The invention relates to a system comprising a catheter pump with a radially compressible part and a device for compressing said compressible part, as well as a method for using said system.
The application can hence be provided, on the one hand, in the minimally invasive medical field, for example for a blood pump for heart assistance, and, on the other hand, also for the use in agitators or drive elements.
The invention can display special advantages by the possible miniaturisation in the medical field. Techniques for introducing fluid pumps, in particular into natural body lumina, are known in detail in prior art. Thus reference is made inter alia to the Seldinger technique for introducing an introducer sheath into a vascular system.
Compressible or expandable catheter pumps, where a radially compressible part, for instance a rotor and a rotor housing, can be transferred into a sleeve or sheath are for instance disclosed in EP2399639 or EP2606920. A sleeve is provided around the catheter and the compressible part is pulled into the sleeve, such that compression is effected as the compressible part enters the sleeve. The sleeve can for instance be a peel-away sheath which facilitates insertion of the catheter pump into a lumen, as described within EP2399639, or any other type of sleeve, for instance a cannula pertaining to the catheter itself.
While such expandable pumps are the current state of the art and allow for minimally invasive introduction into the human body, there are a number of drawbacks regarding the handling of such pumps.
To ensure that the pump functions properly, the compressible part should not be transported and provided in an already compressed state. The time during which the compressible part is compressed should be kept to a minimum, since the flexible parts could start to creep when kept in a compressed state for too long.
According to the prior art, the catheter device is provided in an expanded state. For example, by applying a pulling force on the proximal end of the catheter tube of the catheter device, the compressible part is pulled into the sleeve which is provided on the proximal side of the compressible part. Compression hence is effected at the end of the sleeve and commences on the proximal end of the compressible part. As the compressible part is squeezed into the sleeve, a force with an initially predominantly axial component acts on the rotor and the housing, leading to strong deformation of the compressible components. This procedure causes stress and strain to the compressible part and can lead to kinks in the compressible part.
Furthermore, upon compression, the compressible part often experiences elongation, i.e., in a pump setup where a rotor is located in a housing, both the housing and the rotor can expand axially while being compressed radially. If the rotor and the housing are compressed from one end by being pulled into a sleeve, the axial extension is hindered in the direction of the sleeve. In particular, axial elongation of the rotor in the direction of the sleeve is impeded by the already compressed housing. This can lead to additional strain or kinks in the rotor upon folding.
EP3153190 shows a rotor housing which comprises fewer struts on one end of the housing, to minimize damage to the blood. This, however, increases the risk of the rotor being caught or pinched between the struts upon compression of the housing and the rotor, since the gaps between the struts are larger.
It is therefore advantageous to introduce the compression force on the rotor housing such that the compression force, in particular the initial compression force, is applied more centrally on the rotor and with a larger radial component. By applying the force in a central section of the compressible housing, between the distal end of the housing and the proximal end of the housing, i.e., in an axial section at which the rotor is located within the housing, or close to an axial section at which the rotor is located within the housing, uneven folding or pinching of the rotor between the struts can be avoided. If the force is introduced in such a way, rather than only from one end, the rotor can then elongate and/or shift axially in both the proximal and the distal direction. The rotor can then be smoothly folded around its hub.
In principle, compression of a compressible part of a catheter device could be done using a stent crimper, for instance like the one described in EP 0873731. However, the use of stent crimpers in a catheterization laboratory or a hospital environment is problematic, since stent crimpers are delicate and complicated tools which are hard to clean and sterilize after use.
The aim of the application is therefore to provide an easy way for compressing a compressible part of a catheter pump and inserting said compressible part into a sleeve in a quick, safe and reproducible manner, which is feasible also in a catheterization laboratory.
The above-mentioned problems and requirements are at least in part addressed by a system according to claim 1. Further embodiments which can be advantageous are given by the dependent claims or are disclosed in the description and the figures.
The system according to the application comprises a catheter device with a compressible part. Typically, the compressible part comprises a compressible rotor and a housing for the rotor. The compressible part is positioned near an end of the catheter pump defined as the distal end, which is configured to be inserted into the patient, while a proximal end portion of the catheter remains outside of the patient. A motor connected to the proximal end of the catheter device can then drive a rotor at the distal end of the catheter device by means of a drive shaft. The rotor is for example positioned in the left ventricle of a heart and driven such that a flow of blood in the proximal direction of the catheter device is effected, for instance out of the left ventricle and into the aorta. A downstream tubing can be provided proximally of the rotor, in the section where the aortic valve needs to be passed. The compressible housing of the rotor prevents entanglement of heart tissue with the rotor during operation. The catheter device can further comprise a distal bearing. The distal bearing can comprise an elongated portion for rotatably mounting the drive shaft. It is preferably designed as a flexible bearing. The catheter device can further comprise an atraumatic tip with an elongated flexible portion. The atraumatic tip is preferably designed as a pigtail. In some embodiments, the flexible polymer part which comprises the atraumatic tip or the pigtail tip can comprise the distal bearing.
