The present invention relates to devices for aspiration of the subretinal fluid (SRF) of the eye in a retinal detachment that allows re-apposition of the sensory retina to the underlying RPE.
A retinal detachment occurs when subretinal fluid (SRF) causes separation between the sensory retina and the supporting outer tissues, which consist of the retinal pigment epithelium (RPE) and choroid. Typically, retinal detachments are caused when a full-thickness defect in the sensory retina allows for SRF to access the subretinal space. This SRF is derived from liquefied vitreous humor (the transparent gel that occupies the posterior segment of the eye), and full-thickness defects may be defined by either a tear or hole in the retina. Additionally, a retinal detachment can be caused when the sensory retina is pulled away from the RPE due to the tractional forces of the vitreous body. In this case, the SRF may be derived from the capillaries in the choroid and can gain access to the subretinal space through the RPE. Retinal detachments may form spontaneously due to an eye or head injury. Existing pathologies may also contribute to retinal detachments, such as diabetic retinopathy.
Retinal detachments usually require immediate surgical repair. If left untreated, liquefied vitreous can continue to enter the subretinal space through a tear or vitreal traction can continue to apply separation forces on the sensory retina. Chronic separation between the sensory retina and the underlying RPE can deprive the sensory retina of nutrients and oxygen, causing the sensory retina to atrophy with resultant vision loss.
Current methods to treat retinal detachments by re-apposition of the sensory retina to the RPE and choroid include scleral buckling, pneumatic retinopexy, and vitrectomy with the use of tamponading agents. These treatments are often accompanied by cryopexy or laser photocoagulation to seal retinal tears. Each of the above procedures does not provide immediate re-apposition of the detached retina to the underlying tissues. Aspiration of the SRF to provide immediate re-apposition of the detached retina may provide greater reattachment efficacy and reduced healing time. Failure to provide immediate re-apposition can result in the use of uncomfortable implants that limit the range of eye motion and produce long reabsorption rates of the SRF by the tamponade effect.
Aspiration of the SRF using a polymer micro needle to cross the sensory retina from the interior and draining the fluid with an external vacuum source is one approach. However, this method can fail due to the properties of the sensory retinal tissue. By nature, the sensory retina and the RPE are very flexible and conformal, and therefore the tissues may be directed by the vacuum source into the opening of the needle, occluding the needle and preventing aspiration of the SRF. Another failure mode may be attributed to kinking of the micro needle. While accessing the subretinal space, the micro needle may be bent when encountering tissues, kinking the shaft and reducing its effective vacuum and ability to aspirate the SRF. There is a need for devices that address the issue of occlusion via aspiration of the tissues into the device lumen.
The present invention provides devices that allow for aspiration of the SRF in a retinal detachment using an ab-interno approach in conjunction with sclerostomy port systems. Use of the devices allows aspiration and removal of the SRF that overcomes the previously described failure modes, thus allowing for immediate re-apposition of the sensory retina to the underlying RPE without any tamponading agents or implants. In addition, the devices of the invention may be used to provide re-apposition of the sensory retina as an adjunctive means to other forms of retinal detachment treatment to improve reattachment and healing.
The present invention provides a surgical device for use in the eye comprising:
a first elongated tubular member having a proximal and a distal end and a lumen passing from the proximal end to the distal end, preferably sized appropriately to fit through a conventional sclerostomy port;
a second elongated tubular member having a proximal end and a distal end having a pointed tip, disposed within the lumen of the first tubular member, the second elongated tubular member having a passage therethrough from its proximal end to its distal end;
an annular space within the lumen of the first elongated tubular member, annularly surrounding the second elongated tubular member wherein the passage and the annular space are in communication;
the distal end of the first elongated tubular member being open-ended and adapted to be placed in contact with a tissue surface whereby upon reduction of pressure within the annular space, the distal end of the first elongated tubular member seals to the tissue and the pointed tip penetrates the tissue and aspirates fluid beneath the tissue into the passage from the distal end of the second elongated tubular member.
In one embodiment the passage in the second elongated tubular member may be in communication with a device for aspirating fluids, suspensions, viscous solids or gases, through the passage. The device for aspiration may comprise a syringe or a surgical vacuum source.
In one embodiment the distal end of the second elongated tubular member extends beyond the open distal end of the first elongated tubular member. Typically the second elongated tubular member extends beyond the open distal end of the first elongated tubular member by about 0.005 inch to about 0.125 inch.
In one embodiment the device further comprises one or more fenestrations in the second elongated tubular member that extends beyond the open distal end of the first elongated tubular member. Typically the fenestrations have a maximum diameter of in the range of about 0.0005 inch to about 0.005 inch. Typically the centers of one or more fenestrations are a distance from the distal end of the second elongated tubular member in the range from about 0.001 inch to about 0.01 inch.
