This application is a nationalization under 35 U.S.C. 371 of PCT/SE2006/050498, filed Nov. 22, 2006 and published as WO 2007/073320 A1, on Jun. 28, 2007, which claimed priority under 35 U.S.C. 119 to Sweden Patent Application Serial No. 0502821-2, filed Dec. 20, 2005; which applications and publication are incorporated herein by reference and made a part hereof.
1. Technical Field
The invention relates to a device for cleaning crankcase gases from an internal combustion engine by means of a centrifugal separator, the centrifugal separator comprising: a housing, a rotor arranged in the housing and having a plurality of tightly separated separating discs, which define a central gas flow shaft, which communicates with intervening spaces between the disc elements and with a cavity around the rotor defined by the housing; a drive device for rotation of the rotor; an inlet in the housing for crankcase gas; an outlet in the housing for cleaned crankcase gas; and an outlet in the housing for separated oil.
2. State of the Art
A device of the aforesaid type has previously been known in the form of the “Alfdex Oil Mist Separator” produced by Messrs. Haldex/Alfdex. This crankcase gas cleaner is designed for mounting on the side of the engine block of the internal combustion engine, which makes it necessary to run a separate, external feed line for the crankcase gas between the space enclosed by the valve cover, from whence the untreated crankcase gas normally derives, and the inlet on the housing of the centrifugal separator. This side mounting of the crankcase gas cleaner furthermore means that when starting the engine up in cold outdoor operating conditions it takes a relatively long time for the cleaner to reach optimum operating temperature, which may also require separate insulation of the components of the device, in order, among other things, to reduce the problem of condensation.
An object of the present invention is to propose a device for cleaning crankcase gases from an internal combustion engine by means of a centrifugal separator, in which no external line needs to be run for delivery of the crankcase gas to be cleaned, and in which the device is designed and arranged so that it can be rapidly heated up to a suitable operating temperature. To this end, the device according to the invention is characterized by the features specified in the independent claim 1. The housing therefore has an interface surface, which is designed for direct mounting of the housing on the valve cover of the internal combustion engine, in addition to which the gas inlet in the housing has a downstream opening, which communicates with a gas inlet chamber in the centrifugal separator, and an upstream opening, which is situated in the interface surface and which by way of an opening in the valve cover communicates directly with the crankcase gas in a space defined by the valve cover. The cleaning device can thereby be rapidly heated up to the required operating temperature directly by the hot crankcase gases.
Another object of the invention is to provide a gas cleaning device of modular construction in order to facilitate rapid assembly and mounting thereof on the valve cover of the engine. For this purpose, the rotor is rotatably supported in a separate frame, which can be inserted and fitted into the cavity in the housing.
A further object of the invention, where the rotor is made to rotate by means of a hydraulically driven turbine wheel, is to support this in a turbine housing, which is integrally formed with the frame and in which the turbine wheel can function unaffected by the outflow of oil separated out by the separator.
Further characteristic features and advantages of the device according to the present invention will be set forth in the following detailed description and in the dependent patent claims, referring to the drawings attached.
In
The housing 16 is designed to enclose and support a rotor 22, which carries a plurality of separating discs 20. The separating discs 20 are of a truncated cone shape and are stacked tightly against one another with intervening flow ducts for the crankcase gas to be cleaned. The discs 20 are threaded onto a plurality of circumferentially separated, axially elongate centering rods 24 and define a central inlet shaft 26 for the crankcase gas to be cleaned. End discs 28, 30 hold the conical discs 20 clamped between them. The rotor 22 is supported in a separate frame 32 (
As will be seen from
In the mounting plate 18 the housing 16 has an opening, the shape of which substantially corresponds to the peripheral configuration of the lower part of the frame 32, as can be seen from
The housing 16, as can best be seen from
According to the preferred embodiment of the device according to the invention the rotor 22 is driven hydraulically by the turbine wheel 48 supported in the chamber 46 through the pressure of the engine lubricating oil system. For this purpose the turbine wheel 48 has an outlet nozzle 68 essentially directed tangentially, which is supplied with hydraulic oil via an inlet line 70, an axial pipe 72 and a radial duct 73 in the wheel 48. The inlet line 70 is suitably coupled via a connection 74 to a hydraulic oil circuit (not shown). The outlet nozzle 68 is suitably directed somewhat obliquely outwards from the radial plane and towards the inside of either one of the wall sections 40, 42 and its extension in the cover part 44, in order to moderate the oil spray which originates from the oil jet from the nozzle 68 when the wheel 48 rotates. The oil from the nozzle 68 can run back to the space under the valve cover 14 via openings 76 on the underside of the frame 32.
