Claims
- 1. A biopsy instrument for securing and coring a mass within the breast of a human patient during biopsy of said mass, said biopsy instrument comprising:
an adhesion probe adapted for insertion into body tissue and adhering to body tissue: a coring mechanism adapted for use with the adhesion probe, said coring mechanism having a distal end and proximal end, said coring mechanism comprising:
a cannula adapted for insertion into the body of the patient, said cannula having lumen extending through the cannula and defining a proximal opening and a distal opening in the cannula; a cannula translating mechanism operably connected to the cannula; and a cannula rotating mechanism operably connected to the cannula; a housing encasing the cannula translating mechanism and the cannula rotating mechanism, said housing having a proximal end and a distal end, the cannula extending from within said housing and out through the distal end of said housing; and a fitting disposed at the proximal end of the housing, said fitting having an inlet communicating with the high pressure gas supply tube; wherein said adhesion probe is fitted through the lumen of the cannula.
- 2. The biopsy instrument of claim 1, wherein the cannula translating mechanism comprises:
a pneumatic or hydraulic cylinder having a chamber, said cylinder having a proximal end and a distal end; a piston disposed within the chamber of the cylinder, said piston being capable of longitudinal translation along the chamber of the cylinder, said piston having a bore sized to approximate the outer diameter of the cannula; and a tube for delivering an operating fluid or applying a vacuum to the chamber of the cylinder, said gas tube extending from an operating fluid or vacuum source, and terminating at the cylinder; wherein the cannula is fixedly attached to the piston through the bore of said piston, and extends through the distal end of the cylinder, and moves distally and proximally in response to operation of the piston.
- 3. The biopsy instrument of claim 1, wherein the cannula rotating mechanism comprising:
a lead screw disposed within the cylinder, said lead screw having a first end and a second end, said lead screw having a lumen extending through said screw and defining openings at said first and second ends, said lumen sized to receive the cannula, said first end attached to the piston with said lumen communicating with the bore of the piston, said lead screw being capable of translating longitudinally along the chamber of the cylinder; a lead screw nut disposed at the distal end of the cylinder, said lead screw nut operably connected to the lead screw; wherein the cannula occupies the lumen of the lead screw; and wherein longitudinal translation of the piston along the chamber of the cylinder is translated to the lead screw; wherein when the lead screw longitudinally translates, said lead screw rotates under operation of the lead screw nut, said rotation of the lead screw being translated to the cannula to rotate said cannula.
- 4. A method of biopsy of a mass in the body of a patient, said method comprising:
providing an adhesion probe operable to adhere to body tissue: providing a coring mechanism comprising:
a proximal end and a distal end; a cannula adapted for insertion into the body of the patient, said cannula having a lumen extending through the cannula and defining a proximal opening and a distal opening in the cannula, said cannula being coaxially disposed about the adhesion probe; a cannula translating mechanism operably connected to the cannula, said cannula translating mechanism comprising:
a cylinder having a chamber, said cylinder having a proximal end and a distal end; a piston disposed within the chamber of the cylinder, said piston being capable of longitudinal translation along the chamber of the cylinder, said piston having a bore sized to fixedly receive the cannula; a gas tube for delivering a gas or vacuum to the chamber of the cylinder, said gas tube extending from a gas or vacuum source, and terminating at the cylinder; wherein the cannula is fixedly attached to the piston through the bore of said piston, and extends through the distal end of the cylinder; wherein in a retracted position, the piston is positioned at the proximal end of the cylinder, and the distal segment of the adhesion probe extends from the distal opening of the cannula; wherein in an extended position, the piston is positioned at the distal end of the cylinder, and the distal opening of the cannula is extended over the distal segment of the adhesion probe; a cannula rotating mechanism operably connected to the cannula, said cannula rotating mechanism comprising:
a lead screw disposed within the cylinder, said lead screw having a first end and a second end, said lead screw having a lumen extending therethrough and defining openings at said first and second ends, said lumen sized to fixedly receive the cannula, said first end attached to the piston with said lumen communicating with the bore of the piston, said lead screw being capable of translating longitudinally along the chamber of the cylinder; a lead screw nut disposed at the distal end of the cylinder, said lead screw nut operably connected to the lead screw; wherein the cannula is attached to the lead screw through the lumen of the lead screw; wherein longitudinal translation of the piston along the chamber of the cylinder is translated to the lead screw; wherein when the lead screw longitudinally translates, said lead screw rotates under operation of the lead screw nut, said rotation of the lead screw translated to the cannula to rotate said cannula; inserting the adhesion probe and the cannula into the body of the patient so that the adhesion probe enters the mass; securing the mass to the adhesion probe; operating the translating mechanism to translate the cannula distally over the adhesion probe while operating the rotating mechanism to rotate the adhesion probe, thereby coring at least a portion of the mass from surrounding body tissue; retracting the adhesion probe and coring mechanism from the body; and operating the translating mechanism and rotating mechanism to translate the cannula proximally relative to the adhesion probe; and removing the core sample from the adhesion probe.
