The invention pertains to a device for attaching an implement to a lifting unit, in particular, to a front-end loader, wherein the implement and the lifting unit can be connected to one another by means of a movable bar that can be displaced from a locking position into an unlocking position by an externally activated actuator.
A device for attaching an implement to a lifting unit is described in U.S. Pat. No. 5,466,113. This device has a bar that can be manually displaced between a locking position in which it holds the implement on the lifting unit and an unlocking position in which the bar releases the implement. It is proposed to displace the bar into the unlocking position by means of an electric or hydraulic actuator. A bar for attaching an implement can also be displaced by an externally activated actuator in other known lifting units.
If an actuator of this type is used for displacing the bar in a remote-controlled fashion, it is no longer possible to manually displace the bar because in this case it would also be required to manually move the actuator that is rigidly coupled to the bar.
According to the present invention, there is provided an improved device for attaching an implement to the lifting arms of a front-end loader.
An object of the invention is to provide an attaching device for releasably coupling an implement to a lifting unit wherein the attaching can be operated manually, as well as by an actuator.
A more specific object of the invention is to provide an attaching device including a latching bar wherein a coupling device is located between the actuator and the bar, whereby the coupling device only produces a driving connection between the actuator and the bar when the actuator is activated, i.e., when the actuator displaces the bar from the locking position into the unlocking position. This means that the actuator is able to displace the bar into the unlocking position because the coupling device produces a driving connection in this case. A driving connection between the actuator and the bar is not produced, however, when the actuator is not activated. This means that an operator can manually displace the bar into the unlocking position.
Due to these measures, the bar can be displaced manually, for example, by means of a corresponding handle, as well as with the aid of an actuator. For example, the bar can be manually displaced if defects occur in the power supply system of the actuator. The lifting unit can be used on agricultural tractors equipped with devices for controlling the actuator, as well as on agricultural tractors that are not provided with such devices.
Preferably, the actuator can be remote-controlled from the work station of an operator. For this purpose, corresponding lines may be provided for remote-controlling and/or acting upon the actuator, for example, electrically, pneumatically or hydraulically. It would also be conceivable to realize a wireless remote control.
It is practical to utilize a spring for automatically returning the bar to the locking position after the implement is attached.
As explained above, the coupling device arranged between the actuator and the bar has the function of transmitting a movement of the activated actuator onto the bar while allowing unobstructed manual displacement of the bar when the actuator is deactivated. In this respect, it is practical to rigidly connect one element to the bar, with another element being rigidly connected to the actuator. When the actuator is activated, the element coupled to it comes into contact with the element coupled to the bar, and displaces this element into the unlocking position together with the bar. However, the element coupled to the bar can be displaced independently of the element coupled to the actuator while the actuator is deactivated.
In one preferred embodiment, the coupling device consists of a disk that is rigidly connected to and coaxially arranged on a section of the bar, and a sleeve that is rigidly coupled to the actuator and is also arranged coaxially with reference to this section of the bar, but in a displaceable fashion. This means that the actuator is able to press the sleeve against the disk in order to displace the bar from the locking position into the unlocking position. However, a number of other embodiments can also be realized. For example, it would be conceivable to utilize a fork-type element instead of a sleeve. It would also be possible to arrange the element connected to the actuator within a slot coupled to the bar, e.g., an oblong hole or a recess in the bar.
When the bar is manually actuated, it is sensible to arrest the bar in the unlocking position in order to allow the positioning of the implement on the lifting unit, without the bar interfering with this procedure. A longitudinal slot as is known, for example, from DE 42 27 942 C can be used for this purpose. The longitudinal slot has a section of smaller slot width and a section of greater slot width. The bar can be moved relative to the longitudinal slot. A stop on the bar has a dimension that is greater than the smaller slot width, but smaller than the greater slot width. When the bar is pulled from the locking position into the unlocking position transverse to the longitudinal direction of the slot, the stop is displaced out of the longitudinal slot and can be moved, in particular, turned along the longitudinal slot manually and/or under the influence of a second spring. After the bar is released, the stop comes into contact with the section of the longitudinal slot that has the smaller dimensions; the stop is arrested in the unlocking position in this section of the slot. After attaching an implement, the stop can be returned to the section of the longitudinal slot that has the greater slot width, either manually or by moving the lifting unit such that the bar contacts another element. In the section of the longitudinal slot that has the greater slot width, the bar is displaced into the locked position by the spring.
During an actuator-driven displacement of the bar, the range of motion is preferably chosen such that the implement can be detached from the lifting unit, but the stop is not moved out of the longitudinal slot. This means that the stop cannot be arrested in the unlocking position by the second spring. When the actuator is deactivated, the bar can be returned into the locking position by the first spring, namely without having to release the bar from the unlocking position either manually or by actuating the lifting unit.
In another embodiment, the range of motion of the actuator corresponds to the manual displacement such that the second spring arrests the bar in the unlocking position. The bar can subsequently be returned to the locking position either manually or by moving the lifting unit. The actuator is preferably set to its inactive position by means of a spring that, for example, is arranged within its housing. This provides the advantage that the piston is not exposed to water and dirt over extended periods of time. In addition, the spring that displaces the bar back to the locking position is not required to also move the actuator. Consequently, this spring can be realized in a more compact and inexpensive fashion.
