This nonprovisional application claims priority under 35 U.S.C. ยง119(a) to German Patent Application No. DE 10 2009 020 708.2, which was filed in Germany on May 11, 2009, and which is herein incorporated by reference.
1. Field of the Invention
The invention relates to a device for comminuting input.
2. Description of the Background Art
Comminution devices are used primarily for comminution of input material by impact or striking, wherein comminution down to very fine grinding is possible. For example, devices of this class are used in the food industry for fine grinding of fat-containing beans, such as cacao or coffee, or beating and homogenizing fruit pulps. In the chemical industry, devices of this class are used, for example, for producing pigments or grinding polymers. The comminution of soft-elastic materials such as rubber or used tire granules is also possible, generally in conjunction with the introduction of cooling power before the grinding process, for example by supplying liquid nitrogen to make the input material brittle.
Pin mills are known with disks disposed coaxially inside a housing and at a distance from one another, wherein one rotates or both rotate with differential speeds. The disks have comminuting pins on the disk surfaces facing one another, which overlap in the space between the disks in the axial direction. In this process, the comminuting pins of each disk sit on circumferential circles moving concentrically relative to the axis of rotation, wherein the radii of the circumferential circles of one disk differ from those of the other disk to permit mutual combing of the opposing comminuting pins during rotation. The input material is introduced axially to such pin mills through a central opening in one of the disks and deflected in the radial direction by impact on the other disk so that it flows radially through the comminution zone formed by the comminuting pins and is withdrawn after its emergence from the comminuting gap formed by the disk. A machine of this type is described, for example, in DE 27 13 809, which corresponds to U.S. Pat. No. 4,152,081.
A characteristic feature of the pin mills known from the conventional art is their annular disk shaped comminution zone, which extends in a radial plane relative to the axis of rotation, thus has a two-dimensional form. The comminution zone is thus passed through radially, wherein the material particles are driven radially outward both by the entrainment force of the carrier gas stream and by the centrifugal force induced by the circular motion. Therefore, the material to be comminuted wanders through the comminution zone relatively rapidly, so that the action time available to the comminuting pins for breaking down the input material is relatively brief.
This type of construction further means that for the comminuting pins necessary for comminution, only the opposing disk surfaces are available, which considerably limits the number of comminuting pins. In addition, as a result of the radial minimum distance between the comminuting pins that is to be maintained, the play for the arrangement of the comminuting pins is further limited. As a result, in known mills, the density of the comminuting pins is not particularly high, and thus the performance capability of such pin mills is limited.
Since the comminuting pins are disposed upon different circumferential circles relative to the axis of rotation, the comminuting pins disposed on the outer circumferential circles rotate with a higher circumferential velocity than those located further inside. Thus the comminuting pins, depending on their radial difference from the axis of rotation, strike the material to be ground with different energy, entailing the risk that the fine-ground end product displays a greater dispersion in degree of fineness.
It is therefore an object of the present invention to provide a pin mill that permits a more intensive and qualitatively superior processing of the input material compared with the state of the art.
Since the comminuting pins are subject to extensive wear because of the impact of the input material and therefore must be changed frequently, an additional task of the invention includes minimizing the down times of a device by providing for easy and rapid replacement of the comminuting pins insofar as possible.
The invention breaks away from the common concept of a two-dimensional comminution zone in pin mills and provides for the first time for making a three-dimensional comminution zone. This is done according to the invention by using a cylindrical or conical rotor, which is fitted over its circumference with first pin-shaped comminution tools. In this way a high pin density can be attained within the comminution zone with only slight enlargement of the housing. Therefore, disproportionately large amounts of work can be performed with relatively small machines.
The rotor design according to the invention leads to an annular gap between the rotor and housing, through which the input material passes essentially axially. Centrifugal forces occurring within the comminution zone therefore have no appreciable influence on the flow velocity of the input material and therefore also not on its residence time. As a result, the input material can be retained longer in devices according to the invention, with the advantage of particularly intensive processing.
The arrangement of the comminuting tools on a cylindrical or conical rotor, in addition, has the advantage that all comminuting tools have essentially the same circumferential velocity, which results in a uniform processing of the input material and leads to a uniform end product of very high quality that falls within narrow tolerances in terms of shape and size.
The comminution work can be produced by the rotor alone in a device according to the invention. However, an embodiment is preferred in which the rotor interacts with a stator arranged on the interior of the housing. Particularly preferred is a stator that is likewise equipped with two pin-shaped size reduction tools similar or identical to those of the rotor, entering into combing interaction with one another. In this way very intensive size reduction takes place, which is primarily suitable for fine and ultrafine grinding.
