The invention relates to a device for cleaning an inkjet printhead, in particular in a franking and/or addressing machine. It has proven worthwhile to utilize the advantages of inkjet printing in the area of mechanical franking and/or addressing as well. In this case, the printing is carried out without contact by an inkjet printhead, see for example German patent DE 44 24 771 C1 (corresponding to U.S. Pat. No. 6,367,911) and European patent EP 0 696 509 B1 (corresponding to U.S. Pat. No. 6,390,577). However, the inkjet printing technique has the disadvantage that more ink is used for cleaning the inkjet printhead than for the printing operation. This is particularly serious in the case of individual printing.
A franking machine is known in which the print carriers or letters are conveyed on edge, inclined beyond the vertical for reasons of stability, with the aid of a transport belt; in this regard see German patents DE 196 05 014 C1 (corresponding to U.S. Pat. No. 5,880,747) and DE 197 57 653 C2 (corresponding to U.S. Pat. No. 6,477,511). In this case, the letter is located behind a clear-view plate on a guide plate, in which a printing window is provided and in which the inkjet printhead is disposed in a stationary manner such that its nozzle surface is disposed parallel to the guide plate. The letter is led past the printing window and the inkjet printhead and, during this, is printed on the side facing away from the viewer.
The problem of inkjet printhead cleaning and sealing is in this case solved by a device for cleaning the inkjet printhead, see European patent EP 0 799 135 B1, in which the inkjet printhead is fixed such that it can be pivoted alternatively from a printing position into a cleaning position and/or sealing position and back again, and the cleaning and sealing device is disposed such that it can be displaced linearly toward the inkjet printhead and away from the latter again.
The cleaning and sealing device contains a sealing cap matched to the inkjet printhead and having suction slots for each row of nozzles and a wiping lip that can be displaced transversely, as well as a downstream suction pump. Also provided in the sealing cap, at one end, is an extraction region having a suction opening for the wiping lip. The wiping lip is displaced by a spindle drive.
As an addition to this, a device for positioning an inkjet printhead and a cleaning and sealing device are known, see German patent DE 197 26 642 C1 (corresponding to U.S. Pat. No. 6,224,187), in which, for the displacement of the inkjet printhead and the cleaning and sealing device, a common gear mechanism is provided which is driven by a motor which runs in only one direction of rotation. The inkjet printhead, the cleaning and sealing device and the entire gear mechanism including motor are fixed in a common frame and in this way are combined to form a compact subassembly. This subassembly is in turn adjustably fixed to the transport device. The inkjet printhead can be pivoted by more than 90° from the printing position into the cleaning position and back again. The cleaning and sealing device is disposed underneath the inkjet printhead such that it can be displaced linearly vertically. During the cleaning operation, the cleaning and sealing device is docked on the inkjet printhead pivoted downwards. Accordingly, the procedure is also the same during spraying clear.
With the solutions described above, the letter transport is interrupted during the cleaning process and, accordingly, the letter throughput is reduced. In the event of spraying clear operation in the printing position during the letter transport, either the letter or the letter run—clear-view plate, transport belt—is noticeably soiled.
On the other hand, a franking machine having an inkjet printhead is known, see European patent EP 0 696 509 B1 (corresponding to U.S. Pat. No. 6,390,577) and U.S. Pat. No. 5,806,994, in which the letters are transported lying horizontally and the nozzle surface is disposed parallel thereto. In this machine, the nozzles that are used a little or not used during the printing are sprayed clear as long as there is no letter present in front of the printhead. For this purpose, the letter transport device is provided with appropriate cutouts and a collecting container for the ink sprayed clear is disposed underneath the same. The ink consumption is reduced in this way but the horizontal letter transport is a precondition for this.
It is accordingly an object of the invention to provide a device for cleaning an inkjet printhead which overcomes the above-mentioned disadvantages of the prior art devices of this general type, which improves the print quality, prolongs the service life of the printing device, and provides the highest possible letter throughput.
