The present disclosure relates to devices and methods for automatically reading a gauge and transmitting that reading.
Industrial and other facilities may include monitor and/or control devices, such as gauges or glow tubes to track parts of processes or systems. Readings from such devices are periodically taken to ensure such processes/systems are operating as desired. This can consume considerable time and manpower.
Systems may be upgraded by replacing an entire device (e.g., gauge or glow tube) with a replacement device having a built in transmitting capability. A drawback to such an approach can be that replacement of an entire gauge can be invasive. In the event the gauge is utilized in an active process, the process may have to be shut down entirely as the gauge is replaced with a transmitting unit. Further, once a transmitting unit is installed, such a unit may have to be independently tested to ensure it is transmitting a correct signal. In addition, a transmitting unit may require wiring from the transmitter to a central location. This can require additional labor, and assumes suitable wiring paths are available at the site.
Even overcoming these deficiencies, the replacement of the device may not be desirable, however. The operators of the facility often like to keep their equipment in as an original state as possible because they have several years of training and familiarity with the equipment.
What is therefore needed is a retrofit device that maintains the original device, while allowing automatic readings to be transmitted and the operators to independently read the device to confirm the operational status of the equipment.
The present invention provides an elegant solution to the needs described above and provides numerous additional benefits and advantages as will be apparent to persons of skill in the art. One aspect provides a wireless gauge reader system for use on an existing electrical substation where the substation has a window through which at least one glow tube is visible. The system includes a frame fastened to the substation, and a door in connection with the frame that allows the door to open and close. The door includes a wireless gauge reader (WGR) that has an optical sensor that is positioned to view the glow tube when the door is closed. The WGR also has a transmitter to transmit a wireless signal based on the illumination state of the glow tube.
In one embodiment, the connection of the door to the frame includes at least one channel on the frame and the door is disposed of at least partially in the channel and adapted to slide along the channel. In another embodiment this connection includes at least one channel on the door and the frame is disposed of at least partially in the channel and the door is adapted to slide along the frame. In yet another embodiment the connection is a hinge connected to the frame and the door, and the door is adapted to rotate about the hinge. And in yet another embodiment, the connection is a pivot connecting the frame to the door, and the door is adapted to rotate about the pivot.
The door may be constructed so as to block a portion of light from entering the window when the door is closed. The door may also block glare that would otherwise interfere with taking an accurate reading of the glow tube. The alignment of the WGR to the glow tube is maintained when the door is opened and then closed, and it is also maintained when the WGR is removed and replaced.
The system may also include a wireless receiver that receives the wireless signal from the WGR, and that receiver may be connected to a network and adapted to report the illumination status of the glow tube over the network. That network may be a cellular network, a public network or a private network.
The WGR may also have a field of view that includes more than one glow tube, and the wireless signal is based on the illumination state of the multiple glow tubes. The door may include a second WGR. The frame of the system may be mounted to the substation by a variety of fastener, including but not limited to, screws, bolts, rivets, adhesives, magnets, suction cups or hook-and-loop fasteners. The WGR may also include a processor connected to the optical sensor that processes an image of the glow tube captured by the optical sensor.
The invention can be better understood with reference to the following figures. The components within the figures are not necessarily to scale, emphasis instead being placed on clearly illustrating example aspects of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views and/or embodiments. It will be understood that certain components and details may not appear in the figures to assist in more clearly describing the invention.
Following is a non-limiting written description of example embodiments illustrating various aspects of the invention. These examples are provided to enable a person of ordinary skill in the art to practice the full scope of the invention without having to engage in an undue amount of experimentation. As will be apparent to persons skilled in the art, further modifications and adaptations can be made without departing from the spirit and scope of the invention, which is limited only by the claims.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. Particular example embodiments of the present invention may be implemented without some or all of these features or specific details. In other instances, components well known to persons of skill in the art have not been described in detail in order not to obscure unnecessarily the present invention.