The arrangement of the comminuting tools on the rotor or stator is not arbitrary, but an arrangement is preferred in which the comminuting tools are disposed in several radial planes at an axial distance from one another. This results in uniform conditions, which contribute to quiet machine operation. For adaptation to the input material and the method of comminution, the possibility exists of assigning the comminuting tools on the rotor and/or stator to different radial planes aligned with to a mantle line or with a circumferential offset from one radial plane to the next.
According to an embodiment of the invention, the rotor is essentially made in one piece, in other words, it has a monolithic, thus one-piece base in which for example the comminuting tools are inserted directly. Such a base is very simple to manufacture, since no parts need to be assembled. In addition, it is characterized by a high rotational motion accuracy and high precision. The replacement of all comminution tools is done simultaneously by replacing the entire rotor.
To further minimize the machine down times caused by replacement of worn-out tools, a particularly preferred embodiment of the invention provides for equipping the rotor and/or stator with a jacket on which the respective comminuting tools are arranged. This has the advantage that the replacement of the comminuting tools can take place outside of the device, thus with operation continuing, wherein by keeping available an additional rotor or stator jacket that is already fitted with unused comminution tools, the replacement times are limited to the removal and installation of the jacket.
Both in the case of a monolithic rotor and in the variant with a rotor jacket, a plurality of possibilities come under consideration for fastening the comminuting tools, for example press-fit, screw fastenings, gluing, shrink-fit and the like.
In contrast, however, a type of fastening is preferred in which the comminuting tools are merely inserted from the inside of the rotor and/or stator jacket into penetrating openings. Through a broadened design of the comminuting tools in the anchoring area and a complementary design of the jacket in the area of the openings, a first fixation of the comminuting tools in the rotor or stator jacket is achieved. The final anchoring takes place with the fitting together of the base and rotor jacket or top and stator jacket, wherein the base with its outer circumference and the top with its inner circumference forms a thrust-bearing surface for the comminuting tools. The comminuting tools are thus clamped between the base and rotor jacket or upper piece and stator jacket in this way. This type of fastening makes it possible to further shorten the tool replacement times.
To achieve rapid replacement of the rotor jacket with only a few manipulations, a radially inwardly directed annular flange is formed on the upper jacket edge, said flange abutting with the front side of the base piece of the rotor and being tensioned against the base piece with a plate to clamp it in place. The stator jacket is likewise fixed by a clamping type of fastening during the setting of the housing upper piece on the lower piece or by providing a clamping ring on the face of the upper piece, of larger diameter, on the top piece.
To achieve a pre-comminution step within a device according to the invention, opposite the material inlet in the housing, opening concentrically to the axis of rotation, an impact disk is provided on the front face of the rotor, said disk optionally being provided over its circumference with several impact strips and breaking down the larger pieces of the input material in a preliminary way. Preferably the impact disk simultaneously performs the function of fixing the rotor jacket on to the base piece.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:
The general structure of a device according to the invention is apparent from
As was previously mentioned, the external shape of the upper piece 3 resembles a bell, while the inner circumference of the upper piece 3 has a conical shape and serves to receive a stator. The upper side of the upper piece 3 is closed by a removable lid 12, which has a centered opening in the area of the shaft 4, followed coaxially with an inlet port 13 for filling the device with input material.
The foot area of the upper piece 3 is designed with its outer circumference complementary to the inner circumference of the support ring 11, so that the upper piece 3 can be inserted with its foot area axially into the lower piece 2. For reliable fastening of the upper piece 3 on the lower piece 2 an annular flange 14 proceeding plane-parallel to the outer circumference and coaxially is provided, which is fastened to the lower piece 2 with screws 15.