With the foregoing and other objects in view there is provided, in accordance with the invention, a franking and/or addressing machine. The machine contains a guide plate having a printing window, an inkjet printhead disposed in a stationary manner and is pivotable behind the guide plate in the printing window, and a transport device for guiding a print carrier along in contact and standing on one edge by the transport device. A cleaning and sealing device is disposed behind the guide plate and underneath the inkjet printhead. A first displacement device is provided for pivoting the inkjet printhead into a printing position, into various cleaning regions, and into a sealing position. A second displacement device is provided for displacing the cleaning and sealing device toward the inkjet printhead and away from the inkjet printhead. A pivotably mounted matched baffle piece is disposed underneath the inkjet printhead and is coupled to the inkjet printhead. A common ink sump is disposed underneath all of the above components.
In the device for cleaning an inkjet printhead in a franking and/or addressing machine, in which the letters are transported standing on one edge and the inkjet printhead is disposed in a stationary manner behind a guide plate such that it can be pivoted, and in which, in addition to the usual functions such as wiping and sealing, a spraying clear function is possible both during the letter transport and also in the rest position without the letter run being soiled.
In accordance with an added feature of the invention, the inkjet printhead has a nozzle surface and the guide plate is inclined beyond a vertical. The inkjet printhead is disposed such that the inkjet printhead can be pivoted appropriately by more than 85° from the printing position, in which the nozzle surface is disposed parallel to the guide plate, to an end of an outermost cleaning region and back again. Stops are provided including a first stop and a second stop defining pivot positions of the inkjet printhead. The inkjet printhead is an integral constituent part of a printing module, the printing module being inserted into a module holder.
In accordance with another feature of the invention, the cleaning and sealing device has a device holder with wiping lips, a spray duct, and sealing caps. All of these components are disposed in the order cited behind the guide plate.
In accordance with a further feature of the invention, the first displacement device includes a worm gear mechanism, an actuating motor and a rotary encoder for displacing the module holder and, consequently, also the inkjet printhead. In the printing position, the inkjet printhead is fixed by the first stop, and in an end position the inkjet print head is fixed by the second stop in the outermost cleaning region, the stops being used to calibrate the rotary encoder. The sealing position is fixed by the rotary encoder in accordance with a predefined setting wherein the nozzle surface is disposed orthogonally with respect to the wiping lips of the cleaning and sealing device. Sensors are provided for triggering various positions of the inkjet printhead, the sensors are disposed in a region of a letter run and linked to a control computer.
In accordance with an additional feature of the invention, the second displacement device for displacing the cleaning and sealing device has a spindle gear mechanism, an actuating motor, a guide shaft and a further sensor for defining a reference point setting.
In accordance with a further added feature of the invention, a holder is provided. The inkjet printhead is resiliently and kinematically coupled via the holder to the matched baffle piece, the matched baffle piece being configured as a shell.
In accordance with another additional feature of the invention, a wheel is fixed to the module holder holding the printing module such that the module holder can rotate. A guide edge is integrally molded on an outside of the matched baffle piece, the matched baffle piece is connected to the module holder via a tension spring. The wheel bears with a force on the guide edge and, with the guide edge, forms a slotted guide for the matched baffle piece.
In accordance with yet another feature of the invention, the common ink sump has a device holder being open at a front, an insert with a nonwoven and a securing clip, guided in the device holder. The device holder further has a handle for allowing easy replaceability.
In accordance with the invention, in a first cleaning region, for performing a spraying clear function, the inkjet printhead is pivoted so far away from the printing position that there is at least twice a distance from the print carrier but all ink drops still reach the print carrier. In a second cleaning region, for performing a spraying clear function, the inkjet printhead is pivoted so far away from the printing position that all ink drops already or still strike the matched baffle piece. In a third cleaning region, for performing a spraying clear function, the inkjet printhead is pivoted so far away from the printing position that all ink drops strike the nonwoven directly, and this also defines a position in which the spraying clear is carried out through the spray duct. In a fourth cleaning region, for performing a wiping function, the inkjet printhead is pivoted so far away from the printing position that the nozzle surface is disposed in an engagement region of the wiping lips.
In accordance with a further added feature of the invention, a carrier with wipers is provided for cleaning the wiping lips, the carrier is disposed in a stationary manner in an engagement region of the wiping lips.
