The present invention relates to a device (and method) for applying stimulation to the foot or feet of a person, and particularly to a device for applying stimulation in the form of vibration to the front plantar surface of the foot or feet of a person. The present invention is useful for stimulation of the Meissner's Corpuscles along the front plantar portion(s) of a person's foot or feet presented upon the device when the person is in a seated position in front of the device, and the heel(s) of the foot or feet are positioned away from the device. Such stimulation is intended to provide therapeutic effects enhancing the health of the person.
Devices have been developed that stimulate the bottom of a person's foot. The stimulation by such devices is intended to provide therapeutic effects, such as for bone growth, treating orthostatic hypotension, postural instability, enhanced blood and lymph flow, or deep vein thrombosis. Such devices utilize a vibrating or oscillating platform or plate that is stood upon or otherwise applied along the entire length of the bottom of the foot, and are described for example, in U.S. Pat. Nos. 5,273,028, 5,376,065, 6,607,497, 6,843,776, 6,884,227, 7,402,144, 7,207,954, 7,207,955, and 8,603,017, and U.S. Patent Publication Nos. 2007/0055185, 2007/0213179, 2007/0043310, 2008/0015476, and 2008/0139979. Devices for vibrating or oscillating each foot have also been designed into exercise equipment, such as a step climbing machine or stationary bicycle, as described in U.S. Pat. Nos. 7,166,067, 7,322,948, and 7,338,457, or in footwear, as described in U.S. Pat. No. 8,795,210.
A vibration platform, the Juvent 1000 N Micro-Impact Platform, is a product of Regenerative Technologies Corporation of Riviera Beach, Fla., USA, having a base with an oscillating actuator for pivoting up and down a lever at a first frequency which is linked by a dampening spring to pivot two primary levers at a second frequency, and such primary levers have linkages for pivoting two secondary levers. The ends of each of the primary and secondary levers pivot an upper plate that free-floats upon the base. A controller operates the oscillating actuator to provide the desired vibration to the upper plate when stood upon by a person. The design of the 1000 N Micro-Impact Platform is believed to be described in one or more of U.S. Pat. Nos. 6,843,776, 6,884,227, 7,094,211, 7,207,954 and 7,207,955, and U.S. Patent Publication Nos. 2007/0055185, 2007/0213179, and 2007/0043310. Although the 1000 N Micro-Impact Platform is useful, it is heavy at 20 lbs., and bulky as it requires complex levers and linkages to impart up and down motion to the upper plate designed to be stood upon with both feet by a person. Accordingly, it would be desirable to provide a compact device which stimulates the bottom of the foot which avoids levers and motion transfer linkages.
It has been found that stimulation directed to the Meissner's Corpuscles in the front plantar surface of the foot can more effectively provide therapeutic effects than application of stimulation by applied up and down motion to the entire foot or the whole body as in prior art devices. Thus, a device would further be desirable that can direct stimulation primarily to the Meissner's Corpuscles located in only the front plantar portion of the foot, and thus can be more compact and portable than typical platforms that are stood upon for stimulating the entire bottom of the foot or feet. Although units have been designed for stimulating a portion of the foot, these units are strapped or fastened to the foot (see, e.g., FIG. 8 of U.S. Pat. No. 7,402,144), which is undesirable for ease of use and application to one's foot.
Accordingly, it is a principal object of the present invention to provide an improved device for applying stimulation to the foot or feet of a person which can provide such stimulation in the form of up and down motion to the front plantar portion of such foot or feet for stimulating the Meissner Corpuscles there along.
It is another object of the present invention to provide an improved device for applying stimulation to the foot or feet of a person having a platform shaped to facilitate application of up and down motion to the front plantar portion of the foot or feet when such person is in a seated position in front of the device.
A further object of the present invention is to provide an improved device for applying stimulation to the foot or feet of a person in which the person can set a desired stimulation level by either tilting the device until the platform of the device changes to the desired stimulation level, or via an external wireless remote device.
A still further object of the present invention is to provide an improved device for applying stimulation to the foot or feet of a user which automatically increases or decreases power to actuators imparting up and down motion to a platform of the device when load upon such platform increases or decreases, respectively, to maintain stimulation at or near a desired stimulation level.
Briefly described, the present invention embodies a device for applying stimulation to the foot or feet having a platform with an upper surface for placement of a bottom portion of foot or feet of a person or user, one or more actuators attached to the platform under the upper surface for imparting motion to the platform, a base disposed below the platform for supporting the device on an external surface, and motion guides coupling the platform to the base upon which the platform moves in positive and negative displacement (e.g., up and down) with respect to the base responsive to operation of the actuators.
The upper surface of the platform is shaped or contoured for ease of placement of at least the front plantar portion of at least one foot of a person seated in front of the device in which the back or heel portion of the foot is disposed away from the device. In the preferred embodiment, the upper surface of the platform is preferably sloped at an upward angle to provide a sloped portion for supporting the front plantar portion(s) of the foot or feet in which the back or heel portion(s) of the foot or feet of the user extends away from the device. Such sloped portion of the platform may be slightly inwardly curved. The upper surface of the platform preferably extends from the sloped portion along the front of the device to a level portion along the back of the device.