- 5. A device for obtaining a tissue sample from the body, said device comprising:
an adhesion probe adapted for insertion into the body, said adhesion probe being operable to adhere to tissue within the body; a cannula coaxially disposed about the adhesion probe, said cannula being slidable and rotatable over the adhesion probe; and a pneumatic or hydraulic actuator comprising a cylinder, a piston coaxially disposed within the cylinder, and an actuator rod, said piston being longitudinally movable within the cylinder in response to application of pressure of vacuum to the cylinder, said actuator rod being longitudinally fixed to the piston, said piston and actuator rod being longitudinally fixed to the cannula; wherein the actuator is operable to cause the cannula to slide longitudinally over the adhesion probe, and wherein the actuator is operable to cause the cannula to rotate over the adhesion probe.
- 6. A biopsy instrument for securing and coring a mass within the breast of a human patient during biopsy of said mass, said biopsy instrument comprising:
an adhesion probe comprising:
a rigid tube adapted for insertion into the body of the patient, said rigid tube having a proximal end, a distal end, a proximal segment, and a distal segment, said proximal segment having a larger outer diameter than the distal segment; said distal segment having a sharp distal tip adapted for piercing the mass; and a high pressure gas supply tube for delivering a coolant to the distal end of the rigid tube, said gas supply tube being disposed within the rigid tube, extending to the distal end of the rigid tube and terminating in an orifice at the distal end of the rigid tube, thereby forming an annular lumen between the inner surface of the rigid tube and the outer surface of the gas supply tube for exhausting the coolant from the probe; a coring mechanism adapted for use with the probe, said coring mechanism comprising:
a proximal end and a distal end; a cannula adapted for insertion into the body of the patient, said cannula having a straight cut distal edge, and a lumen extending through the cannula and defining a proximal opening and a distal opening in the cannula; a cannula translating mechanism operably connected to the cannula; and a cannula rotating mechanism operably connected to the cannula; a housing encasing the cannula, the cannula translating mechanism, and the cannula rotating mechanism, said housing having a proximal end and a distal end, the cannula extending from within said housing and out through the distal end of said housing; a fitting disposed at the proximal end of the housing, said fitting having an inlet communicating with the high pressure gas supply tube; and said adhesion probe fitted through the lumen of the cannula.
- 7. The biopsy instrument of claim 6, wherein the cannula translating mechanism comprising:
a cylinder having a chamber, said cylinder having a proximal end and a distal end; a piston disposed within the chamber of the cylinder, said piston being capable of longitudinal translation along the chamber of the cylinder, said piston having a bore sized to fixedly receive the cannula; a gas tube for delivering a gas or vacuum to the chamber of the cylinder, said gas tube extending from a gas or vacuum source, and terminating at the cylinder; wherein the cannula is fixedly attached to the piston through the bore of said piston, and extends through the distal end of the cylinder; wherein in a retracted position, the piston is positioned at the proximal end of the cylinder, and the distal segment of the adhesion probe extends from the distal opening of the cannula; and wherein in an extended position, the piston is positioned at the distal end of the cylinder, and the distal opening of the cannula is extended over the distal segment of the adhesion probe.
