The present invention concerns the field of turbo machines and multi-body gas turbine engines, in particular. It concerns engine assembly operations and, in particular, the assembly of the low-pressure turbine module on a high-pressure body.
A double-body turboreactor, with a front blower, for example, comprises a high-pressure body HP and a low-pressure body LP. The LP body rotates at a first speed and comprises an LP turbine downstream from the HP body, which drives the front blower. The HP body rotates at a different speed to the LP turbine. The shafts for the two bodies are concentric and the shaft for the LP body passes inside the shaft for the HP body. The shaft of the LP body is guided as it rotates by bearings that are supported by the fixed structure of the engine, respectively located downstream of the turbine and upstream of the high-pressure compressor. The shaft of the HP body is guided as it rotates by bearings that are supported by the fixed structure of the engine upstream and by the shaft of the LP body downstream, via an inter-shaft bearing. This bearing is a roller bearing and is placed, at least according to a known engine, between the high-pressure turbine and the low-pressure turbine. Such a bearing comprises an inner ring equipped with rollers held in place by a cage on the shaft of the LP body and an outer ring, usually mounted in the shaft of the HP body by cold tightening. The mounting of the bearing, i.e. the assembly of the outer ring with the assembly formed by the rollers, the cage and the inner ring, is carried out at the same time as the docking of the low-pressure turbine, during which the shaft, previously assembled with the low-pressure turbine, is guided into the HP body. By “docking”, we mean all or part of the translation of the low-pressure turbine module until its outer carter clamp comes into contact with the corresponding clamp on the module that forms the HP body.
The mounting of the inter-shaft bearing is therefore a blind operation. The operator has no visibility in order to observe, in particular, the rollers engaging with the rotor of the HP body and then the outer ring. This operation comprises considerable risk of degradation of the bearing if the conditions are not controlled. The most significant risk for the bearing is hard contact between the rollers and the holding bolt for the outer ring and the ring itself.
The use of techniques is known, from document FR-A1-2890110 for example, for heating the part that supports the outer ring in a controlled manner, in order to facilitate the contact-free insertion of the rollers.
However, even with the dilation of the outer ring, the precise positioning of the shaft of the LP body must be ensured in order to avoid any contact. The known practice of centring the shaft of the LP body using a rule lacks precision and causes assembly incidents that may lead to lack of quality or even the degradation of parts that will then need to be changed by dismantling the modules of the assembled turbine engine, at least partially. Document FR-A1-2890110, proposes that laser measurements be used with instruments mounted onto a removable support that is positioned relative to the HP body but the instrumentation is costly and its use is complex.
There is therefore a need for a simple technique for positioning the shaft of the LP module relative to the outer ring of the HP body module with sufficient precision to minimise the risk of hard contact with the components of the inter-shaft bearing.
The prior art also comprises documents U.S. Pat. No. 4,548,546 and FR-A1-2644843.
To this end the invention concerns a device for assembling a turbine engine, intended to centre a shaft of a second module relative to a longitudinal axis of a trunnion for a first module, said shaft having to be inserted along said longitudinal axis via one end of said trunnion, characterised in that it comprises a holding ring configured to be fixed around the trunnion by tightening in such a way as to have a central axis of the holding ring line up with the longitudinal axis of the trunnion, and a means of measurement, supported by the holding ring and configured to measure the position of an outer surface of said shaft along a radial direction relative to the central axis of the ring on a transverse plane, offset from holding ring, in such a way as to be located in front of said end of the trunnion when the device is installed on the trunnion.
The device described provides an easy way to hold the measuring means on the trunnion using the holding ring. This provides a direct centring measurement relative to the trunnion and allows a good level of precision to be obtained, typically down to one-hundredth of a millimetre, using conventional means of measurement. The use of laser measuring devices, in particular, may be avoided.
In the above case, the first module is the high-pressure body and the second module is the low-pressure turbine module. However, the device described may be used in other cases, the trunnion may be a hollow, fixed or rotating part that forms the support for an outer bearing ring in which the shaft must rotate. The centring precision obtained using the device allows hard contact with the outer ring to be avoided when it has been previously dilated.
The measuring means advantageously comprises a mobile part in said radial direction, which is equipped to come into contact with an outer surface of the shaft and a measuring unit for the radial position of said part.
This assembly takes a tactile measurement of the position of the shaft along the radial direction, which is simple to implement.
The device preferably comprises a fitted means to switch the mobile part from a first position in which the part moves along the radial direction, intended to carry out the measurement, and a second position in which said part is distanced from the central axis so as to allow the shaft to pass.
The device advantageously comprises a positioning means to align said radial direction based on a vertical.
