The invention relates to an apparatus for processes of checking anesthesia and ventilation devices, comprising a lung sac arranged between two lobes movable relative to one another, a lung inlet and adjustment means for adjusting the simulation parameters.
Such devices or apparatuses also referred to as “lung simulators” or as “test lung” are used for checking ventilation devices of all kinds and also anesthesia devices for satisfactory operation before use on humans. The test lungs should if possible be capable of simulating different lung types. The properties of a lung are determined by the parameters resistance (respiratory tract resistance), compliance (hardness of the lungs) and leakage.
In the case of the test lungs used to date, a distinction should be made between two types differing substantially from one another:
Economical conventional test lungs are generally formed by a simple rubber sac (or balloon) which has exactly one resistance (respiratory tract resistance), one compliance (hardness of the lungs) and no leakage. Thus, checking of a ventilation device or anesthesia device with such test lungs is possible only to an insufficient extent since it is not possible to simulate different lung types therewith. This frequently leads to alleged malfunctions of the device to be tested (e.g. so-called autotriggering), although the lung device to be tested is completely in order.
On the other hand, very complicated and expensive test lungs which operate, for example, by means of a bellows or a cylinder/piston system are disclosed, for example, in DE-A 2 403 616 or DE-A 3 427 182. In the case of such test lungs, the setting of the resistance (i.e. of the respiratory tract resistance) by means of various adapters and the setting of the compliance (i.e. hardness of the lungs) by means of springs or by means of a cylinder/piston system is achieved in fine gradation. Owing to the substantial mechanical design, such test lungs are very heavy, complicated to operate, expensive and generally operable only by means of external energy.
It is therefore the object of the invention to provide a simple test lung which can be economically produced and avoids said disadvantages.
According to the invention, this is achieved if at least one of the two lobes is in the form of an elastically deformable lobe. A compact design and a low weight of the lung simulator are achieved thereby, and use without additional aids directly on the ventilation tube system is permitted.
In an expedient embodiment, both lobes are in the form of elastically deformable lobes. The lung sac is therefore arranged symmetrically between the two deformable lobes. This permits uniform expansion and contraction of the lung sac.
The lobes are advantageously firmly clamped at one end and elastically deformable. The lobes thus act in the manner of leaf springs. The spring properties can be influenced by the choice of the width and material thickness.
For handling the lung simulator, it is expedient if at least one of the lobes consists of plastic. Plastic lobes are chemically very resistant, kind to the body and durable.
In order that the spring properties of the lobes remain constant in the course of operation over the entire life, the lobe or lobes advantageously comprise reinforced fibre composite. Depending on requirements, reinforcement may consist, for example, of glass fibres or polycarbonates.
In a further expedient embodiment, at least one of the lobes consists of spring steel. Spring steel permits a small wall thickness of the lobes and thus a very compact design.
For simple production and assembly of the lung simulator, it is advantageous if the two lobes are integrally connected to one another. The two lobes can preferably be connected to one another in a U-shape.
The springy length of the lobes is expediently adjustable by means of aids. This makes it possible firstly to change the spring temper of the lobes and secondly also the usable volume of the lung sac. The greater the springy length of the lobes, the softer are their spring properties. By shortening the springy length, the lobes become harder. This makes it possible to check different requirements using the same test lung.
The aids are advantageously in the form of slides connecting the free ends of the lobes to one another and displaceable and fixable in the longitudinal direction of the lobes. The slide can grip around the lobes from the outside or pass through them. The slide can be fixed, for example, by means of a clamping screw which can be loosened.
The slide is expediently lockable stepwise. This makes it possible to obtain unambiguously defined and repeatable test parameters. Moreover, this also prevents the parameters from becoming accidentally misadjusted in the course of the check.
The lung sac is advantageously flat and interchangeable. Owing to the flat design, the lung sac fits ideally in the space between the two lobes. The flat shape also permits a relatively large reservoir volume. Owing to the interchangeability of the lung sac, it is possible to check requirements with different lung volumes using the same test lung.