Within the shaft bearing 7, the drive shaft 17 directed coaxially to the shaft 4 is held rotatably within the shaft bearing 7. The lower end of the drive shaft 17, lying outside the housing 1, is connected to a rotary drive, not shown in further detail. The opposite end, lying in the inner region of the housing 1, extends far into the region of the upper piece 3 and serves for irrotatably receiving a rotor 18, the more specific design of which will be explained in further detail with additional reference to
The rotor 18 is made up of several sections and comprises a monolithic base piece 19 in the form of a truncated cone, which is seated irrotatably on the drive shaft. The outer circumference 20 of the base piece 19 is surrounded in a form-locking manner by a rotor jacket 21, the more detailed design of which is apparent primarily from
As
Each of the first comminution tools 28 have a one-piece cylindrical pin, for example made of steel or ceramic, with a diameter between for example 5 mm and 10 mm, which on one end has a disk-like head broadening 29 (
The front face 24 of the rotor 18 is covered with an impact disk 30 arranged coaxially to the shaft 4 and its outer edge extends to the outer circumference of the rotor jacket 21. Here the impact disk 30 overlaps the annular flange 23 radially; wherein the top side of said annular flange comes to lie in a complementary shaped indentation on the underside of the impact disk 30. In this way, the annular flange 23 is embedded in a positive-locking manner between the base piece 19 and the impact disk 30. Thus the impact disk 30 clamps the annular flange 23 and thus the rotor jacket 21 against the base piece, which takes place by means of the screws indicated by 31, which extend through the impact disk 30 and the annular flange into the base piece 19.
On the top side of the impact disk 30, in the area of the outer circumference, six rectangular impact strips 32 are fastened, which are diametrically opposite one another in pairs with radial alignment. By maintaining an axial distance between the impact disk 30 and the cover 12 or the inlet port 13, a disk-like chamber 22 is formed, in which pre-comminution of the input material takes place.
In addition,
In analogy to the rotor jacket 21, the stator jacket 33 is also penetrated by a plurality of boreholes, which serve to receive two pin-like comminuting tools 36, which correspond in type to the first comminuting tools 28. The holes and the second comminuting tools 36 are disposed respectively in axially spaced radial planes, wherein the relative position of the radial planes of the stator jacket 33 relative to the radial planes 26 of the rotor jacket 31 is such that an axial offset results in a combing arrangement of the first comminuting tools 28 and second comminuting tools 36.
The type of fastening of the second comminuting tools 36 in the stator jacket 33 also corresponds to that achieved with the rotor jacket 21, so that the statements made regarding that apply appropriately. The comminuting tools 36 have a broadened head, which lies in a positive-fitting indentation and ends flush with the outer circumference of the stator jacket 33. In this process the upper part 3 presses from behind against the circumferential surface of the upper piece 3 and the ends of the comminuting tools 36 and in this way retains these in the indentations.
A device according to the invention operates as follows. Through the input ports 13, the input material axially enters the chamber 22, where a first impact of the input material on the impact disk 30 takes place. There the input material is deflected in the radial direction and driven radially outward by centrifugal force, where it is captured and pre-comminuted in the outer circumferential area of the impact disk by the rotating impact strips 32 thereon.
Then the pre-comminuted input material is deflected in an axial direction, whereupon it enters into the annular gap 35 and is further broken up and comminuted there between the rotating first comminuting tools 28 and second, fixed comminuting tools 36. The sufficiently processed input material leaves the annular gap 35 axially toward the bottom and enters the annular channel 8, from where it passes out of the housing 1 via the material outlet 9.
For changing the tools, first the upper part 3 of the housing 1 is removed. Then, after releasing the impact disk 30, the rotor jacket 21 can be pulled off axially from the base piece 19 of the rotor 8 and replaced by a rotor jacket 21 equipped with new comminuting tools 28. The replacement of the stator jacket 33 takes place in a similarly simple, rapid manner; after releasing the clamping ring 34, this can be removed axially from the top piece 3.
The replacement of the comminuting tools 28 on the rotor jacket 21 or the comminuting tools 36 on the stator jacket 33 is done by sliding the comminuting tools out of the corresponding holes and inserting new comminuting tools 28, 36 until their broadened heads come to lie in the complementary-shaped indentations in the rotor jacket 21 or stator jacket 33.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 020 708 | May 2009 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
407751 | Walters | Jul 1889 | A |
1451424 | Head | Apr 1923 | A |
1869243 | Fraser | Jul 1932 | A |
2039264 | Seckendorff | Apr 1936 | A |
3028105 | Perrine | Apr 1962 | A |
3815835 | Apostol et al. | Jun 1974 | A |
4152081 | Hesse | May 1979 | A |
4399948 | Treffner et al. | Aug 1983 | A |
5094391 | Tamashige et al. | Mar 1992 | A |
7451944 | Hall et al. | Nov 2008 | B2 |
7861958 | Waznys et al. | Jan 2011 | B2 |
20040035967 | Johnson et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
27 13 809 | Oct 1978 | DE |
202 11 899 | Oct 2002 | DE |
01331 | Jan 1915 | GB |
WO 0047325 | Aug 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20100282886 A1 | Nov 2010 | US |