- 8. The biopsy instrument of claim 6, wherein the cannula rotating mechanism comprising:
a lead screw disposed within the cylinder, said screw having a first end and a second end, said lead screw having a lumen extending through said screw and defining openings at said first and second ends, said lumen sized to fixedly receive the cannula, said first end attached to the piston with said lumen communicating with the bore of the piston, said lead screw being capable of translating longitudinally along the chamber of the cylinder; a lead screw nut disposed at the distal end of the cylinder, said lead screw nut operably connected to the lead screw; wherein the cannula is attached to the lead screw through the lumen of the lead screw; wherein longitudinal translation of the piston along the chamber of the cylinder is translated to the lead screw; and wherein when the lead screw longitudinally translates, said lead screw rotates under operation of the lead screw nut, said rotation of the lead screw translated to the cannula to rotate said cannula.
- 9. A method of biopsy of a mass in the body of a patient, said method comprising:
providing an adhesion probe comprising:
a rigid tube adapted for insertion into the body of the patient, said rigid tube having a proximal end, a distal end, a proximal segment, and a distal segment, said proximal segment having a larger outer diameter than the distal segment; said distal segment having a sharp distal tip adapted for piercing the mass; and a high pressure gas supply tube for delivering a coolant to the distal end of the rigid tube, said gas supply tube being disposed within the rigid tube, extending to the distal end of the rigid tube and terminating in an orifice at the distal end of the rigid tube, thereby forming an annular lumen between the inner surface of the rigid tube and the outer surface of the gas supply tube for exhausting the coolant from the probe; providing a coring mechanism comprising:
a proximal end and a distal end; a cannula adapted for insertion into the body of the patient, said cannula having a straight cut distal edge, and a lumen extending through the cannula and defining a proximal opening and a distal opening in the cannula; a cannula translating mechanism operably connected to the cannula, said cannula translating mechanism comprising:
a cylinder having a chamber, said cylinder having a proximal end and a distal end; a piston disposed within the chamber of the cylinder, said piston being capable of longitudinal translation along the chamber of the cylinder, said piston having a bore sized to fixedly receive the cannula; a gas tube for delivering a gas or vacuum to the chamber of the cylinder, said gas tube extending from a gas or vacuum source, and terminating at the cylinder; wherein the cannula is fixedly attached to the piston through the bore of said piston, and extends through the distal end of the cylinder; wherein in a retracted position, the piston is positioned at the proximal end of the cylinder, and the distal segment of the adhesion probe extends from the distal opening of the cannula; wherein in an extended position, the piston is positioned at the distal end of the cylinder, and the distal opening of the cannula is extended over the distal segment of the adhesion probe; a cannula rotating mechanism operably connected to the cannula, said cannula rotating mechanism comprising:
a lead screw disposed within the cylinder, said screw having a first end and a second end, said lead screw having a lumen extending through said screw and defining openings at said first and second ends, said lumen sized to fixedly receive the cannula, said first end attached to the piston with said lumen communicating with the bore of the piston, said lead screw being capable of translating longitudinally along the chamber of the cylinder; a lead screw nut disposed at the distal end of the cylinder, said lead screw nut operably connected to the lead screw; wherein the cannula is attached to the lead screw through the lumen of the lead screw; wherein longitudinal translation of the piston along the chamber of the cylinder is translated to the lead screw; wherein when the lead screw longitudinally translates, said lead screw rotates under operation of the lead screw nut, said rotation of the lead screw translated to the cannula to rotate said cannula; a housing encasing the cannula, the cannula translating mechanism, and the cannula rotating mechanism, said housing having a proximal end and a distal end, the cannula extending from within said housing and out through the distal end of said housing;
a fitting disposed at the proximal end of the housing, said fitting having an inlet communicating with the high pressure gas supply tube; said adhesion probe fitted through the lumen of the cannula; providing a coolant source, connecting said coolant source to the adhesion probe via the high pressure gas tube; inserting the adhesion probe and the cannula into the body of the patient so that the sharp distal tip of the rigid tube pierces through the mass; securing the mass to the adhesion probe by directing the coolant from the coolant source to the orifice of the high pressure gas tube to cool the surface area about the distal segment of the rigid tube and to cool the mass about the surface area of the distal segment; coring the mass by translating the cannula distally over the adhesion probe and rotating the cannula; retracting the coring mechanism from the body; and removing the core sample from the coring mechanism.
Parent Case Info
[0001] This application is a continuation-in-part application of U.S. application Ser. No. 09/690,321, filed Oct. 16, 2000.
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09690321 |
Oct 2000 |
US |
Child |
09847931 |
May 2001 |
US |