The device according to the invention functions as follows: on starting of the internal combustion engine 10, hydraulic oil flows into the turbine wheel 48 via the inlet line 70, the axial pipe 72 and the radial duct (not shown) in the wheel 48, thereby setting the rotor 22 of the centrifugal separator 14 in rapid rotation. At the same time hot crankcase gas mixed with oil particles flows via ducts up from the engine crankcase to the space under the valve cover 12, from where the gases are drawn directly into the central inlet shaft 26 of the rotor 22 via the opening 66, the inlet 62 and the opening 64. The rapid rotation of the rotor 22 forces the untreated crankcase gas out into the gaps between the adjoining conical separating discs 20, with the result that the oil particles in the gas will be caught by inward facing surfaces of the discs 20 before flowing out on these towards the periphery, where the collected oil particles and drops are then expelled towards the inside of the intermediate wall 52 and onto that part of the inside of the housing 16 not covered by this. The oil collected on the intermediate wall 52 and the housing wall then runs down into a schematically indicated collecting trough 78 in a space defined by the valve cover 12 via large oil outlet openings 80 in the frame 32, following which the oil can be returned to the engine lubricating oil circuit. Separated oil from the rotor 22 is also expelled directly down into the trough 78 from that part of the rotor 32 situated clear of the openings 80. The cleaned gas freed of oil particles, which flows out from the periphery of the rotor 22, can primarily flow out of the housing 16 via the spray-protected space between the intermediate wall 52 and the inside of the opposing part of the housing 16, from whence the gas can be led out via the outlet duct 38 in the first end piece 34 to the return line (not shown) to the fuel/air intake of the engine 10.
The arrangement according to the invention of an active centrifugal cleaner in a housing located on top of a corresponding opening in the valve cover of an internal combustion engine makes it possible, when starting in cold seasons of the year, to avoid the problem of condensation and blockages in the cleaner by achieving a rapid direct warming of the oil in the cleaner and components of the cleaner. Nor is it necessary to run external lines to and from the cleaner for delivering and removing crankcase gas and oil, which makes the design construction of the entire device more expensive and which may create problems when starting up at cold ambient temperatures. Components of the device, including its drive device, can easily be assembled in the form of modular units to form a unit which can be fitted directly to a connection on the valve cover.
Although in the preferred embodiment described the rotor 22 is hydraulically driven by a turbine wheel 48, it is possible, without departing from the scope of the invention, to use an electric motor instead. It should furthermore be possible, instead of truncated cone disc elements 20 in the rotor 22, to use multiple, essentially involute disc elements running axially.
Number | Date | Country | Kind |
---|---|---|---|
0502821 | Dec 2005 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2006/050498 | 11/22/2006 | WO | 00 | 3/20/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/073320 | 6/28/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4920930 | Sakano et al. | May 1990 | A |
6536211 | Borgström et al. | Mar 2003 | B1 |
6755896 | Szepessy et al. | Jun 2004 | B2 |
6783571 | Ekeroth | Aug 2004 | B2 |
6821319 | Moberg et al. | Nov 2004 | B1 |
6860915 | Stegmaier et al. | Mar 2005 | B2 |
7077881 | Franzen et al. | Jul 2006 | B2 |
7152589 | Ekeroth et al. | Dec 2006 | B2 |
20030024512 | Kitano et al. | Feb 2003 | A1 |
20040003579 | Stegmaier et al. | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
3701587 | Nov 1987 | DE |
4311906 | Oct 1994 | DE |
19700733 | Jul 1998 | DE |
10350562 | Jun 2005 | DE |
1045117 | Oct 2000 | EP |
1555399 | Jul 2005 | EP |
2004-521237 | Jul 2004 | JP |
2005-515065 | May 2005 | JP |
519180 | Jan 2003 | SE |
526803 | Nov 2005 | SE |
WO-02099256 | Dec 2002 | WO |
WO-03061838 | Jul 2003 | WO |
WO-2004024297 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20090241920 A1 | Oct 2009 | US |