Expediently, the lung parameters “resistance” (respiratory tract resistance) and/or “compliance” (hardness of the lungs) and/or “leakage” (leakage losses) can be adjusted independently of one another in different steps. Owing to the very simple adjustability of the respiratory tract resistance, adjustable hardness of the lungs and adjustable leakage losses in different steps, virtually all lung types from babies to adults can be simulated without the use of additional adapters.
Continuous leakage simulation is advantageously provided. This makes it possible to check the function of patient flow triggering, which is very sensitive in practice, and respiration with leakage in a simple manner by changing the leakage simulation.
For monitoring the behavior of the test lung, it is expedient if flow, pressure and/or volume measurements are integrated in the apparatus and the values can be displayed by means of a display unit on the test lung.
The invention is explained in more detail below with reference to the drawings illustrated by way of example.
The test lung shown in
A control valve 8 is arranged on the side of the housing 2. The control valve 8 serves for setting a simulated leakage loss. In the position shown in
A scale 9 is mounted on the end face of the housing 2. With the aid of the scale 9, it is possible to determine the current rotational position of the inlet nozzle. On the basis of this scale, the simulation parameters can be changed stepwise or continuously. The set values are reproducible at any time.
The free ends of the lobes 6, 7 are connected to one another via an adjustable slide 10. By moving the slide 10, the spring properties of the lobes 6, 7 and hence the so-called compliance, i.e. the hardness of the test lung, can be adjusted. The slide 10 can be fixed stepwise by means of projections or cams engaging catch openings 11 in the lobes 6, 7. By shortening the free length of the lobes 6, 7, the spring stiffness thereof is increased. At the same time the usable volume of the lung sac 5 is also reduced. In addition, a fixing screw 12 which serves for fixing that end of the lung sac 5 which is opposite the connector 4 to the lobes 6, 7 is arranged at the free end of the lobes 6, 7.
Number | Date | Country | Kind |
---|---|---|---|
1940/04 | Nov 2004 | CH | national |
This application claims benefit as a continuation of copending application Ser. No. 11/719,498 which is a 35 U.S.C. 371 national-phase entry of PCT International application no. PCT/IB2005/053834 filed on Nov. 21, 2005 and published as WO2006/056927A1 on Jun. 1, 2006, which in turn claims the benefit of priority of Swiss national application no. 01940/04 filed on Nov. 24, 2004; the entirety of parent U.S. application Ser. No. 11/719,498 and of PCT International application no. PCT/IB2005/053834 are both expressly incorporated herein by reference, each in their entirety, for all intents and purposes, as if identically set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
3562924 | Baerman et al. | Feb 1971 | A |
3808706 | Mosley et al. | May 1974 | A |
3810461 | McCormick | May 1974 | A |
RE29317 | Mosley et al. | Jul 1977 | E |
4167070 | Orden | Sep 1979 | A |
4430893 | Barkalow | Feb 1984 | A |
4898166 | Rose et al. | Feb 1990 | A |
4984987 | Brault et al. | Jan 1991 | A |
4996980 | Frankenberger et al. | Mar 1991 | A |
5286206 | Epstein et al. | Feb 1994 | A |
5385139 | Corn | Jan 1995 | A |
5403192 | Kleinwaks et al. | Apr 1995 | A |
5580255 | Flynn | Dec 1996 | A |
5719916 | Nelson et al. | Feb 1998 | A |
5975748 | East, IV et al. | Nov 1999 | A |
6283120 | Kellon | Sep 2001 | B1 |
6874501 | Estetter et al. | Apr 2005 | B1 |
6921267 | van Oostrom et al. | Jul 2005 | B2 |
7100618 | Dominguez | Sep 2006 | B2 |
D563547 | Klien | Mar 2008 | S |
7959443 | Frembgen et al. | Jun 2011 | B1 |
20020023648 | Komesaroff | Feb 2002 | A1 |
20040058305 | Lurie et al. | Mar 2004 | A1 |
20090215017 | Friberg | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
2403616 | Aug 1974 | DE |
3427182 | Jan 1986 | DE |
19714684 | Oct 1998 | DE |
S58-092365 | Jun 1983 | JP |
H10-052496 | Aug 1996 | JP |
02078768 | Oct 2002 | WO |
03041778 | May 2003 | WO |
2006056927 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20110167937 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11719498 | US | |
Child | 13053679 | US |