With the device positioned on the external surface, such as a floor, in front of a seated user with the front of the device facing the user's feet, application of the front plantar portion(s) of the foot or feet along the sloped portion provides a first mode for placement of foot or feet to receive stimulation via the platform. In a second mode, the device is positioned on the external surface in front of a seated user with back of device facing the user's feet, then the front plantar portion(s) of the foot or feet are applied upon the level portion to receive stimulation via the platform and a back or heel portion(s) of the foot or feet of the user extends away from the device at a raised height at or near the height of the level portion above the external surface, such as in the case of the user being a person wearing high heel shoes. The device may be used with one foot or both feet at the same time with or without worn foot apparel, such as shoes, sandals, or flip-flops, sock, stockings, or the like. However, if high heels are worn which would made placement at the sloped portion of the platform's upper surface uncomfortable or difficult, the second mode described upon is provided.
Unlike the prior art vibration platforms for stimulation along the entire bottom of the foot or feet, the device of the present invention is designed for directing stimulation towards the Meissner's Corpuscles along the front portion(s) of the foot or feet of a user. Stimulating the entire bottom of the foot is ineffective in providing the sought after therapeutic effect as it undesirably stimulates at the same time the Meissner's Corpuscles along both the front and back portions of the foot or feet. The present invention has a platform which is angled and sized to avoid such stimulation at the same time of both front and back portion(s) of the foot or feet, since the back or heel portion(s) of the foot or feet are not present upon the device when front portion(s) of the foot or feet are upon the device. This results in the back or heel portion(s) of the foot or feet not receiving the same stimulation as the front portion(s) of the foot or feet.
There are preferably four motion guides in the device spaced apart from each other for supporting the platform over the base. Each motion guide has a guide member with an upper flange portion fixed to the platform and a downwardly extending portion that extends through an opening in the base, a first flexible joint member disposed along the extending portion between the upper flange and the base, a retainer member which retains the end of the extending portion that extends through such opening, and a second flexible joint member between the retainer member and the base. The guide member of each motion guide moves with positive and negative displacement (e.g., up and down) in the opening along the first flexible joint member responsive to operation of the actuators, where the second flexible joint member provides an upward force on the guide member to prevent noise during actuation of the motion guide. The first and second joint members may be, for example, disc spring washers, commonly known as wave washers.
The actuators are preferably two in number, and are each an inertial actuator, such as a puck tactile transducer. However, other motion imparting device(s) or oscillator(s) fixable to a member, such as platform, may also be used. Also the device may operate with a single actuator to impart desired motion to the platform.
A controller, such as a programmed microcontroller or microprocessor, is provided on a circuit board mounted to the platform under its upper surface, and thus moves along with the platform when motion is applied thereto by the actuators. A driver on the circuit board is provided for driving the one or more actuators to impart motion to the platform, responsive to pulse width modulated signals and current (+/−) output direction signals received from the controller, with a sinusoidally varying drive current signal. Such drive current signal causes the actuators to impart motion with a sinusoidally varying amplitude such as up to ±50 microns in displacement at a desired frequency, such as 10-75 Hz, but preferably 45 Hz corresponding to a desirable frequency for stimulating Meissner's Corpuscles. The controller also controls the power applied by the driver to the one or more actuators at the sinusoidally varying amplitude by adjusting the setting of an applied reference voltage to the driver which controls the peak current of the drive current signal applied by the driver to the actuators.
An accelerometer is also mounted to the circuit board, and provides acceleration data along x, y, and z orthogonal axes to the controller. The controller uses the acceleration data to adjust the power applied by the driver to the one or more actuators so that the stimulation level is at or approximately near a stimulation level selectable by the user (or a default stimulation level if not selected). The controller may also use the accelerometer data to determine when the user has tilted the device indicating an increase or decrease in the amplitude of varying motion (e.g., +peak to −peak displacement) of the platform until arriving at a desired stimulation level. Further, the accelerometer can provide a tap signal to the controller indicating that the device has been tapped. The controller operates responsive to the tap signal to toggle on or off signals to the driver to start or stop stimulation of the one or more actuators attached to the platform.
The controller may also be in wireless communication with an external device via a wireless transceiver and antenna on the circuit board. The external device can control operation of the device, including at least the user selected stimulation level (e.g., in terms of total travel distance of +peak to −peak displacement), and turning stimulation of the device on and off. Also the controller may similarly communicate via a USB connector if optionally provided on the circuit board.
