Device for compressing a gaseous medium and systems comprising such device

Information

  • Patent Grant
  • 6453659
  • Patent Number
    6,453,659
  • Date Filed
    Thursday, May 18, 2000
    24 years ago
  • Date Issued
    Tuesday, September 24, 2002
    22 years ago
Abstract
A device for compressing a gaseous medium such as those used in energy generating systems or gas separation systems, including a compressor unit provided with a medium inlet, an outlet for the compressed medium and with means for the atomising of a liquid evaporation agent in the medium, wherein the atomising means include at least one flash swirl atomisation unit, arranged and mounted such that the atomised evaporation agent fragmentises by means of the formation of gas in the atomised evaporation agent.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention concerns a device for the compressing of a gaseous medium and systems that apply such compressing devices, such as energy generating systems, gas separators, compressors and compressor systems for natural gas, air, and chemicals—such as ammoniac.




2. Brief Description of the Prior Art




Compressing a gaseous medium requires compression work, which work is directly proportional to the absolute temperature of the medium to be compressed. This means that compression work may be reduced by cooling the medium before and during the compression, and in the event of recycling, also after compression. This applies also if the medium is compressed successively in various stages. The main objective is a virtually ideal or quasi-isothermal compression.




The medium is cooled by introducing a liquid evaporation agent (usually water). The evaporation agent is introduced in the form of droplets that evaporate. The heat required for evaporation is provided by the medium, which consequently cools.




In principle, it is not necessary that the sprayed droplets of the evaporation agent evaporate completely. Incomplete evaporation of the droplets, however, may result in droplets of the evaporation agent coming into contact with the interior of the compressor unit, which may lead to erosion and corrosion of parts of the compressor unit.




The objective, therefore, is to introduce as tiny droplets as possible (1-10 μm). The smaller the droplets, the likelier the possibility that they will evaporate completely, but also the less likely that they will come into contact with the structure of the compressor unit. However, if the medium has a high velocity and/or the air residence time in the compressor unit is short, there usually is insufficient time for full evaporation.




DE-A-41 14 678 relates to a method for the atomisation of a fluid for a gas turbine. The atomisation of the fluid has to take place over the entire length of the compressor at a spraying pressure of 5-20 bar above the compressor pressure. The maximum quantity of fluid to be atomised—water in particular—lies between 0 to 0.2 kilogram per kilogram air and may not be exceeded. Finally, it is indicated that the manner wherein the fluid is atomised in the compressor has not yet been constructively solved.




U.S. Pat. No. 4,478,553 relates to the isothermal compression in the compressor of a gas turbine. Atomising means are strategically positioned in the rotor structure. The water to be dispersed is not pre-heated and the size of the droplets of the atomised evaporation agent is preferably maintained at between 2 and 10 μm.




U.S. Pat. No. 5,388,397 relates to a method for operating a turbocompressor, whereby air is compressed in two stages and cooled in between in an intercooler. The warm water of the intercooler is cooled in subsequent evaporating vessels and the resulting steam is transferred very compactly to the environment by spontaneous evaporation according to a flash method. The evaporated amount is made up to by a corresponding amount of fresh water.




EP-A 0 821 137 describes a system for generating energy, whereby the gas to be compressed is cooled by atomising water droplets with a drop size of 1-5 μm. Under certain conditions, however, the required flow rate of atomised water droplets is too small.




SUMMARY OF THE INVENTION




The present invention aims to provide a compressor device in which a gaseous medium may be compressed at relatively low temperatures by applying very small droplets of evaporation agent (the median is smaller than 5 μm, generally smaller than 3 μm, preferably smaller than 2 μm, e.g. 1.2 μm) whereas sufficient flow rate of this type of atomised droplets may be generated in dependency of the flow rate of the medium to be compressed.




Simultaneously, the present invention aims to provide a very adequate manner of cooling a gaseous medium, so that the cooling capacity of existing or required gas coolers (intercoolers) may be reduced or that they may be replaced.




This is achieved according to the invention by a device for compressing a gaseous medium, generally including a compressor unit provided with a medium inlet, an outlet for the compressed medium and of means for atomising a liquid evaporation agent in the medium, wherein the atomising means have at least one flash atomisation unit, mounted and arranged such, that the atomised evaporation agent fragmentises by the formation of gas in the atomised evaporation agent.




The atomising means of this compressor unit includes an inlet for evaporation agent and an outlet for evaporation agent into the gaseous medium line. It is possible that this gaseous medium still has to be compressed, is in the process of being compressed or has already been compressed. In the latter instance, the compressed medium may still be added to a subsequent compressing unit or may in part be recirculated. The atomising means usually also contain a very large number of atomisers via which the evaporation agent is sprayed into the gaseous medium.




In principle, any known type of atomiser may be used in the flash atomisation unit. Suitable ones are, for example, swirl atomisers, slot atomisers, orifice atomisers, rotating bowl atomisers and, if necessary, pen atomisers. Of importance is only that the atomiser gives off droplets or a film of evaporation agent to the gaseous medium, under circumstances changed to such extent that flash atomisation takes place subsequently. Flash atomisation means that the liquid evaporation agent arrives in the gaseous medium under such conditions that as a result of the pressure drop over the atomiser, boiling bubbles or gas bubbles are generated in the droplets or film of the evaporation agent, i.e. gas or vapour is formed in the evaporation agent. This so-called flashing or precipitation results in the explosion or fragmentation of the droplets or film of the evaporation agent as a result of the sudden partial boiling or gas precipitation. Such fragmentation results in the generation of very tiny droplets of evaporation agent in the gaseous medium. After fragmentation, the median size of the evaporation agent is less than 5 μm, in general smaller than 3 μm, preferably smaller than 2 μm, e.g. 1.2 μm.