In another embodiment the device further comprises a blocking member disposed in the annular space at the distal end of the device, the blocking member having a configuration sufficient to substantially prevent the ingress of tissues into the annular space through the open distal end without preventing fluid flow through the annular space. The blocking member may typically comprise a coil, a loop or a perforated sheet. In a perforated sheet the perforations typically have average diameters in the range from about 0.0001 inch to about 0.005 inch.
In one embodiment the device further comprises a stiffening member disposed within the lumen. The stiffening member typically comprises a wire.
In another embodiment the device further comprises a third hollow tubular member in communication with the annular space.
In one embodiment the device further comprises a tissue guard disposed within the passage of the second elongated tubular member that extends beyond the open distal end of the first elongated tubular member. The tissue guard may typically comprise a wire loop or coil. In one embodiment the wire has an atraumatic tip.
In another embodiment the device further comprised a tissue guard disposed external to the second elongated tubular member that extends beyond the open distal end of the first elongated tubular member. The tissue guard may be collapsible. The tissue guard is typically disposed up to about 0.01 inches from the distal end of the second elongated tubular member that extends beyond the open distal end of the first elongated tubular member. The tissue guard may comprise a balloon or slits that expand when compressed. In some embodiments the tissue guard is expandable by activation.
In one embodiment the device further comprises a sensor for activating the tissue guard. The tissue guard may be activated mechanically or electrically by the sensor. In some embodiments the tissue guard is adapted to activate to automatically expand upon penetration into the subretinal space.
The present invention provides surgical devices for aspirating SRF from the subretinal space in a retinal detachment. The devices comprise features that advantageously avoid potential failure methods associated with previous attempts to aspirate the SRF using a micro needle. The failure methods include occlusion of the micro needle by the sensory retina and the RPE, trauma to the retina and kinking of the micro needle.
The present invention provides a device for aspirating subretinal fluid (SRF) when the subretinal space is accessed from the interior of the globe of the eye through a conventional sclerostomy port system.
It is preferred to introduce the device to the posterior chamber with the use of a sclerostomy port. The sclerostomy port is introduced through the sclera at the pars plana to provide access to the posterior chamber. The port provides surface stabilization, sealing to maintain posterior chamber pressure and the ability to interchange surgical tools. Sclerostomy port systems are commercially available to provide access for devices typically from 20 to 25 gauge in diameter.
As shown in
In general, a device according to the invention comprises a first elongated tubular member having a proximal and a distal end and a lumen passing from the proximal end to the distal end;
a second elongated tubular member having a proximal end and a distal end having a pointed tip, disposed within the lumen of the first tubular member, the second elongated tubular member having a passage therethrough from its proximal end to its distal end;
an annular space within the lumen of the first elongated tubular member, annularly surrounding the second elongated tubular member wherein the passage and the annular space are in communication;
the distal end of the first elongated tubular member being open-ended and adapted to be placed in contact with a tissue surface whereby upon reduction of pressure within the annular space, the distal end of the first elongated tubular member seals to the tissue and the pointed tip penetrates the tissue and aspirates fluid material beneath the tissue into the passage from the distal end of the second elongated tubular member.
The tissue surface contacted with the distal end of the first elongated tubular member to form a seal will be in the interior of the eye once the device is adapted to access the subretinal space from the interior of the globe of the eye. This is facilitated by entry through a conventional sclerostomy port system.
In a first embodiment, as shown in
The distal tip of the micro needle typically extends beyond the distal tip of the main shaft for a distance in the range of about 0.0015″ to about 0.125″ to accommodate the variation in retinal thickness and the depth of retinal detachment. The micro needle is disposed coaxially within and along the length of the main shaft, and has a typical useful outer diameter of about 0.0020″ to about 0.0070″ to minimize injury to the retina when the micro needle pierces the retinal tissue to access the subretinal space. When vacuum is applied to the micro needle, the SRF is aspirated. When the connection device 3 is attached to a vacuum source, a vacuum level determined by the user is applied to both the micro needle and the annular space between the main shaft and micro needle. The vacuum level may be typically varied from 10-760 mm Hg depending upon the amount and viscosity of the fluid being aspirated. The device 3 may be adapted to aspirate fluids, suspensions, viscous solids or gases. The relative vacuum level in the annular space and the micro needle lumen may be proportioned appropriately by the design of the respective flow pathways. Alternatively, two separate vacuum sources may be used for the outer annular space and the micro needle lumen.
Referring to
As the sensory retina is captured and held in place by the outer annular vacuum, a protected pocket 3c is created and the tissue is prevented from folding onto itself and occluding the micro needle tip, shown in
As shown in
In another embodiment, as shown in
In another embodiment, as shown in
In another embodiment, as shown in
In another embodiment, as shown in
In another embodiment, as shown in
In another embodiment, as shown in
In several embodiments, as shown in
In another embodiment, as shown in
In another embodiment, as shown in
In another embodiment, as shown in
In another embodiment, as shown in
In another embodiment, as shown in
Referring to
The following examples are for illustration purposes and are not intended to limit the invention in any way.