The present invention also embodies a method for controlling stimulation of a member, such as the above-described platform, which moves in positive and negative displacement responsive to at least one actuator or oscillator coupled to such member for supplying such motion. The method having the steps of generating pulse width modulated signals to a driver for applying a signal to at least one actuator to move the member with a periodically varying motion in positive and negative displacement, determining a value representative of the amplitude of actual (or real-time) periodically varying motion of the member, adjusting power of the signal applied by the driver to the actuator when such value is different from a target level by more than a desired tolerance value to move the actual amplitude of motion in a direction toward the target level, and repeating the determining and adjusting steps while the generating step is being carried out. Amplitude represents the maximum extent of vibration or oscillation of the member due to its periodically varying motion. The value representative of amplitude of motion may be in terms of difference of maximum and minimum magnitude of acceleration of the member as its motion periodically varies along x, y, and/or z orthogonal axes, where value of target level is in such same terms to facilitate comparison of amplitude and target level during the adjusting step. Such target level is selectable by the user to provide the desired level of stimulation. The method may be carried out by the controller of the device described above.
The foregoing objects, features and advantages of the invention will become more apparent from a reading of the following description in connection with the accompanying drawings, in which:
Referring to
As shown in
The top surface 14a of platform 12 is divided into a level portion 18, and a sloped portion 19 having a surface 19a. The sloped portion 19 extends at an upward slope angle 19b with respect to the x axis. Slope angle 19b increases as surface 19a extends upwards so that surface 19a is slightly inwardly (concave) curved in shape along the y axis, as best shown in
The distance of sloped portion 19 between front wall 16a and level portion 18 along the device's width is selected to be at least the length of the front plantar portion along the typical foot, but less than the length of the entire foot. For example, such distance may be about half the width of the device 10, such as between 3 to 4.5 inches, but other distances may be selected. For example, the distance may be selected to be half of the average women's foot length, e.g., 4 inches, but a larger distance may be selected to also accommodate the front plantar portion or region of a man's larger foot upon sloped portion 19. The distance between the back wall 16b and the sloped portion 19 along the device's width is similarly selected to be at least the length of the front plantar portion along the typical foot, but less than the length of the entire foot. The length of the device 10 allows the user, if desired, to place both feet comfortably spaced beside each other upon either slope portion 18 or level portion 19, as described below.
As illustrated for example in
If a shoe 24 is worn with the heel or back portion 24a at or near the height of the platform 12 along level portion 18, it may be difficult to use device 10 with such shoes in the above described front mode. Thus, device 10 may be reversed with respect to the foot 20 so that the shoe 24 extends over the back wall 16b onto level portion 18, as shown for example in
Although the above describes the preferred contour or shape of surface 14a of platform 12 for ease of use with foot or feet of a user or person seated in front of the device 10 to face the front or back thereof, other contour or shape of surface 14a may be provided, if desired. For example, in a less preferred embodiment provides only sloped portion 19 with device 10 sized to reduce or remove level portion 18.
Stimulation or motion is applied to platform 12 by two inertial actuators 28 fixed to the underside surface 14b of platform 12, such as by screws 29 into threaded holes molded along surface 14b. A circuit board 30 is also fixed below the underside surface 14b, such as by screws 31 into threaded holes molded along surface 14b, with electronics (see
Actuators 28 are referred to as inertial actuators since they may be electrically inertia actuated devices which convert electrical audio frequency signals into mechanical forces that can impart motion. Each inertial actuator has an exciter that uses an internal inertia mass to resist the force generated by the sinusoidal current flowing through a voice coil to produce a reactive force against the solid surfaces of the platform the inertial actuators are mounted to. For example, the inertial actuators 28 may be Dayton Audio TT25-16 (16 ohm) or TT25-8 (8 ohm) Puck Tactile Transducer Mini Base Shake 300-388. Although two actuators 28 are shown, a single centrally located actuator along back surface 14b may alternatively be used, or more than two actuators 28 along surface 14b, depending on the size of platform 12 and number needed to provide the desired stimulation force. Inertial actuator(s) are preferred in device 10, but other types of actuator(s), oscillator(s), or electrical to mechanical transducer(s) may be used that can be fixed to a member, such as platform 12, and driven to apply force(s) that moves the platform as described herein.
Platform 12 has four cylindrical posts 25 that extend downward from the platform's underside surface 14b to a common level or x-y plane, as shown in
Each motion guide 26 has a guide member 33 having an upper flange 34a and a lower cylindrical portion 34b, a flexible joint member 32a, and a retainer member provided by a screw 36 and a washer 37 for fixing the guide member 33 to platform 12 so that the guide member 33 is movable in hole 38 upon flexible joint member 32a in positive and negative displacement along the z axis. Guide member 33 is made of a low-friction type of material so that lubrication is not needed, and cylindrical portion 34b of guide member 33 has an outer diameter slightly less than the diameter of hole 38. With flexible joint member 32a disposed around the cylindrical portion 34b of guide member 33, upper flange 34a of the guide member 33 is located upon one of posts 25 so that lower cylindrical portion 34b extends downward and is received through hole 38 of base 13 and flexible joint member 32a located in a gap between upper flange 34a and base 13, as best shown in
Another flexible joint member 32b is preferably provided around the end of cylindrical portion 34b of guide member 33 that extends through hole 38 into opening 39. Flexible joint member 32b is located in the gap formed between washer 37 and base 13 when washer 37 is maintained by screw 38 in abutment to the end of cylindrical portion 34b of guide member 33 that extends through hole 38. The flexible joint member 32b provides a pre-load force upon guide member 33 and minimizes noise during motion of the motion guide 26 along hole 38 when platform 12 moves with respect to base 13. For purposes of illustration, the assembly of two of the motion guides 26 is shown in
Flexible joint members 32a and 32b may each be a steel washer that is corrugated about its surface and has a central opening of a diameter so that it can be received upon cylindrical portion 34b of guide member 33. For example, flexible joint member 32a may be disc spring wave washer manufactured by McMaster-Carr, model number 9714K14, providing a deflection of 0.047 inches at a maximum work deflection load of 37.5 lbs. Flexible joint members 32b may be the same as flexible joint members 32a. However, other flexible and/or elastic material for flexible joint members 32a and 32b may also be used, such as rubber, or coil spring, that provides the desired deflection.
