the force generated by the device 10 needs to be increased because the specific work has increased, then the secondary mover 12 may be repositioned in the direction indicated by the arrow 53a to a position in which the secondary mover 14 will generate more force from the movement of the prime mover 12 than it previously did.


Still referring to FIG. 1, the output of the actuator 55 may be controlled by any desired mechanism. For example, in this and other embodiments, the output of actuator 55 is simply controlled by a human operator that operates a switch to cause hydraulic fluid to enter the actuator through the appropriate valve to cause the actuator's arm 56 to either extend away from the actuator's housing 58 in the direction indicated by the arrow 53b, or retract into the housing 58 in the direction indicated by the arrow 53a. In other embodiments, the output of the actuator 55 may be controlled automatically by a control loop that includes a sensor that sense's any desired parameter of the actuator's output and then based on this parameter, maintains or adjusts the flow of hydraulic fluid to the actuator 55 to either move the secondary mover's body 26 in either of the directions indicated by the arrows 53a and 53b, or anchor the body 26 at a position.



FIG. 2 shows a schematic view of the power stroke of the device 10 in FIG. 1, according to an embodiment of the invention. The configuration of the prime and secondary movers 12 and 14, respectively, as well as the position of each relative to the other, establishes the power stroke of the device 10. By changing the configuration of one or both of the movers 12 and 14, and/or changing the position of each mover 12 and 14 relative to the other, one can establish a variety of different power stroke configurations as desired.


For example, in this and other embodiments the power stroke is defined by a segment 60 of a circular arc 62 that the first end 20 travels through. More specifically, the arc 60 of the power stroke starts at zero degrees which is arbitrarily defined as the angular location of the prime mover's beam 38 about the axis 18 when the beam 38 is level as shown in FIG. 1, and proceeds clockwise. Each of the lines 64, 66 and 68 in FIG. 2 shows the location of the prime mover's first end 20 at a respective one of three locations within the device's power stroke. Line 64 shows the location of the first end 20 at the start of the power stroke (zero degrees on the arc of power stroke). Line 66 shows the location of the first end 20 at the start of the end portion of the power stroke, where the end 20 begins to accelerate. In this and other embodiments, this location is 20 degrees below the start of the power stroke. Line 68 shows the location of the first end 20 at the end of the power stroke, where the first end 20 no longer provides the secondary mover 14 a force that the secondary mover 14 can amplify. In this and other embodiments, this location is 45 degrees below the start of the power stroke.


In this and other embodiments, each of the lines 70, 72 and 74 in FIG. 2 shows the location of the secondary mover's second end 24 at a respective one of the same three locations within the device's power stroke as those shown for the first end 20. In addition, each of the lines 70, 72 and 74 shows how the secondary mover's body 26 rotates about a second axis 76 in the direction shown by the arrow labeled 78, while the body 26 of the secondary mover 14 is pivotally anchored. Line 70 shows the location of the second end 24 at the start of the power stroke. Line 72 shows the location of the second end 24 at the start of the end portion of the power stroke, where the first end 20 begins to accelerate. Line 74 shows the location of the second end 24 at the end of the power stroke, where the first end 20 no longer provides the secondary mover 14 a force that the secondary mover 14 can amplify.



FIG. 3 shows a view of another device 80 for amplifying a force, according to another embodiment of the invention. The device 80 is similar to the device 10 except that the output force of the secondary mover 82 is torque, not fluid pressure. In this and other embodiments, the prime mover 84 is similar to the prime mover 12 except that the prime mover's output 86 includes a gear 88 that rotates about a third axis 90. To account for the change in the distance between the contact point where the gear 88 contacts the secondary mover 92 and the first axis 94, the location of the third axis 90 is offset from the center 96 of the gear 88. Similarly, the secondary mover 92 is similar to the secondary mover 14 except that the secondary mover 92 includes a plurality of gear teeth 98 disposed on a perimeter of a frame 100. As the prime mover's gear 88 travels through the device's power stroke, the secondary mover's frame rotates about the second axis 102.