The system further comprises a sleeve in which the compressible part is to be inserted. The sleeve can either be a peel-away sheath which is then docked to an introducer sheath and is removed and discarded after the compressible part has been transferred to the introducer sheath. It can also be any other type of sleeve, such as a cannula pertaining to the catheter itself or an additionally provided sleeve, depending on the desired use of the catheter pump.
Furthermore, the system comprises a compression pipe. The compression pipe comprises movable fins which are designed to receive the radially compressible part. The movable fins have an open state and a closed state. In the open state, the fins can be positioned around at least a portion of the radially compressible part in the uncompressed state. The opening angle of the compressible fins in an open state is such that the fins can be brought in contact with an axial section of the housing which lies between the distal end and the proximal end of the housing compression, preferably an axial section to which the rotor extends in the expanded state. If the fins are now transferred to the closed state, the radially compressible part is compressed and the compression force is applied at said axial section, wherein the force has a radial component.
In one embodiment the compression pipe comprises between two and ten movable fins. In particular, the compression pipe can comprise three movable fins or four movable fins.
In one embodiment neighboring fins are connected by a flexible membrane or skin to avoid pinching of the compressible part or the downstream tubing.
In the open state, a gap is formed between neighboring fins. As the fins are transferred from the open state to the closed state, the gap size is reduced. In one embodiment, in the closed state, the gap between neighboring fins persists, such that the radially compressible part, the downstream tubing or other parts of the catheter device cannot be pinched or trapped between the fins.
The gap that is formed between neighboring fins can extend axially along the length of the compression pipe. The gap can however also extend with a radial component, such that it runs spirally along the compression pipe. Spirally extending gaps can run around the circumference of the compression pipe and extend radially over for instance between 40 and 100 degrees, in particular 90 degrees. In addition to the gaps, slits can be provided. The slits can be provided as a continuation of the gaps, or they can be provided between the gaps, wherein the gaps extend either axially or spirally. When slits are provided, the compression pipe can be opened further and show smoother compression behavior. By having additional slits and/or by having spirally extending gaps, pinching of parts of the catheter device can be avoided.
In an embodiment, ends of radially displayed slits overlap axially with ends of gaps and/or axially aligned slits.
Preferably, the fins in the closed state confine a cylindrical space. In one embodiment, the diameter of the cylindrical space is at most 1 mm smaller or larger than the inner diameter of the sleeve in which the compressible part is to be inserted, preferably at most 0.5 mm, such that the compressible part can easily slide from between the fins in the closed state into the sleeve. In some embodiments, it is desired that the compressible part undergoes further compression as it slides from between the fins into the sleeve.
The compression pipe can further comprise a tube or tubular portion, designed to be positioned around the catheter device. The fins are attached to one end of the tube. When the fins are positioned around the compressible part, there are two possible configurations: the tube can be positioned proximally of the fins and the compressible part, around a portion of the catheter tube, or the tube can be positioned on the distal side of the movable fins and the compressible part, around a portion or all of the distal bearing or the atraumatic tip or pigtail tip.
The tube can comprise a recess for the pigtail, which can be advantageous if positioning of the tube around the atraumatic tip is desired. The pigtail can then be in the curled position, rather than being kept in the elongated and strained position, while the tube is around the elongated portion of the tip, without having to shorten the tube on the distal end, which would complicate the handling of the tube. This is particularly useful when the catheter device is shipped with the compression pipe in place. Allowing the pigtail to curl in the recess, avoids that the tube falls off the distal end of the catheter device.
The system can further comprise a reducer for compressing the movable fins from the open state to the closed state in a smooth and radially isotropic fashion.
The reducer is designed as a tube with a conical section, i.e., a section where an inner wall of the reducer describes a section of a circular conical surface, and a cylindrical section, where the inner wall of the reducer has a constant diameter. In the conical section, the inner radius of the reducer increases as the distance from the cylindrical section increases. An opening angle of the inner wall of the conical section with respect to the inner wall of the cylindrical section can for example be between 6° and 10°.