Flexible joint member 32a is positioned in a gap between flange 34a and base 13 so that applied load upon the platform 12 (plus the weight of the platform 12) is distributed upon joint members 32a of the four motion guides 26 provided near each of the rounded corners of the device 10. Thus, in the case where each of the flexible joint members 32a has a maximum work deflection load of 37.5 lbs., then maximum weight applied load upon the platform 12 (plus the weight of the platform 12) is four times this value or 150 lbs.
Platform 12 freely floats over base 13 upon the motion guides 26 so that it can move or vibrate with respect to base 13. Due to the size of actuators 28, the height of base 13 may be recessed along regions 13d (
For example, device 10 has a maximum width of about 7.5 inches, a length of 14 inches, and a height above external surface 22 of 1 inch at the lowermost part of surface 14a at front wall 16a, and 2 inches along level portion 18. The height of the device varies in vertical displacement, such as up to ±50 microns (100 microns of total travel peak to peak), due to varying up and down motion of platform 12 with respect to base 13 when actuators 28 are operated. The level portion 18 and sloped portion 19 are shown in
Referring to
Driver 46 is connected to actuators 28, via 2-pole low pass filter 48, and when input 45a is high (or on), driver 46 applies a signal to serially connected actuators 28 at a drive current set by Vref value at input 45b. The direction (+or −) of current of the signal applied by driver 46 to actuators 28 is set by the digital value at input 45b, either high or low. The voltage of the applied signal by the driver 46 is set in according with the ohm rating of the actuators 28. For example, the applied voltage of such signal may be +/−12V depending on the current direction, where each actuator 28 is a 16 ohm Dayton Audio Model Puck TT25-16. It has been found that the longer on-time or width of a pulse of the signal applied by driver 46 to the actuators 28, the actuators receive more energy/power until reaching their maximum current level as set by Vref. Thus by microcontroller 44 controlling the on-time or width of pulses and the current direction applied to driver 46, a sinusoidal varying drive current signal can be generated by driver 46 at the desired frequency, such as 45 Hz, in the preferred embodiment for the stimulation of the Meissner's Corpuscles. This drive current applied to actuators 28 causes a periodic, e.g., sinusoidal, varying amplitude of motion of positive and negative displacement of platform 12 with respect to base 13.
In order to generate a sinusoidally varying drive current signal to actuators 28, the microcontroller 44 applies pulses to input 45a of driver 46 which are modulated in width (on-time) and in direction (+or −) set at input 45b of driver 46 in accordance with stored table in non-volatile memory of the microcontroller 44. For example, the sinusoidal cycle at the desired 45 Hz, is divided into 128 samples providing a pulse width modulation (PWM) frequency, FPWM, of 3600 Hz. Over the first half of the cycle of 64 pulses, the on-time (or width) of each successive pulse increases from zero to the peak of the cycle and then decreases back to zero with positive (+) current direction, in accordance with entries in the table for such samples. Over the second half of the cycle of the next 64 pulses, the on-time of each successive pulse increases from zero to the peak of the cycle and then decreases back to zero with negative (−) current direction, in accordance with entries in the table for such samples. This cycle of signals at inputs 45a and 45b then repeats to establish the sinusoidally varying drive current applied by driver 46 to actuators 28 when driver 46 is being actuated by microcontroller 44.
The theory for establishing the sinusoidally varying signal at 45 Hz using a stored table of sine wave samples corresponding to N=128 samples of one complete cycle, is shown in the graph of
s(t):=A·sin(2·π·t·FPWM)
t:=0·s, 1/(N·FPWM) . . . (1·s)/45
where t is time, s(t) is displacement, A is ±peak amplitude, FPWM is the desired pulse width modulation frequency, and number 45 is the selected drive signal frequency in Hertz. In the
Any number of N samples can theoretically be used, however, there are significant trade-offs to be considered. As the number of cycles increases, so too does the PWM frequency FPWM. Conversely, as N decreases, FPWM decreases, making the PWM filter requirements more difficult to obtain because there is less separation between the desired frequency, e.g., 45 Hz, and rejection frequency (FPWM). These sampled values are stored in such table in non-volatile memory and can be continually played back by microcontroller 44 using inputs 45a and 45b of driver 46 to produce a sinusoidally varying drive current signal applied to serially connected actuators 28 that causes such actuators to respond with a stimulation force of sinusoidally varying amplitude of positive and negative displacement (or vibration) of platform 12 at the selected frequency. Thus, the microcontroller 44 may be considered as providing a PWM generator that produces a series of pulses whose on-time varies according to the value from the table. Preferably, pulse width modulation is used (versus other forms of power drive) due to its high efficiency which minimized power dissipation within the device (and hence reduces heat). Although the frequency of 45 Hz has been selected, other frequencies of sinusoidal varying amplitude may similarly be selected such as in the range of 10-75 Hz.