Each of the FIGS. 4A and 4B shows a view of yet another device 110 for amplifying a force, according to yet another embodiment of the invention. FIG. 4A shows a perspective view of the device 110, and FIG. 4B shows a partial, elevation view of the device 110. The device 110 is similar to the device 10 shown in FIG. 1, except that the device 110 includes a prime mover 112 that rotates about two axes 114 and 116 as the device 110 amplifies an input force, and a secondary mover 118 that also rotates about the axis 114 as the device 110 amplifies an input force. The input force is a torque 120 applied to the axle 122. The prime mover 112 also includes a swash plate 124 that is coupled to the axle 122 at an angle (shown in FIG. 4B) that is other than perpendicular to the axis 114, but does not rotate with the axle 122 and the secondary mover 118 in the direction indicated by the arrows 126. With the swash plate 124 at an angle, the swash plate 124 pushes the secondary mover's input 130 toward the secondary mover's body 132 during the power stroke half of the secondary mover's revolution about the axis 114 by pushing the end 134 of the prime mover's output 136 toward the secondary mover's body 132. In the second half of the secondary mover's revolution about the axis 114, the secondary mover's input 130 is pulled away from the body 132, by the second secondary mover 118 proceeding through its power stroke half of its revolution about the axis 114.


The angle of the swash plate 124 may be any desired angle other than 90 degrees relative to the axis 114, and the location of the prime mover 112 relative to the swash plate 124 may be any desired location that forces the prime mover 112 to rotate about the axis 116 while the prime mover 112 and secondary mover 118 revolve about the axis 114. For example, in this and other embodiments, the prime mover 112 is located very close to the swash plate 124 as shown in FIG. 4B, and the swash plate 124 is angled about 30 degrees relative to the axis 122. In other embodiments, the prime mover 112 is located a distance away from the swash plate 124. This might be advantageous to reduce the amount of friction between the swash plate 124 and prime mover 112 as the prime mover 112 moves relative to the swash plate 124.


Other embodiments are possible. For example, each of the secondary movers 118 may be configured to generate pressure in a fluid held in its body 132 when the input 130 of each moves both toward the body 132 and away from the body 132. This in effect would be similar to a double acting pump. For another example, the secondary mover 118 may include a single input 130 and single body 132, or more than two inputs 130 and corresponding bodies 132.



FIG. 5 shows a view of another device 140 for amplifying a force, according to another embodiment of the invention. The device 140 is similar to the device 10 shown in FIG. 1, except the device 140 receives an input force from a source that is different than is shown in FIG. 1. More specifically, in this and other embodiments the device receives an input force from a cam 142 that rotates about the axis 144 in the direction indicated by the arrow labeled 146, and the device 140 includes a spring 148 to keep the output 150 of the device in contact with the cam 142. In this manner the spring 148 resets the device's output 150 to the beginning of the device's power stroke.



FIG. 6 shows a view of still another device 156 for amplifying a force, according to still another embodiment of the invention. The device 156 is similar to the device 10 shown in FIG. 1 except the secondary mover 158 of the device 156 includes an output 160 that moves relative to the secondary mover's body 162 in the directions indicated by the arrows 164 and 166. With this and other embodiments, the output 160 of the secondary mover 158 can be used as a brake to control a force by applying the force to be controlled as an input force to the device 156.



FIG. 7 shows a view of yet another device 170 for amplifying a force, according to yet another embodiment of the invention. The device 170 is also similar to the device 10 shown in FIG. 1, except the device 170 receives an input force 172 that is applied to both the device's prime mover 174 and the device's secondary mover 176.


The preceding discussion is presented to enable a person skilled in the art to make and use the invention. Various modifications to the embodiments will be readily apparent to those skilled in the art, and the generic principles herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.