The reducer can be provided around the catheter device, proximally of the compressible part and distally of the sleeve in which the compressible part is to be inserted. The conical section lies thereby distally of the cylindrical section. Thus, as the reducer is moved in a distal direction with respect to the catheter device and the compression pipe, the compression pipe and the compressible part of the catheter device provided between the fins of the compression pipe slide into a distal opening of the reducer into the conical section of the reducer. The relative movement can for example be effected by pushing the compression part and the reducer together by hand, or by holding on the reducer and pulling in a proximal direction on the proximal end of the catheter tube. The compression pipe either slides into the distal opening of the reducer with the fins first or with the pipe first, depending on the configuration used. As the relative movement continues, and the fins enter the conical section of the reducer, the fins start to be compressed, as the radius of the conical section of the reducer decreases in the direction of relative movement of the compression pipe with respect to the reducer. Therefore, the compressible part provided between the fins is also compressed. Preferably, the compression force mediated by the compressible fins acts on an axial section of the compressible part in which the rotor extends. The compression force then has a radial component, which is advantageous for compressing the rotor without causing kinks. The compression pipe and the compressible part provided in the compression pipe then further slide into the reducer, and into the cylindrical portion of the reducer. When the cylindrical portion is reached, the compression is completed. The fins are now in a fully compressed state and the radially compressible part is compressed to the desired radius. Preferably, a gap between neighboring movable fins remains, also in the compressed state, to avoid pinching of the compressible part or the downstream tubing. This can be further aided by providing membranes, preferably elastic membranes or skins between neighboring movable fins. As the relative movement of the compression pipe and the catheter device with respect to the reducer continues, the compression pipe and the compressible part slide towards a proximal opening of the reducer. Two opposing stops can be provided near the proximal opening. The sleeve in which the compressible part is to be inserted is then provided against the first stop on the proximal side of the proximal opening. The stop limits the movement of the sleeve in the distal direction with respect to the reducer. The compression pipe strikes the second stop, opposing the first stop, on the distal side of the proximal opening, inside the reducer. Thus, the movement of the compression pipe in proximal direction with respect to the reducer is limited. The catheter device can now be pulled out of the compression pipe, for instance by exerting a pulling force on the proximal end of the catheter tube. The compressible part of the catheter device then slides out of the compression pipe, through the proximal opening of the reducer and into the sleeve. The distal bearing and/or the atraumatic tip also slides through the compression pipe and the proximal opening of the reducer. The reducer and the compression pipe then fall of the distal end of the catheter device and can be discarded.
In embodiments envisioning a reducer, the sleeve and/or the compression pipe can each exhibit an additional stop configured to abut against the reducer, preferably against the outside of an end of the reducer. The stop can be positioned in such a way, that a gap is provided on the inside of the reducer at the end of the sleeve and/or at the end of the compression pipe. This way, the catheter device cannot be pinched between the sleeve and the reducer or between the compression pipe and the reducer or between the sleeve and the compression pipe.
Alternatively to what was described so far, the reducer and the compression pipe can be rotated by 180°, such that the reducer is provided distally of the compressible part and the compression pipe proximally of the compressible part. The sleeve can then be provided proximally of the compression pipe or distally of the reducer. The latter option can be advantageous for pumps that are inserted into the right ventricle, which pumps can have a downstream tubing that lies distally of the rotor.
The compression pipe with the compressible part of the catheter device provided between the fins is inserted into the conical portion of reducer, for instance by manually sliding the compression pipe into the reducer. When the compressible fins have reached the cylindrical portion of the reducer, the compression is finished. Preferably, a stop is provided to limit the relative movement of the reducer and the compression pipe, such that the movable fins remain in the cylindrical portion and the compression pipe cannot slide through the reducer. In a next step, the sleeve is provided against a second stop pertaining to the reducer, or directly against the compression pipe which can act as a stop for the sleeve. By holding on to the sleeve and pulling on the catheter tube, the compressible part can slid out of the compression pipe and into the sleeve.
The compression pipe and the reducer are for instance both made of PTFE, PE or POM, such that friction between the compression pipe and the reducer is minimized.
The catheter device can be delivered with the compression pipe and the reducer pre-mounted on the catheter device. The compression pipe and the reducer can be single-use parts which are discarded after use. Additional stops can be provided, for instance in the conical portion of the reducer, to allow pre-mounting the compression pipe in such a way that the compressible fins with the radially compressible part are already provided in the conical portion of the reducer, in an uncompressed state and cannot slide out due to the stops. This way, the compressible part is protected between the reducer and the compression pipe.