To generate each successive pulse, the microcontroller 44 has an internal free-running PWM drive counter that is compared to a limit register named ‘TOP’ set to the value of the on-time counts for that pulse read from the table. When equal, the PWM drive counter is reset. Thus the PWM frequency, FPWM, i.e., the time it takes the counter to complete a counting cycle, is controlled by both its clock frequency (e.g., 16 MHz) and the value in the TOP register. The value of TOP (minus 1) is the maximum PWM on-time count value available. The output (PWM) pulse width is in counts (or ticks) of the free-run counter frequency (16 MHz). A pulse on-time count (or tick) is 1/16 MHz or 62.5 nanoseconds.
The table below shows an example of the above described table storing the on-time counts of each of the 128 sample pulses in each cycle, as graphically illustrated by the curve shown in
For example, in the above table at the positive peak of the sinusoidal curve the number is a pulse of 2776 counts on-time, which generates a pulse at input 45a that is 2776/16 MHz seconds wide or 173.5 microseconds in duration. Although the above is the preferred embodiment, other pulse width modulated signals may be used with other clocking of on-time to create desired actuator drive current curves. For example, partial or non-sinusoidally periodic varying curves may be provided at a desired stimulation frequency by adjusting entries in the table. Further, multiple different tables could be stored in non-volatile memory of the microcontroller which may be selected via a user interface for the device to provide different stimulation waves of platform movement.
The software in microcontroller 44 uses an internal variable DRIVE having a value representative of the drive current output from driver 46 to actuators 28. Microcontroller 44 sets the Vref level at input 45c of driver 46 based on the value of DRIVE. As stated earlier, Vref is a DC voltage whose amplitude provides the desired peak current (and hence power) of the output signal of driver 46 per the manufacturer of driver 46. By choosing the cutoff frequency of low-pass filter 48 at least a factor of ten lower than the PWM frequency of microcontroller's PWM output to input 45a, the relationship of DRIVE value to Vref level is computed in microcontroller 44 as Vref=Vcc*DRIVE/2n, where Vcc is microcontroller's 44 supply voltage, typically 5V, and n is the number of bits in the PWM generator, typically 10. So, for example, setting DRIVE to 50 produces 5*50/1024 volts, approximately 244 mV signal at input 45c. This in turn sets the peak drive current at 0.244 divided by the ohm value of resistor 47. As will be described later, DRIVE is the mechanism by which the amplitude of motion of platform is regulated as the load applied to platform 12 varies.
The DRIVE value (and hence Vref level at input 45c) preferably is adjusted by microcontroller 44 when motion is applied to platform 12 by actuators 28 so that driver 46 will, for example, cause actuators 28 to vibrate at or near a user desired target level of +peak to −peak amplitude of sinusoidal motion of platform 12 along the z axis. This target stimulation level is stored in a variable called COMMAND, which is a value adjustable by the user as described below. A COMMAND value may also be stored in non-volatile memory for use when needed to set the value of the COMMAND variable, such as at start-up of device 10. The COMMAND value is in terms of the amplitude of acceleration of platform 12 motion, and such acceleration amplitude is directly proportional to peak-to-peak amplitude of stimulation motion of platform 12 at its frequency of oscillation. In other words, the amplitude of motion of platform 12 increases linearly as the amplitude of the acceleration of platform 12 increases until the upper mechanical limit of motion guides 26 or the power limit of driver 46 is reached. COMMAND may have a value between 0 and 8192, where values are in terms of acceleration amplitude that are proportional to desired peak-to-peak amplitude level of stimulation. The range of COMMAND values are typically limited during operation to a desired range, such as 300 to 7000, associated with maximum and minimum levels of stimulation. For example, stimulation levels of 20 μm, 35 μm, 50 μm, 65 μm, 80 μm correspond to COMMAND values of 780, 1080, 1360, 1700, and 2010, respectively. It is believed that 50 μm peak-to-peak motion (or stimulation level) will provide about 0.2g amplitude of acceleration (i.e., ±0.2 g peak to peak), where g=9.8 m/sec2.