One embodiment of the invention is illustrated in the figures and is described in greater detail below.
Referring now to
According to
On each side, two brackets 58 with openings 60 that are aligned with one another, project radially and parallel to one another from the side of the cross member 54 that faces the implement 20. The openings 60 serve to accommodate pin-like locking elements 64 forming respective end regions of the bar 48 and serve to connect the implement 20 to the implement holder 32 and consequently to the lifting unit 10. Brackets (not shown) with openings of this type are also arranged on the side of the implement 20 that faces the implement holder 32, wherein said openings can be aligned with one another such that the locking elements 64 of the bar 48 can be inserted into them.
The double walls 56 of each side support the pins 52 for receiving the hooks 50 in their upper corner region, with the bearing 46 being arranged underneath and offset toward the rear, and wherein the bearing 38, for producing the connection with the lifting boom 16, is arranged in the right lower corner region (see
The bar 48 that is manufactured from round steel essentially has the shape of a “J” with a first, long limb 68, a second, short limb 70, and a handle 72 formed by the crosspiece connecting the two limbs.
Between the handle 72 and an end part that serves as the right locking element 64, the first, long limb 68 is bent twice in opposite directions by approximately 30°, and always guided in the openings 60 of the inner bracket 58 on the right side by means of the locking element 64. The section of the long limb 68, that is situated opposite to and radially offset relative to the locking element 64, extends through both longitudinal slots 66 and has a stop 76 that is realized in the form of a sleeve. In the locking position of the bar 48 that is shown in
The handle 72 is respectively bent twice by 90° to point in opposite directions and extends outward from the outer wall 56 into a region that is easily accessible for an operator.
The second, short limb 70 extends parallel to the section of the long limb 68 that lies before the first bend, namely through the openings 60 on the left side and corresponding bores 74 in the left walls 56, which if so required, are surrounded by guides. The second, short limb 70 also includes the end section that serves as one of the locking elements 64 and is always guided in the openings 60 in the left bracket 58.
The spring 78 is realized in the form of a helical compression spring and is arranged and tensioned in such a way that it always presses the bar 48 toward the right in
In addition, an actuator 90 in the form of an externally activated hydraulic cylinder is provided. The housing of this actuator, which extends in the longitudinal direction of the cross member 54, is mounted on the cross member 54. The piston of the actuator 90 is connected to a sleeve 92 that surrounds the long limb 68 of the bar 48 in the vicinity of the bracket 58 shown on the right in
In
When preparing the implement holder 32 to receive an implement 20, the bar 48 can, as described above, be manually pulled outward into the unlocking position in which it is, according to
The spring 78 is now pre-tensioned and the bar 48 is held in the disengaged position. The implement 20 can then be attached by means of the pin(s) 52 and the hook(s) 50 and raised such that the bracket on the side of the implement is moved between the brackets 58 on the cross member 54 and all openings 60 are aligned with one another. The implement 20 is ultimately tilted toward the lifting boom 16 by means of the hydraulic actuator 28 such that the stop 76 contacts the lifting boom 16 and is pivoted into the section of the greater slot width. Once it has reached this position, the bar 48 with the two locking elements 64, is according to
The implement 20 can also be unlocked or released from the work station of an operator on the agricultural tractor by activating the actuator 90 via a corresponding line such that its piston displaces the sleeve 92. The sleeve comes into contact with the disk 94 and displaces the disk 94 toward the left together with the entire bar 48. The locking elements 64 release the brackets of the implement. Since the stroke of the actuator 90 does not suffice to pull the stop 76 out of the longitudinal slot 66 in the outer wall 56, the bar 48 is not arrested in its unlocking position. The actuator 90 can be moved into its inactive position, and the spring 78 subsequently displaces the locking elements 64 between the brackets 58. If an implement 20 needs to be attached, the actuator 90 is reactivated, or remains activated, with the brackets of the implement 20 being positioned between the brackets 58 and the actuator 90 then deactivated. The spring 78 then presses the locking elements 64 between the brackets 58. The implement 20 is now locked in position. In another embodiment, the range of motion of the actuator 90 corresponds to the manual displacement. The bar 48 is in this case arrested in the unlocking position as described above and then released again.
The coupling device, consisting of the sleeve 92 and disk 94, is arranged between the actuator 90 and the bar 48 and makes it possible to actuate the bar 48 with the aid of the actuator 90, as well as independently of it, in a manual fashion. The spring 78 not only makes it possible to implement the previously described coupling device, but also makes it possible to use the actuator 90, which is in the form of a simple hydraulic cylinder.
Having described the preferred embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
102 21 941 | May 2002 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3269570 | Wallberg | Aug 1966 | A |
5263810 | Takekata et al. | Nov 1993 | A |
5466113 | Norberg | Nov 1995 | A |
5562397 | Albright | Oct 1996 | A |
6154989 | Kaczmarski et al. | Dec 2000 | A |
Number | Date | Country |
---|---|---|
43 27 942 | Jan 1995 | DE |
1 138 833 | Apr 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20040228716 A1 | Nov 2004 | US |