1. Field of the Invention
The present invention relates to a device for collating laminar workpieces with a continuous conveyor which determines a direction of conveyance, feeders which deliver the workpieces to the continuous conveyor for the assembly of brochures, and with controls for the operation of the feeders and the continuous conveyor.
2. Description of the Related Art
A conventional device of this type includes a component of a saddle stitcher as disclosed, for example, in DE 197 52 015 A1. The saddle stitcher disclosed therein for the assembly of stitched brochures from folded sheets includes individual driving units, one of which is respectively allocated to a stitching station, to each feeder, and to a continuous conveyor in the form of a saddle chain. This provides exceedingly flexible operation of the saddle stitcher in which the controls provided therein adjust, particularly, the phasing of the feeders in relation to the saddle chain to a respective new spine length when the spine length of the folded sheets is changed due to a change in task.
While a saddle stitcher designed in such a manner can process folded sheets in portrait format without problems and at a respectable rate of productivity, problems arise particularly with folded sheets in landscape format if no further measures are taken, insofar as folded sheets of a respective brochure following one another do not come to lie on top of one another after shingling, but rather abut at their top sides, and at their bottom sides, which leads to faulty production and malfunctions.
To overcome the problems described above, preferred embodiments of the present invention provide a device which enables the assembly of brochures in landscape format without waste and without operational malfunctions.
According to a preferred embodiment of the present invention, controls are provided which impose a law of motion upon each respective feeder which is dependent on the format of the workpieces.
In the case of a continuous conveyor which includes a ridge which carries folded sheets thereon and sloping conveying in the form of a pitched roof extending from the continuous conveyor, the laws of motion are designed such that the edges of the open ends of the folded sheets reach the level of the ridge only after the preceding edge of the already delivered folded sheet has already passed the lagging edge of the subsequently passing folded sheet of the respective brochure, such that by the time this state is reached, folded sheets of the respective brochure which follow one another are spaced apart.
Other features, elements, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments with reference to the attached drawings.
The saddle stitcher shown in
A first feeder 12 delivers a folded sheet 2, separated from a stack, respectively to locations following one after the other on the continuous conveyor 20. A further feeder 14, located downstream from the feeder 12 with respect to the direction of conveyance, deposits a folded sheet 4 on the respective folded sheet 2, conveyed by the continuous conveyor 20 in the direction of conveyance. In a similar manner, the feeder 16 deposits a respective folded sheet 6 on the respectively deposited folded sheet 4, and the feeder 18 deposits a respective folded sheet 8 on the respectively deposited folded sheet 8, such that a brochure 10 is created whose number of pages can be determined from the number of folds in folded sheets 2, 4, 6, and 8. This brochure 10 is fed by the continuous conveyor 20 to a stitching device 22, and finally to an output station 23.
Adjacent to the output station 23 is a trimmer feeder 24 which feeds the brochures 10 by a conveyor belt system to the trimmer 25, which trims the brochures 10 on the edge opposite the stitched spine as well as on the top and bottom of the brochure 10, and then feeds them to a delivery tray 26.
Of the machine components described thus far, the feeders 12, 14, 16, and 18 and the continuous conveyor 20 define the mechanical portion of the device for collating laminar workpieces—here in the form of the folded sheets 2, 4, 6, and 8 piled up into a respective stack in the respective feeders 12, 14, 16, and 18.
As an alternative to the continuous conveyor 20 extending into the output station, a continuous conveyor 20 may also be provided which ends before the stitching device 22 and delivers the brochures 10 to an oscillating finger guide system, which conveys the brochures 10 step by step. The oscillating finger guide system is disposed next to a stitching station in which the brochures are stitched and feeds the brochures to an output station, from which point they are, in turn, fed to the trimmer 25, for example. Each of the different continuous conveyors includes carriers 20′ arranged at regular intervals which push the folded sheets or brochures from them.
Regardless of which conveyor and stitching systems are used, the individual machine components must be adjusted with respect to their reciprocal phasing when the format of the brochures 10 is changed due to a change in task. If the mutual spacing of the feeders 12, 14, 16, and 18 corresponds to the mutual spacing of the aforementioned carriers 20′, or an integral plurality of the feeders 12, 14, 16, and 18 mutually correspond, the feeders 12, 14, 16, and 18 can be operated by a common driving mechanism. Otherwise, as shown in
The continuous conveyor 20 is operated using at least one additional driving mechanism 28, which, as an example, also drives the stitching device 22, the trimmer feeder 24, and the trimmer 25, or alternatively, is designed exclusively for the operation of the continuous conveyor 20, and is preferably defined by a positionally controlled driving mechanism, that is, as a servo drive.
A drive control 30.1 is provided for the driving mechanism 28 according to the present preferred embodiment for the operation of the continuous conveyor 20, stitching device 22, trimmer feeder 24, and the trimmer 25. Together with the feeder controls 30.2 to 30.5, to which the respective driving mechanisms 27 of the feeders 12, 14, 16, and 18 are provided, the drive control 30.1 defines the controls 30 for the operation of the entire saddle stitcher.
In addition to the central controls, decentralized control units are provided in the present preferred embodiment. The decentralized control units are connected with one another and with a central control-section 30.6 via a bus. The decentralized control units are capable of exchanging information about the respective phasing of the driving mechanisms 27 and 28 and, using an appropriate control logic, linking the decentralized control units with electronically stored or storable information about the formats of the brochures to be created such that, when processing folded sheets of a certain format, the feeders 12, 14, 16, and 18, controlled by their driving mechanisms via the feeder controls 30.2 to 30.5, deliver the folded sheets to the continuous conveyor 20 using the law of motion allocated to the respective format. In addition, electronic information stored in the controls 30 preferably includes the format-dependant laws of motion.
According to the law of motion provided in column a of
Column b of
As is clear from the snapshot in column b of
This problem, which occurs with short spine lengths and/or long bottom and top sides of the folded sheets, is preventing by adjusting, by means of controls 30, laws of motion which are dependent on the format of the folded sheets on the separating drum and opening drums 14.1, 14.2, and 14.3 and the corresponding drums of the feeders disposed downstream—here, feeders 16 and 18.
In the preferred embodiment shown in column c of
In the preferred embodiment, a deceleration ΔsA results from the mutually opposing paths of motion within a delivery cycle for a folded sheet according to columns b and c of
Alternatively, a suitable law of motion may be selected using parameterization of a function stored in the controls and applied to the appropriate driving mechanisms.
The formats of the folded sheets can be communicated to the controls by manual input or automatically by suitable sensors.
The respective deceleration ΔsA, ΔsB, ΔsC, and ΔsD results from a comparison of the two lines at the already mentioned rotation angles φA, φB, φC, and φD of the driving mechanism 28.
In
While the present invention has been described with respect to preferred embodiments thereof, it will be apparent to those skilled in the art that the disclosed invention may be modified in numerous ways and may assume many embodiments other than those specifically set out and described above. Accordingly, it is intended by the appended claims to cover all modifications of the invention which fall within the true spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 037 896.7 | Aug 2004 | DE | national |