Prior to any load or mass (or downward force) being present on platform 12, COMMAND values of 780, 1080, or 1360 for example results in DRIVE values of 700, 1250, and 1900, respectively. In operation, a load or mass (or downward force) will be applied upon platform 12, such as when front portion 21b of a foot or feet 20 is placed upon device 10. When a load is so applied this will tend to dampen the peak-to-peak motion, and the user may increase COMMAND level accordingly. However, preferably device 10 automatically adjusts for this increase in load upon platform 12 to maintain a user's desired level of stimulation motion associated with a COMMAND value and therefore the desired stimulation of the Meissner's Corpuscles. Thus, as described below in connection
The accelerometer 50 also sends to the microcontroller 44 a signal indicating when a tap has been received in the +/−y axis direction, such as by a user tapping upon the device 10 with their foot or a hand on side walls 15a or 15b. The tap signal represents user input to toggle (or switch) device 10 stimulation from either on to off, or off to on, depending on the current state of device 10 operation. Such tap signal from accelerator 50 may be received by microcontroller 44 as a software interrupt.
The microcontroller 44 stores in its RAM memory a PUCK on/off flag which controls whether signals are being sent or not along inputs 45a, 45b, and 45c to driver 46 for vibrating platform 12. When the PUCK flag is “off”, then input 45a at driver 46 is maintained as a digital low or 0 level, which stops driver 46 operation and hence halts actuators 28 from moving platform 12. The PUCK flag is thus toggled in state when microcontroller 44 receives a signal from accelerometer 50 indicating a tap upon device 10.
The microcontroller 44 communicates with a user via a Bluetooth (wireless) transceiver 51 having an antenna 52 on the circuit board 30. For example Bluetooth transceiver IC may be a Microchip Model RN41. A Bluetooth enabled external device 54, such as a Smartphone, tablet, laptop, or other microprocessor programmable device, with a Bluetooth communication feature which is paired with Bluetooth transceiver 51 as conventionally performed. Interfaces in the microcontroller 44 and Bluetooth (wireless) transceiver 51 enable serial data communication between microcontroller 44 and the transceiver 51. However, such serial communication interface may optionally be provided by a separate component, such shown by Bluetooth UART Interface 53.
Bluetooth transceiver 51 operates responsive with external Bluetooth enable device 54, if within proximity range of antenna 52 on circuit board 30, for typical pairing of a Bluetooth connection for communication between microcontroller 44 and the program/application operating on external device 54 enabling interaction with the microcontroller. An example of a user interface screen of such a program/application is shown in
Alternatively, commands and interaction with the microcontroller 44 may be provided via a USB connector 56, via a USB-UART interface 57, for serial communication by USB protocol (e.g., cable) with microcontroller 44. Preferably, the function of USB-UART interface 57 is part of microcontroller 44. USB connector 56 is used for interfacing a personal computer or laptop with the microcontroller 44 by a USB cable, such as during manufacture of device 10.
The software or program which controls the operation of device 10 will now be described in more detail in connection with
The microcontroller 44 recalls a stored user selected target COMMAND value from its non-volatile memory (NVM), and sets the COMMAND variable to that value. If no target COMMAND value is specified (null value) in non-volatile memory, the COMMAND variable is set to a default COMMAND value that may also be stored in non-volatile memory. The default COMMAND value is used if none was stored in non-volatile memory by microcontroller 44 from a previous session or operation of device 10. The drive is turned on by the PUCK flag being set to “on”, and microcontroller 44 in response actuates driver 46 to apply a sinusoidally varying current amplitude signal to actuators 28 by sending signals at inputs 45a and 45b of driver 46 that will tune the DRIVE value so that actual peak-to-peak amplitude of acceleration (AMPL) of platform 12 motion calculated by the microcontroller is at or near the COMMAND value. The initial DRIVE value at step 62 is zero or set to a default value stored in non-volatile memory, and then as shown in
The microcontroller 44 then checks if it has received in a buffer any command via USB connector 56 or Bluetooth transceiver 51 (steps 63 and 64). If so, it decodes such command, and responds accordingly. A set of commands is provided in software for external device 54 or other device connected via USB connector 56 to communicate with the microcontroller 44 for controlling operation of device 10 or to determine its status. For example, such commands include: Puck <on/off>, Amplitude closed <COMMAND value>, and Amplitude open <pwm value>. Other commands may be provide as needed for testing operation of device electronics during manufacture or repair. When a Puck command is received followed by “on” or “off”, the microcontroller 44 changes the PUCK flag accordingly in memory. When an Amplitude command is followed by “closed” and then a numerical value, the microcontroller 44 stores this value in non-volatile memory as the new user selected target COMMAND value for peak-to-peak amplitude of acceleration of platform 12 motion. Less preferably, the command Amplitude “open” and then a numerical value for a desired DRIVE value is sent, in which microcontroller 44 in response sets and maintains the Vref DC amplitude level associated with such DRIVE value and does not changes Vref or the DRIVE value with load applied upon platform 12.
The external device 54 has a program (or application) for sending and receiving commands enabling user interaction with microcontroller 44. The external device 54 can also query status of operation of the device. For example, sending the command Puck without any following argument returns from the microcontroller 44 to external device 54 and/or other device via USB 56, the state of the PUCK flag, and sending the Amplitude without any following argument returns from the microcontroller 44 to external device 54 and/or other device via USB 56 the current COMMAND value stored in RAM memory of the microcontroller. The external device 54 and/or other device via USB 56 may convert the returned value and display it and/or its associated stimulation level of +peak to −peak motion displacement.