Given the geometry and the weight of the modules of the turbine engine, it is the centring based on the vertical which is the most critical. This centring may therefore be checked as a priority.
The holding ring advantageously comprises at least two parts that move in relation to each other, in such a way as to be able to install or remove the device from the trunnion laterally, for example when the shaft is engaged in the trunnion.
This allows device to be manipulated even though, on the one hand, the assembly zone in which the measurement device is installed is overcrowded and, on the other hand, it is no longer possible to disengage the device longitudinally from the trunnion when the modules are being assembled.
The device preferably comprises a reproducible tightening means for said moving parts on the holding ring, in such a way as to control the position of the holding ring relative to the trunnion.
The invention also concerns an assembly formed of such a device and a calibration model comprising a first part that reproduces the geometry of the outer surface of the trunnion and a second part that reproduces the geometry of an outer surface of a cylindrical portion of the shaft, centred relative to the longitudinal axis of the first part.
In this way, it is possible to obtain a precise reference measurement for the shaft as it should be installed in the trunnion by installing the device on the model and measuring the position of the second part of the model. This reference position may then be used to position the shaft, since the device is installed on the trunnion.
The invention also concerns a procedure for assembling a turbine engine, the turbine engine comprising at least a first module with a trunnion and at least a second module with a shaft, the shaft and the trunnion being designed to be connected via a bearing comprising an outer ring mounted inside of the trunnion and an inner ring mounted around the shaft, comprising the following steps to insert the shaft of the second module inside the trunnion via one extremity of the latter:
characterised in that the centring step itself comprises at least one fine centring operation during which the vertical position of the shaft is adjusted relative to a vertical reference position using a device as described above.
As stated above, the modules may be different to those described in the introduction and the trunnion may be a fixed or rotating part. The fine centring along the vertical is especially critical owing to the geometry and the weight of the modules. What is more, this fine centring operation may be advantageously preceded by a preliminary centring operation, using conventional means, such as a rule, for example. This preliminary centring operation causes the fine vertical centring to reach its objective of correctly centring the shaft in order to then allow the rollers and the inner ring to be inserted into the outer ring that has been previously dilated by heating without any there being any contact.
The vertical position of the shaft is advantageously measured by the device on at least a part of the shaft located between the inner ring and the outer ring when one end of the shaft has been inserted into the trunnion.
The procedure preferably comprises a step for adjusting said device on a calibration model in such a way as to determine the vertical reference position of the shaft relative to the device when it is installed on the trunnion.
This calibration step allows a high level of precision to be obtained on centring of the shaft relative to the trunnion, down to the hundredth of a millimetre.
The present invention shall be better understood and other details, characteristics and advantages of the present invention shall become clearer on reading of the following description of a non-restrictive example, with reference to the attached drawings in which:
The mounting of second module 4, the low-pressure turbine module, in first module 3, the high-pressure body, is therefore described in the rest of the description. Upstream and downstream are noted relative to longitudinal axis X, in accordance with the main direction of the flow of gas and therefore moving from the high-pressure body to the low-pressure turbine.
Second shaft 5 is engaged in high pressure body 3 and passes through collar 7. Second shaft 5 comprises a trunnion 8 on its end, on the right-hand side on the Figure, for mounting a bearing which may be intended, as stated in the introduction, to guide second shaft 5 relative to the fixed structure of the turbine engine. Radial clamp 9 allows the different parts that form the moving part of low pressure turbine 4 to be mounted.
The inter-shaft bearing, known in itself, comprises an inner ring 13, attached to second shaft 5 using the bearing elements, such as rollers 14, for which the 14′ cage is tightened onto inner ring 13. Outer ring 15 is mounted here, cold-tightened inside trunnion 11. It is advantageously locked in place by a bolt 16. When the inter-shaft bearing is correctly assembled, as shown in
The assembly is then carried out by translating second module 4 along the axis X toward the left on
We understand that owing to the low tolerances, there is a significant risk of contact between parts 15, 16 and 14 of the inter-shaft bearing. This hard contact may cause scratches, gouges or the first steps of peeling, which are likely to damage the integrity of the bearing.