The four wireless gauge reader system embodiments detailed below, can be easily mounted to an existing power substation 10 with little installation effort. The retrofit does not require modification (or perhaps minimal modification) of the original equipment, while still allowing the operator to view the glow tubes 15 easily without affecting the efficacy of the wireless gauge reader system.
Turning now to
The signal transmitted from the WGR 120 to the server/network may include, for example, an image of the glow tube 15, which is then processed by the server/network to determine whether the glow tube 15 is illuminated. The signal may also be a report regarding the illumination state of the glow tube 15; in other words, the processing may be done in the WGR 120 and the results of that processing is provided to the server/network. The optical sensor may detect visible or infrared spectrum of light. The WGR 120 may also have a battery. If the power substation has additional glow tubes, the door 115 may have a multiple WGRs 125. Alternatively, the WGR 120 may have a larger field of view to detect more than one glow tube and transmit the sensed data (as shown in
The door 115 not only acts to maintain the initial calibration position of the WGR 120, it also acts to block a portion of light from entering the window 25 when the door is closed. The door 115 also blocks glare that the optical sensor on the WGR 120 would experience. This “dark room” effect allows the optical sensor on the WGR 120 to operate more effectively and efficiently without unnecessary light pollution. And because the WGR 120 is operating in an ideal low light environment, it can capture and process the image of the glow tube 15 with very little computational power—resulting in cheaper manufacturing and operational costs. The low processing of the WGR 120 is ideal for battery operation because of the low power requirements.
As with the embodiment discussed above with reference to
A third embodiment of an automatic glow tube wireless gauge reader system 300 is shown in
As with the embodiment discussed above,
Similar to the third embodiment, the fourth embodiment also uses a sliding door. Specifically,
The frame (105, 205, 305, 405) may be fastened to the power substation 10 by any suitable means. For example, screws or rivets may be used. Non-intrusive fastening such as high strength adhesives, magnets, suction cups or hook-and-loop fasteners may be preferable because they can be applied easily and do not require screws or bolts to be lagged into the power substation 10, which may be dangerous.
The transmitter 515 of the WGR 120 can transmit its data to a central receiver 605 as shown in
A basic algorithm for detecting if the illuminations state of the glow tube may be as follows. Upon installation/calibration, with the door closed and the glow tube known to be on, the wireless gauge reader system scans the image from the optical sensor to determine the brightest pixels and forms a line of pixels that would be down the center of the glow tube. When reading the glow tube, the wireless gauge reader system computes an image dark level by averaging every Nth pixel detected by the optical sensor. For each pixel of interest (i.e., a line of pixels down substantially the center of the glow tube)): (1) perform an infinite impulse response filter with the feedback coefficient set at 1/4th to smooth out the line of pixels; (2) with each filtered pixel of interest, determine the min and max brightness pixels; (3) count all filtered pixels that are greater than the dark level average; and (4) sum all filtered pixels that are greater than the dark level average. If the maximum and minimum values exceed a predetermined threshold and the sum exceeds a predetermined value then the pixel line (i.e., the glow tube) is considered on. As detailed above, this processing may be performed by the WGR and the WGR may simple report the result—on or off. The WGR may also send an image of the glow tube to the central receiver/network which then performs the processing. The processing duties may also be shared between the WGR and the central receiver/network.
The invention has been described in connection with specific embodiments that illustrate examples of the invention but do not limit its scope. Various example systems have been shown and described having various aspects and elements. Unless indicated otherwise, any feature, aspect or element of any of these systems may be removed from, added to, combined with or modified by any other feature, aspect or element of any of the systems. As will be apparent to persons skilled in the art, modifications and adaptations to the above-described systems and methods can be made without departing from the spirit and scope of the invention, which is defined only by the following claims. Moreover, the applicant expressly does not intend that the following claims “and the embodiments in the specification to be strictly coextensive.” Phillips v. AHW Corp., 415 F.3d 1303, 1323 (Fed. Cir. 2005) (en banc).
This application is the non-provisional of U.S. Patent Application No. 61/871,932 filed on Aug. 30, 2013. That application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61871932 | Aug 2013 | US |