When the microcontroller 44 detects received acceleration data from accelerometer 50 at step 66, it proceeds to step 74 in
At step 77, microcontroller 44 compares the calculated MAG value with a MAX value, and if MAG is greater than MAX then MAX is set to the MAG value. At step 78, microcontroller 44 compares the calculated MAG value with a MIN value, and if MAG is less than MIN then MIN is set to the MAG value. At step 79, the sum of MIN and MAX is divided by two and the resulting value is stored as ZERO. At step 80, the value of AMPL is calculated by subtracting MIN from MAX. If under close loop control amplitude (step 82), a check is made if device 10 is sitting flat when eight times the x acceleration value is less than z acceleration value read at step 74, and eight times the y acceleration value is less than z acceleration value read at step 74 (step 83). In other words, acceleration of the platform 12 is mostly in the vertical z axis. If the device 10 is determine sitting flat (or level), a FLAT flag in RAM memory of the microcontroller is set to true (step 84), otherwise the FLAT flag is set to false (step 85). As the SYNC flag is false (step 86), a check is made as to whether the MAG value is greater than ZERO value (step 87), and if so the SYNC flag is then set to true (step 88). If the MAG value is greater than zero, then actuators 28 are being driven by driver 46 along increasing positive side of the sinusoidal drive current signal, and thus the MAG and AMP values may be used for controlling the DRIVE value by microcontroller 44 when later branching through step 86 to step 101 of
The user may optionally manually set the stimulation level of device 10 by tilting the device 10 to the right or left along the y axis to increase or decrease, respectively, the peak-to-peak stimulation level of platform 12 when keeping little or no tilt along the x and z axis. As shown in
A check is made after steps 90 or 93 as to whether the value of U is above or below the desired range of COMMAND values within which device 10 will operate. If U is increased at step 90 and the value of U is less than or equal to the value of MAXCMD, i.e., maximum possible value of COMMAND (step 91), then step 95 is performed to change the COMMAND value accordingly. If U is decreased at step 93, and U is greater than or equal to a MINCMD, i.e., minimum possible value of COMMAND, (step 94), then step 95 is performed to change the COMMAND value accordingly. Otherwise, such the value of COMMAND is not updated to U, and microcontroller 44 proceeds to step 96.
The thresholds ALIM, AMIN, MAXCMD, MINCMD, and step value of DI are stored in non-volatile memory for use by microcontroller 44. ALIM represents an acceleration value, typically 2000, which if exceeded is indicative of device being tilted along positive (step 89) or negative (step 92) y axis. AMIN represents a minimum acceleration value, typically 300, associated with little or no tilt along x or z axis. MAXCMD represents the maximum value of COMMAND, such as 7000. MINCMD represents the minimum value of COMMAND, such as 300. DI is the amount COMMAND can change in one acceleration data sampling period, typically 50.
At step 95 to adjust to the new user desired stimulation level, the COMMAND variable is set to the U value, a 20 second timer, called Savetimer, is started, and PUCK flag is turned “off” for a 100 millisecond timed delay (as measured by the heartbeat timer) to stop driver 46 from actuating actuators 28. After the 100 millisecond delay expires, PUCK flag is turned “on” to again start driver 46 to actuate actuators 28. The 100 millisecond delay generates a brief shutter in the motion of platform 12, which provides the user notice (e.g., tactile feedback) of success in changing the stimulation level by the +/−step value DI as desired. In operation, the user holds device 10 tilted as desired for several seconds so that microcontroller 44 passes several times through
During this period of delay, optionally microcontroller 44 may send other signals along input 45a and 45b at a setting for Vref level at 45c which enables driver 46 to output an audio signal that allows actuators 28 to operate as typical speakers which the user can hear. Such audio signals may be stored in memory (e.g., non-volatile memory) of the microcontroller, such as a beep, tone indicating up or down, a synthesized voice informing the user of the value of the new stimulation level that is associated with the new COMMAND value, or other audible indicator of stimulation adjustment. Optionally one or more LEDs 49 (
If the value of U was outside the desired MAXCMD and MINCMD range (steps 91 or 94), or step 95 has been completed, a check is made at step 96 as to whether microcontroller 44 has received a tap signal from the accelerometer 50. As stated earlier, the accelerometer 50 can provide a signal at an input of microcontroller 44 when a tap has been received in the +/−y axis direction, such as by a user tapping upon device 10 with their foot on side walls 15a or 15b. If such tap signal is received at step 96 and device 10 is sitting flat at step 97 (i.e., FLAT flag is true), regardless of the whether Savetimer has expired or not, a check of drive status (i.e., the PUCK flag setting) is made at step 98. If PUCK flag is “on” indicating drive is on at step 98, then the value of the COMMAND variable currently stored in RAM of the microcontroller 44 is stored as the target COMMAND value in non-volatile memory and the PUCK flag is changed to “off” to turn off the drive of actuators 28. If PUCK flag is “off” indicating drive is off at step 98, then the COMMAND variable is set to the value of the stored target COMMAND value (or the default value if none stored) from non-volatile memory, and the PUCK flag is changed to “on” to turn on the drive of actuators 28. After steps 99 or 100, the microcontroller 44 returns to step 63 in
If in
By repeating the above steps 101-106 periodically, a control loop is established which can increase or decrease the DRIVE value in one or more +/−dDC steps, which will cause subsequent AMPL values calculated at step 80 to approach the COMMAND value. The change in subsequent AMPL values is the result of the response of microcontroller 44 to each step change in DRIVE value to signals sent, via low pass filter 48, that establishes a Vref level at input 45c of driver 46, at the associated DRIVE value, and an increase or decrease in the current of the signal applied by driver 46 to actuators 28. The device 10 thus smoothly transitions as it automatically adjusts to change in load, mass or weight upon the platform 12 to the user desired stimulation level associated with the COMMAND value.