The applicant company has perfected a procedure and instrumentation allowing for the safe assembly of the low-pressure module in this environment and the present application incorporates elements from application FR-A1-2890110 as examples. The aim of the present application concerns, more specifically, a step that precisely centres second shaft 5 relative to trunnion 11 and a tool that has been adapted to eliminate the risks of contact on outer ring 15 or its fixing bolt 16 on transition from the state in
It is known that the assembly instrumentation for the turbine engine comprises a mount that holds in place first module 3 and a mobile support that holds in place second module 4. These items, which are in themselves known, are not shown on the figures. The mount holds first module 3 in place, ensuring the horizontal orientation of longitudinal axis X. The moving support allows second module 4, formed from the low-pressure turbine with second shaft 5 to be moved along the three directions, X, Y and Z, represented in
It is also known, for example, with reference to application FR-A1-2890110, that the instrumentation comprises a heating device that is able to heat trunnion 11 and outer ring 15 in a homogeneous and controlled manner. This device is advantageously designed to be able to be placed in active position, close to trunnion 11, in such a way as to heat the trunnion and the outer ring in a homogeneous and controlled manner and a retracted position, in such a way as to leave space for other devices and to also allow two modules to fit together.
With reference to
The device also comprises a measurement system 19 which allows the position of the surface of one part to be defined relative to a radial direction Z′ relative to an axis of symmetry X′ for holding ring 17. For example, it is a tactile measurement system 19 which comprises a radial finger 20 with an internal end intended to rest against the surface of a part and a unit 21 which reads the position of the radial finger 20 along said radial direction Z′. The device may directly incorporate a means for checking the verticality of radial finger 20, in the form of a spirit level 22, for example. What is more, as can be seen in
With reference to
We can now describe the assembly procedure for the two modules.
A first step is known in which the docking of second module 4 with first module 3 is started by placing second shaft 5 at a set distance from trunnion 11. Second shaft 5 is positioned horizontally, parallel to longitudinal axis X of first module 3 and with its end that is to be inserted into the first shaft being presented in front of trunnion 11.
The centring step is carried out here several times, as illustrated on
It comprises a preliminary calibration operation for means of measurement 19, described above. As illustrated in
As shown on
As can be seen in
These operations are presented here at this stage of the procedure, but they may be advantageously carried out prior to said first step of the procedure.
The centring step itself starts with a preliminary centring operation, during which second shaft 5 is inserted into the first shaft until the measurement portion of the second shaft appears in front of radial finger 20 of the tool. As stated above, since the internal diameter of collar 7 of the first shaft is less than the diameter of outer ring 15, the insertion of second shaft 5 may be carried out with average precision at this stage. In fact, the measuring portion on second shaft 5 is upstream of inner ring 13 of the bearing. Therefore, since the measurement portion of second shaft 5 is placed at the entrance to trunnion 11, no parts of second shaft 5, namely, inner ring 13 and rollers 14, that are likely to touch outer ring 15 or tightening bolt 16 because of their diameter, have yet passed into trunnion 11.
As illustrated in
The fine centring operation using the invention carries out said vertical centring. As illustrated in
This fine centring checking operation may potentially be carried out several times, on portions of second shaft 5 with the same diameter, after successive movements of second module 4 and before inner ring 13 is introduced into trunnion 11.
At the end of the centring step, when the second module has been precisely centred, a heating step is carried out for trunnion 11, together with outer ring 15, in order to dilate said outer ring 15 and allow bearings 14 to be inserted. For this step, the fine centring tool is advantageously withdrawn, by loosening holding ring 17 from trunnion 11. A known device, as described for example in document FR-A1-2890110, is advantageously installed around the trunnion to homogeneously heat and control the assembly. This heating step stops when outer ring 15 is correctly dilated.
The docking of the two modules is then completed via translation of the second module along the longitudinal axis X, specifically to align outer ring 15 and rollers 14 on inner ring 13, to form the inter-shaft bearing and join the carter clamps for the two modules.
Number | Date | Country | Kind |
---|---|---|---|
1755937 | Jun 2017 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
2702947 | Dreier | Mar 1955 | A |
3688485 | Lancaster | Sep 1972 | A |
3942253 | Gebel | Mar 1976 | A |
4548546 | Lardellier | Oct 1985 | A |
4709485 | Bowman | Dec 1987 | A |
4964224 | Jackson | Oct 1990 | A |
6058767 | Calvin | May 2000 | A |
6519865 | Yelverton | Feb 2003 | B1 |
20070014660 | Lee | Jan 2007 | A1 |
20070044307 | Bergerot | Mar 2007 | A1 |
20130326890 | Alexander | Dec 2013 | A1 |
20150144760 | Paradiso | May 2015 | A1 |
20150300529 | Lavalley | Oct 2015 | A1 |
20170107858 | Murphy | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
2955339 | Dec 2015 | EP |
2644843 | Sep 1990 | FR |
2890110 | Mar 2007 | FR |
Entry |
---|
Preliminary Research Report and Written Opinion received for French Application No. 1755937, dated Mar. 9, 2018, 8 pages (1 page of French Translation CoverSheet and 7 pages of original document). |
Number | Date | Country | |
---|---|---|---|
20190003340 A1 | Jan 2019 | US |