In one embodiment, in addition to the catheter device, the reducer and the compression pipe, a disk device, such as a plate or membrane, with a hole is provided. The disk device is provided around the catheter tube, between the reducer and the compression pipe, such that it can slide along the catheter tube. The disk device can have a slit connecting the hole and the outer edge of the disk device, such that the disk device can be clipped on the catheter. In another embodiment, the slit is only connected to the hole but not to the outer edge of the disk device, to prevent the disk device from getting lost. The edges of the disk device, in particular the edges of the slit and of the hole are smooth and/or made of flexible material, such that the catheter cannot be damaged and such that the disk device has good sliding properties on the catheter tube. The radius or radial extension of the disk device is larger than the radius of the cylindrical portion of the reducer. Preferably, the radius or radial extension of the disk device is larger than the radius of a circular plane circumscribed by the front parts of the movable fins in the uncompressed state. The disk device is made of a flexible material, for example PTFE, PE, or Silicone, such that it is capable of elastically yielding as it slides along the catheter device and possesses good sliding properties. As the reducer is moved with respect to the catheter device and the compression pipe, the reducer pushes the disk along the catheter device, the disk provided against the distal end of the reducer. In one embodiment the disk closes the distal opening of the conical portion. When the disk abuts the compressible part, the catheter device, the disk device and the reducer are moved relative to the compression pipe.
If the compression pipe is configured to enter the reducer with the fins first, a part of the reducer near the distal opening abuts the disk as the reducer is moved toward the compression pipe. As the movement continues, the disk device abuts the compressible part and pushes the compressible part between the fins. The disk device can thus help positioning the radially compressible part at a position which is advantageous for the subsequent compression. Continuing the relative movement of the reducer and the compression pipe, the disk device gives in or breaks as it is pushed through or into the conical portion of the reducer, allowing the compression pipe to slide into and through the conical portion of the reducer.
Aspects and embodiments of the system according to the application are exemplified in
a and b show the distal end region of the catheter device with a compression tube and a reducer;
a and b show the compression pipe from two different perspectives;
a and b show the reducer from two different perspectives;
a and b show the distal end region of the catheter device with a compression tube and a reducer and a disk device;
c shows the disk device from
a and b show the rotor and the housing in the expanded state and in the compressed state;
a shows the distal end region of the catheter device as shown in
b shows the same setup as
In
a and 9b show the catheter device 1, the compression pipe 2 and the reducer 3 and an additional disk device 3.4 or membrane with a hole.
In
b shows a similar setup as
c shows the disk device 3.4 from
a and 11b shows the rotor 1.1.1 and the housing 1.1.2 and the sleeve 4 in two states, uncompressed (a) and compressed (b). When the rotor 1.1.1 and the housing 1.1.2 are transferred into the sleeve 4, the rotor 1.1.1 and the housing 1.1.2 are compressed in a radial direction, from their expanded states 1.1.1, 1.1.2 into their compressed states 1.1.1′, 1.1.2′. The rotor 1.1.1 in the expanded state has an axial length 1.1.3. As the rotor 1.1.1 is compressed to the compressed state 1.1.1′, the axial length increases to a length 1.1.3′. Similarly, the housing 1.1.2 in the expanded state has an axial length 1.1.4. As the housing 1.1.2 is compressed to the compressed state 1.1.2′, the axial length increases to a length 1.1.4′. The elongation of the rotor allows for a better compression than if the length is kept constant. If the compression force has a larger radial component, as in the case when the compression pipe 2 and the reducer 3 are used, the rotor 1.1.1 can expand axially. On the other hand, if the rotor is simply pulled into a sleeve 4 as shown in
The inner diameter of the part of the cylindrical portion of the reducer into which the sleeve 4 is introduced is between 0.2 and 1 mm, especially between 0.4 mm and 0.7 mm, larger than an outer diameter of the sleeve 4. This way, deforming of the sleeve 4 is tolerated when the catheter device is pulled into the sleeve 4. This is particularly advantageous as the rotor 1.1.1 is sometimes compressed to obtain an ellipsoid shape, rather than a circular shape.
The compression pipe 2 does not comprise a recess for receiving the pigtail 1.2.2 of the catheter device 1.
The step provided on the inside of the reducer 3 of
The compression pipe 2 shown in
a-e show different embodiments of the compression pipe 2, differing from each other in how the gaps 2.2.2 and slits 2.4 are arranged. In each case, the additional stop 2.3 is provided. The compression pipe 2 is shown in a compressed state.
In each case, the compression pipe 2 has four movable fins 2.2. The width of the fins 2.2 is chosen to be large enough to engage with the struts of the compressible housing of the catheter device 1. I.e., for a higher density of struts, thinner fins can be provided. When the density of struts is low in all parts of the housing, broader fins are provided, sometimes embodiments with three fins instead of four fins are chosen for a low density of struts.
Ends of radially displaced slits 2.7 overlap axially with ends of gaps 2.2.2 and/or axially aligned slits 2.4 (this is also shown in
Number | Date | Country | Kind |
---|---|---|---|
17187609.7 | Aug 2017 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/072700 | 8/22/2018 | WO | 00 |