Returning to
If Savetimer was not reset since the last update of non-volatile memory, or if set at step 95 and not yet expired, the microcontroller 44 proceeds from step 70 to step 71. Microcontroller 44 at step 71 checks if one second has elapsed as measured by the microcontroller using the running heartbeat timer. If so, microcontroller 44 updates a use time counter in non-volatile memory of microcontroller 44 at step 72, and proceeds back to step 63 and continues from there as described above. If one second has not yet elapsed at step 71, microcontroller 44 returns back to step 63 and continues from there as described above.
Referring to
Using an established wireless connection between devices 10 and 54, device 54 sends a Puck “on” command to device 10 when Start button 115 is pressed, and Puck “off” command when either Pause button 117 is pressed, or when the countdown timer expires. The microcontroller 44 of device 10 receives such command and operates accordingly. Prior to sending the Puck “on” command, an Amplitude closed command is sent to device 10 with the Command value in terms of a COMMAND value for the selected stimulation level 114. The program operating the user interface in external device 54 stores Command values for each different stimulation level selectable by the user. For example, stimulation levels of 20 μm, 35 μm, 50 μm, 65 μm, 80 μm (in terms of +peak to −peak platform 12 motion displacement) correspond to Command values of 780, 1080, 1360, 1700, and 2010, respectively. The microcontroller 44 of device 10 stores the received Command value as a COMMAND value in its non-volatile memory, and sets the variable COMMAND to the received value. If the user changes to a different selected stimulation level during operation of device 10 (i.e., while timer 116 is running), another Amplitude closed command is sent with a Command value associated with such stimulation level. Although five stimulation levels and duration levels are shown, other numbers of stimulation levels and/or durations may be provided and selected by different graphical elements, such as a slide. In this manner, a user can remotely control operation of the device. The same or similar user interface may be provided by other types of external devices 54, such as a tablet or other microprocessor based device, which has a wireless transceiver that can communicate with a wireless transceiver in device 10.
When a remote such as provided by external device 54 is not present, or even when a connection has been established to external device 54, the user may adjust the stimulation level by tilting the device 10 until the desired stimulation level is reached, as described earlier in connection with
Calibration of device 10 may be useful to account for variations and non-linearities in stimulation performance of over its range of levels. An external calibrated accelerometer may be attached to platform 12 to measure the amplitude of acceleration at one or more stimulation levels, and the COMMAND values for each level corrected, i.e., increased or decreased, to provide the desired measured amplitude of acceleration. In other words, as each stimulation level is associated with a different acceleration amplitude of platform motion 12, calibration of the device 10 can assure that COMMAND values used by external device 54 provide the desired different stimulation levels. As stated earlier, 50 μm stimulation level occurs at or about 0.2 g amplitude of acceleration of platform 12 by which the platform accelerates up to between its + and −peaks of displacement. The earlier example of COMMAND values for different stimulation levels represent COMMAND values corrected by such calibration for device 10 at time of manufacture. Once device 10 operation is so calibrated, different ones of device 10 may not require such calibration. However, if different ones of device 10 have different sets (or relationships) of calibrated COMMAND values for stimulation levels, then the set of COMMAND values for stimulation levels needed for a particular one of device 10 may be provided to external device 54 when downloading and storing the program, application, or software using an identifier, code, version, model, or number associated with that device 10 at the Internet server that provides such program, application, or software to the external device 54.
As circuit board 30 is described as being mounted to the underside of the platform 12 along surface 14b, all the components on the circuit board 30, such as accelerometer 50 and microcontroller 44, are thus attached to platform 12, and movable along with platform 12 when actuators 28 are operated. Less preferably, the circuit board 30 is mounted to base 13 with wires 28a to actuators 28.
From the foregoing description, it will be apparent that a device and method for applying stimulation to the foot or feet of a person has been provided. Variations and modifications of the herein described device and method (and software for enabling same), and other applications for the invention will undoubtedly suggest themselves to those skilled in the art. Accordingly, the foregoing description should be taken as illustrative and not in a limiting sense.
Number | Date | Country | |
---|---|---|---|
Parent | 14543494 | Nov 2014 | US |
Child | 15721928 | US |