A 25 gauge stainless steel hypotube (Small Parts, Inc) was used as the main shaft. Two holes were drilled at distances of 0.05″ and 0.12″ from the proximal edge of the hypotube. A third hole was drilled 1.15″ from the distal edge of the hypotube. A second 25 gauge stainless steel hypotube (Small Parts, Inc) was laser welded at an angle to provide a flow path to the third hole.
A polyimide tube with a lumen of 100 microns, an outer diameter of 125 microns, and a length of 0.25″ (Microlumen, Inc) was inserted for a distance of 0.05″ into another polyimide tube with a lumen of 165 microns, an outer diameter of 210 microns, and a length of 1.45″. Cyanoacrylate adhesive (Loctite 4011, Loctite, Inc) was applied to bond the two polyimide tubes together.
A nitinol coil with a length of 0.165″ and outer diameter of 250 microns was made on a coil winder using nitinol wire with a diameter of 0.0015″ (Fort Wayne Metals, Inc). The nitinol coil was placed over polyimide tube assembly, such that the additional nitinol wire extended towards the proximal portion. The polyimide tube assembly with the overlaid coil was then inserted into the main shaft and fixed with a cyanoacrylate adhesive, proximal to the two drilled holes. The distal tip of the polyimide tube assembly protruded from the main shaft, and the coil was captured within the main shaft such that the distal end of the coil was flush with the distal end of the main shaft.
A nitinol wire with a diameter of 0.0015″ was inserted into the polyimide tube assembly and fixed proximal to the main shaft by bonding the nitinol wire to the outer wall of a 22 gauge stainless steel hypotube with UV cure epoxy (Loctite 3341, Loctite, Inc). The 22 gauge stainless steel hypotube was welded over the proximal edge of the main shaft so as not to obstruct the two drilled holes, and a hole was drilled into the 22 gauge stainless steel hypotube through which the nitinol wire was threaded.
The main shaft was inserted into a luer fitting and fixed in position using UV cure epoxy. A Pebax tube was bonded to the infusion arm, and a luer fitting was bonded to the proximal end of the Pebax tube to provide fluid connection to the infusion arm.
A human cadaver eye was obtained from an eye bank. The cornea, the iris, the lens, and the vitreous were removed, providing access to the retina from the interior of the globe without significantly damaging the retina tissue, while also allowing for the retina to retain its original physiological attachments. Using existing post-mortem retinal detachments or creating a retinal detachment using phosphate-buffered saline injected through a needle inserted through the exterior of the globe into the subretinal space, experiments were conducted using the prototype.
The aspiration device from Example 1 was inserted into the subretinal space and a vacuum level in the range of 300 mm Hg to 600 mm Hg was applied. The retinal tissue was visibly captured by the outer annular vacuum, while fluid and tissue debris visibly migrated towards the micro needle. The device was capable of aspirating SRF until the re-apposition of the sensory retina and the underlying RPE and choroid occurred. The vacuum was turned off. Infusion of phosphate buffered saline into the infusion line helped release the device from the retina. A visual assessment of the access site after removal of the device only showed the entry site of the micro needle in the sensory retina. There was no apparent change to the tissue surround the entry site from the outer annular vacuum.
A 25 gauge stainless steel hypotube (Small Parts, Inc) was used as the main shaft and cut to a length of 1.25″. A 0.25″ length of polyimide tubing with an inner diameter of 0.0044″ and an outer diameter of 0.0056″ (Microlumen, Inc.) was used as the micro needle. Cyanoacrylate adhesive (Loctite 4011, Loctite, Inc.) was used to bond the micro needle within the main shaft, such that 0.20″ of the micro needle protruded from the main shaft. UV cure epoxy (Loctite 3341, Loctite, Inc.) was applied near the distal opening of the micro needle in the shape of a disc 360 degrees around the micro needle to act as a tissue guard. The disc had a diameter of 0.012″.
A human cadaver eye was obtained from an eye bank. The cornea, the iris, the lens, and the vitreous were removed, providing access to the retina from the interior of the globe without significantly damaging the retina tissue, while also allowing for the retina to retain its original physiological attachments. Using existing post-mortem retinal detachments or creating a retinal detachment using phosphate-buffered saline injected through a needle inserted through the exterior of the globe into the subretinal space, experiments were conducted using the prototype.
The aspiration device with an external tissue guard from Example 3 was inserted into the subretinal space, such that the external tissue guard was in the subretinal space. A vacuum level in the range of 300 mm Hg to 600 mm Hg was applied. Aspiration of the SRF was visualized and the external tissue guard successfully prevented the occlusion of the polymer micro needle.
This application is related to co-pending, commonly assigned Ser. No. ______, filed on an even date herewith, entitled “Subretinal Access Device” in the names of Ho, Friedrich; Conston, Stanley R. and Yamamoto, Ronald.