This application claims priority to European Patent Application No. 10306296.4, which was filed Nov. 25, 2010.
This application relates to wastewater treatment, and more particularly to elimination of fibers on a mixer impeller in wastewater treatment. Sewage treatment involves the removal of contaminants from waste water and household sewage to produce solid or semisolid waste and an effluent suitable for discharge back into the environment. Sewage is created by residential, institutional, commercial and industrial establishments and includes household waste, liquid from toilets, baths, showers, kitchens, sinks, etc.
Conventional sewage treatment may involve primary, secondary and tertiary treatment steps. During primary treatment, sewage is held in a basin where heavy solids generally settle and light contaminants float to the surface. The sediment and floating materials are removed and the remaining liquid may be discharged or subject to secondary treatment. Secondary treatment generally removes dissolved and suspended biological matter and is performed by introducing micro organisms in a managed habitat. Secondary treatment may require a separation process to remove the micro organisms from the water prior to discharge or to tertiary treatment. In tertiary treatment treated water is sometimes disinfected chemically or physically prior to discharge to the environment.
Many municipal plants churn the sewage constantly during treatment steps to encourage separation and to introduce oxygen to allow the micro organisms to consume the biodegradable soluble organic contaminants like sugars, fats, etc. Some systems use aerated lagoons in which an electric motor driven impeller draws air into the water to allow the micro organisms to function efficiently.
According to an exemplar method disclosed herein for maintaining fluid in suspension in a mixing tank including particles includes providing a reversible mixer, rotating the mixer in a normal direction in which particles buildup on the mixer, and, rotating the mixer in an abnormal direction to shed the particles from the mixer.
According to a further exemplar disclosed herein an apparatus for maintaining fluid in suspension in a mixing tank including fibers includes a reversible mixer and a controller providing commands to the mixer to rotate in a normal direction in which fibers may buildup on the mixer, and the controller providing commands to the mixer to rotate in an abnormal direction to shed the fibers from the mixer.
Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:
Referring now to
The mixer 15 includes a shaft 25, a gear box 30, a reversible motor 35, a hub 40 and an impeller 45. The mixer 15 is controlled by controller 55.
Referring now to
While impellers 45 may be designed to shed these fibers 50 and avoid the problems that may occur due to the entrapment of fibers 50, changing the shape of the impeller 45 might make the impeller inappropriate for use in waste treatment. That is, a redesigned impeller (not shown) may change the absorbed power and the hydrodynamics that is presently provided by the impeller 45. In such a situation, a redesigned impeller (not shown) may not be able to provide smooth flow if flash mixing for high shear or flocculation is required. Combining an impeller 45 that is able to shed the fiber and provide the specific functions required by the mixer 15, including energy savings, has not yet been found.
Referring now to
The controller 55 may require abnormal rotation on a regular basis. For example, for every hour of normal, clockwise rotation, the controller 55 may provide commands to the mixer 15 that may be rotated in an abnormal counter-clockwise direction for a period of time such as fifteen minutes. The mixer 15 may also be sensor controlled. For instance, the controller 55 may have a sensor 60 therein that senses excessive drag on the shaft 25, hub 40 and the impeller 45 by sensing an increase in voltage or current required by the motor 35. If such increase in voltage or current is sensed, the controller may provide commands to the mixer 15 to reverse rotation to shed the particles 20 including fibers 50 and unwind any snags 65 for a period of time. Other types of sensors regarding a buildup of particles 20 including fibers 50 are contemplated herein.
The reverse or abnormal rotation of the shaft 25, hub 40 and the impeller 45 pushes the particles 20 and fibers 50, as exhibited by arrows A away from the shaft 25, hub 40 and the impeller 45 due to centrifugal forces. During the time period, the mixer 15 operates in the abnormal or reverse direction of rotation, the presence of particles 20 and fibers 50 are minimized and the mixer 15 can operate again in the normal direction (see
Removing the particles 20 and the fibers 50 from the mixer 15 by means of counter-clockwise rotation minimizes power and operation costs; minimizes vibrations and loads caused by overloaded and/or an unbalanced shaft 25, hub 40 or the impeller 45 that may damage the mixer 15 and require a waste water treatment plant to shut down; and, minimizes potentially hazardous manual labor to clean the shaft 25, hub 40 and the impeller 45. Further, no extra system, such as a scraper (not shown), is added into the water and the efficiency of the mixer 15 is not impaired.
The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be understood that within the scope of the appended claims, the disclosure may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.
Number | Date | Country | Kind |
---|---|---|---|
10306296.4 | Nov 2010 | EP | regional |