Claims
  • 1. A device for amplifying a force, the device comprising: a prime mover configured to receive a first force, and having an output that, in response to the first force applied to the prime mover, rotates about a first axis through a power stroke defined by an angular displacement that is less than ninety degrees, wherein the output includes a first end that revolves about the first axis during the power stroke;a secondary mover configured to generate, in response to the rotation of the prime mover's output, a second force that is greater than the first force, the secondary mover having an input, an output, and a body, wherein: the input includes a second end that is coupled with the first end of the prime mover's output, and that, as the first end of the prime mover's output revolves about the first axis through the power stroke, the second end of the secondary mover's input also revolves about the first axis and moves relative to the secondary mover's body;the output of the secondary mover is configured to apply the second force to an object;the body is releasably and pivotally anchored at a position relative to the first axis such that as the first end of the prime mover's output revolves about the first axis through the power stroke, the body of the secondary mover pivots about a second axis that passes through the position; andwherein the position of the secondary mover relative to the first end of the prime mover's output is such that, as the first end approaches the end of the power stroke, the speed of the first end of the prime mover's output increases, without an additional force applied to the prime mover's output.
  • 2. The device of claim 1 wherein the output of the prime mover includes a beam pivotally coupled with a fulcrum.
  • 3. The device of claim 1 wherein: the output of the prime mover includes a beam that has the first end, and that is pivotally coupled with a fulcrum a distance away from the first end, andthe first axis passes through the fulcrum such that the first end of the beam revolves about the first axis.
  • 4. The device of claim 1 wherein: the output of the prime mover includes a beam that has the first end, and that is pivotally coupled with a fulcrum a distance away from the first end, andthe power stroke includes an angular displacement of the beam about the fulcrum, between 0 degrees and 45 degrees with 0 degrees being level and 45 degrees being at a location below level in the clockwise direction.
  • 5. The device of claim 4 wherein the first end of the prime mover's output accelerates as the output travels through an angular displacement between 20 degrees and 45 degrees.
  • 6. The device of claim 1 wherein: the input of the secondary mover includes a piston,the body of the secondary mover includes a cylinder, andthe output of the secondary mover includes a cavity disposed inside the cylinder,wherein the piston is coupled with the first end of the prime mover's output and is disposed inside a cylinder such that, as the first end of the prime mover's output rotates through the power stroke, the piston compresses a working fluid inside the cavity.
  • 7. The device of claim 1 wherein the body is releasably and pivotally anchored at a position that is farther away from the first axis than the first end of the prime mover's output.
  • 8. The device of claim 1 wherein the body is releasably and pivotally anchored at a position that is farther away from the first axis than the first end of the prime mover's output, but less than twice the distance from the first axis to the first end of the prime mover's output.
  • 9. The device of claim 1 further comprising an actuator operable to: releasably anchor the body at a position that is a first position, andbefore the prime mover's output begins a subsequent power stroke, releasably anchor the body at a second position that is different than the first position.
  • 10. The device of claim 1 further comprising an actuator operable to: releasably anchor the body at a position that is a first position, andbefore the prime mover's output finishes the power stroke, releasably anchor the body at a second position that is different than the first position.
  • 11. A method for amplifying a force, the method comprising: rotating an output of a prime mover about a first axis, in response to applying a first force to the prime mover;revolving a first end of the prime mover's output through a power stroke defined by an angular displacement that is less than ninety degrees;revolving a second end of an input of a secondary mover about the first axis, wherein the second end is coupled with the first end of the prime mover's output;pivoting a body of the secondary mover about a second axis, wherein the body is releasably and pivotally anchored at a position that the second axis passes through, wherein the position of the secondary mover relative to the first end of the prime mover's output is such that, as the first end approaches the end of the power stroke, the speed of the first end of the prime mover's output increases, without an additional force applied to the prime mover's output;generating a second force in the output of the secondary mover, in response to the movement of the second end of the secondary mover's input, and the movement of the body of the secondary mover about the second axis, wherein the second force is greater than the first force.
  • 12. The method of claim 11 wherein rotating the output of the prime mover about the first axis includes pivoting a beam about a fulcrum.
  • 13. The method of claim 11 wherein revolving the first end of the prime mover's output through the power stroke includes revolving the first end through an angular displacement between 0 degrees and 45 degrees with 0 degrees being level and 45 degrees being at a location below level in the clockwise direction.
  • 14. The method of claim 13 wherein revolving the first end of the prime mover's output through the power stroke includes allowing the first end to accelerate through an angular displacement between 20 degrees and 45 degrees.
  • 15. The method of claim 11 further comprising releasably anchoring the body of the secondary mover at the position.
  • 16. The method of claim 11 further comprising: moving the body of the secondary mover toward the position, andreleasably anchoring the body of the secondary mover at the position.
  • 17. The method of claim 11 further comprising: releasably anchoring the body of the secondary mover at the position, wherein the position is a first position, andbefore the prime mover's output begins a subsequent power stroke, moving the body of the secondary mover toward a second position that is different than the first position.
  • 18. The method of claim 11 further comprising: releasably anchoring the body of the secondary mover at the position, wherein the position is a first position, andbefore the prime mover's output finishes the power stroke, moving the body of the secondary mover toward a second position that is different than the first position.
  • 19. The method of claim 16 wherein moving the body of the secondary mover toward the position includes moving the body in a straight line.
CROSS-REFERENCE TO RELATED APPLICATIONS AND INCORPORATION BY REFERENCE

This application is a Continuation-In-Part patent application of U.S. patent application Ser. No. 16/875,677 filed 15 May 2020 and titled “A Device For Amplifying A Force, And Related Systems And Methods”, which is currently pending. This CIP patent application claims priority from this parent patent application, and also incorporates by this reference the entirety of the parent patent application U.S. patent application Ser. No. 16/875,677.

Continuation in Parts (1)
Number Date Country
Parent 16875677 May 2020 US
Child 18068221 US