In accordance with a concomitant feature of the invention, for assuming a sealing position, the inkjet printhead is docked on the cleaning and sealing device being previously positioned, and therefore on the sealing caps, coming from the fourth cleaning region, and is undocked going into the same.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a device for cleaning an inkjet printhead, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawing in detail and first, particularly, to
The printing system 1 contains a frame 10, two printing modules 11, a holder 12 for the aforementioned two and an associated cleaning and sealing device; see also
The holder 12 is mounted such that it can pivot about an axle 121, which is fixed in the frame 10. The displacement of the holder 12 is carried out by an actuating motor 124 via a worm gear mechanism 123; in this regard see also
Provided on the frame 10 are two stops 126, 127, which limit the pivoting range of the holder 12. The stop 126 is used to fix the printing position I, which is at the same time the first calibration position for the rotary encoder 125; in this regard see
Explanations relating to the cleaning regions follow further below.
According to
A cleaning and sealing device 13 has a holder 131 with wiping lips 1311, a spray duct 1312 and sealing caps 1313, which are disposed in the order cited behind the guide plate 22; see also
For the displacement of the cleaning and sealing device 13, a spindle gear mechanism 1314 together with guide shaft 1318 and an actuating motor 1315 and a sensor 1316 for the reference point setting are provided; in this regard see
In order to clean the wiping lips 1311, a carrier 1317 with wipers 13171 is provided, which is disposed in a stationary manner in the engagement region of the wiping lips 1311; in this regard see
An ink sump 133 is formed from an insert 1331 having a nonwoven 13311 and a securing clip 13312. The insert 1331 is guided in the holder 131 open at the front and, for the purpose of easier replaceability, is provided with a handle 13313; in this regard see
While the printing position I and the sealing position VI are determined by uniquely defined positions of the inkjet printhead 110 and the cleaning and sealing device 13, the cleaning regions II to V, as the name already states, can be adjusted smoothly continuously. The sealing position VI is fixed in accordance with a predefined setting by the rotary encoder 125 such that the nozzle surface 111 is disposed orthogonally with respect to the wiping lips 1311 of the cleaning and sealing device 13.
For triggering the various positions of the inkjet printhead 110 and of the cleaning and sealing device 13, the sensors 23, 24 disposed in the letter run and the sensor 1316 for the reference point setting are linked to the control computer 3; see
In the second cleaning region III, for the purpose of performing a spraying clear function, the inkjet printhead 110 is pivoted so far away from the printing position I that no ink drops reached the letter any more and all the ink drops already or still strike the baffle piece 132.
In the third cleaning region IV, for the purpose of spraying clear, the inkjet printhead 110 is pivoted so far away from the printing position I that all the ink drops strike the nonwoven 13311 directly. This also includes the position in which spraying clear is carried out through the spray duct 1312.
As emerges from the above explanations, as distinct from the prior art, in the cleaning regions II to IV the time in which the inkjet printhead 110 is moving is also advantageously used for spraying clear, which shortens the downtimes substantially.
In the fourth cleaning region V, the inkjet printhead 110 is pivoted so far away from the printing position I that the nozzle surface 111 is disposed in the engagement region of the wiping lips 1311.
In order to assume the sealing position VI, the inkjet printhead 110 is docked on the previously positioned cleaning and sealing device 13 and therefore on the sealing caps 1313, coming from the fourth cleaning region V, and is undocked going into the same.
This application claims the priority, under 35 U.S.C.§119, of German patent application DE 10 2005 052 150.9, filed Nov. 2, 2005; the entire disclosure of the prior applications are herewith incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 052 150 | Nov 2005 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4371881 | Bork et al. | Feb 1983 | A |
5806994 | Coffy et al. | Sep 1998 | A |
5883648 | Hetzer | Mar 1999 | A |
6224187 | Inten et al. | May 2001 | B1 |
6367911 | Windel et al. | Apr 2002 | B1 |
6389327 | Thiel | May 2002 | B1 |
6390577 | Fajour | May 2002 | B1 |
6477511 | Guenther | Nov 2002 | B1 |
6755503 | von Niederhausern et al. | Jun 2004 | B2 |
20060017770 | Harada et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
144 24 771 | Nov 1995 | DE |
196 05 014 | Mar 1997 | DE |
197 57 653 | Jun 1999 | DE |
197 26 642 | Sep 1999 | DE |
200 12 946 | Oct 2000 | DE |
100 62 012 | Feb 2002 | DE |
0 041 706 | Dec 1981 | EP |
0 696 509 | Sep 1998 | EP |
0 799 135 | Mar 1999 | EP |
1 332 881 | Aug 2003 | EP |
05162334 | Jun 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20070097173 A1 | May 2007 | US |