This means that atomisers may be employed in the atomising means insofar as they result in droplets of the said median size after fragmentation. Of importance in this respect is that the atomising means, the flash atomisation units in particular, are mounted and arranged such that the atomised evaporation agent fragments by the generation of gas in the atomised evaporation agent.




Preferably, a flash atomisation unit is used that is provided with swirl atomisers. In such a known swirl atomiser, the evaporation agent is put in swirling motion in a swirl chamber. The swirling evaporation agent exits via an outlet. It has appeared that the thickness of the exiting layer of evaporation agent is only a fraction (e.g. 10%) of the diameter of the outlet passage. The subsequent flash fragmentation results in droplets having (dependent on the pressure drop, temperature and diameter of the outlet passage) a median size of 5 μm or less. Because of the reduced size of the droplets of evaporation agent, there will be less risk of contact with the interior of the compressor unit, which means that the entire length of the compressor unit can be cooled.




It will be clear that in order to realise this fragmentation, it is important that the conditions (in particular the changing of conditions) under which the evaporation agent is atomised in the gaseous medium must be optimal for fragmentation. Important conditions for flash fragmentation are the temperature of the evaporation agent, the atomisation pressure under which the evaporation agent is atomised in the gaseous medium, and the outlet passage diameter. Therefore, the flash atomisation unit preferably, has means for adjusting the temperature of the evaporation agent and/or the atomisation pressure.




As indicated above, known atomisers may, in principle, be used in the compressor device according to the invention. These atomisers may release the evaporation agent in the gaseous medium in a direction which is either traverse or parallel to the flow of the gaseous medium. The atomised evaporation agent may possess a radial or axial component vis-a-vis the gaseous medium. A radial component is important in order to avoid coalescence of the fragmentised droplets of evaporation agent and may be realised e.g. by applying a swirl atomiser. An axial component is important in order to transfer the energy of the evaporation agent as much as possible to the gaseous medium, such that the pressure drop is low or even negative. In the event the existing compressors or compressor systems for instance energy installations are retrofit, pre-position is provided for a spraying rack with swirl atomisers. This spraying rack should preferably be positioned close to the medium inlet of the compressor so that there is hardly any opportunity for droplet coalescence or heating of the medium. Under similar conditions it is also possible to include the atomisers in the blades of the compressor and to atomise from the stator or rotating compressor blade. The swirl atomiser and the slot atomiser or orifice atomiser in particular are preferred here because they are of a very simple construction and are quite easy to miniaturise. Accordingly, very large numbers of atomisers may be implemented in advance without requiring too extensive changes in the existing compressor device, thus enabling an optional but also large flow rate of fragmentised evaporation agent. A retrofit set up in this manner effectively reduces both the compression discharge temperature and the compression work.




If, furthermore, the means for adjusting the temperature adjusts the temperature of the evaporation agent preferably to or near the critical temperature, the evaporation agent attains a surface tension which is virtually or precisely 0 N/m


2


. This means that little or no further energy is required to atomise the liquid, so that the droplet size will be extremely small (a median droplet size of up to 0.1 μm is possible) and the use of other means for reducing the surface tension may be dispensed with. Depending on the amount of liquid evaporation agent that is atomised in the medium and the distance to the medium inlet of the compressor, the temperature of the medium/evaporation agent to be compressed may increase, e.g. from 15° C. to 23° C. and 30° C. at a final water content in the medium that leaves the compressor unit of 10 and 18 mol % respectively. Therefore, it is advantageous if the temperature of the evaporation agent to be atomised—water in particular—before atomisation is as low as possible. Finally, because of the extremely small size of the droplets, an optimal and maximum evaporation and consequently cooling will occur, as a result of which the compression work is minimal and therefore the forming of NO


x


as well.




Besides the aforementioned physical conditions for fragmentation it is also possible to promote fragmentation by adding chemical or physical additives to the evaporation agent. It is therefore preferable to add agents to the evaporation agent which reduce its surface tension, thereby reducing the energy required for the fragmentation. Agents that can be used to reduce the surface tension are detergents and the like. Preferred surface tension reducing agents are those that do not only reside at the interface of the evaporation agent and medium but that are also virtually homogeneously distributed throughout the evaporation agent (droplet or film). Thus, a reduced reduction of the surface tension is not required after atomisation and prior to fragmentation as a consequence of diffusion. Under such conditions the use of fatty acids, shortened fatty acids in particular, is preferred or, possibly, alcohol, e.g. methanol or ethanol. Use of the latter substances is especially preferred in the event they are to be added to gaseous mediums that are subsequently used in a combustion process. Thus, the risk of these additives negatively influencing the combustion process is avoided.




According to another preferred embodiment, the evaporation agent, generally includes a number of evaporation substances that each feature different boiling points. In particular, as the result of a pressure drop when the flash atomisation unit is passed, the vaporisable substances with the lowest boiling points will be the first to evaporate in a flash, forming boiling bubbles, as a result of which the remaining (liquid) evaporation agent will explode or fragment into small droplets. The mixture may e.g. be a mixture of water and carbon dioxide or a mixture of water and carbon monoxide.




The addition of a vaporisable substance having a lower boiling point also results in a further reduction of temperature in the atomised droplets. The atomisation of water, which is saturated with carbon dioxide (approx. 7% by wt at 150 bar) at 150 bar and 15° C. results, when it is suddenly expanded to 1 bar, in a lowering of the temperature to 12.5° C.




In principle, the compression device according to the invention may be applied under all kinds of conditions, in particular under conditions requiring isothermal or quasi-isothermal compression for reasons of efficiency, and such under conditions that leave little time for evaporation as a result of the limited residence time before, in or after the compression unit.




The compression device according to the invention turns out to be well applicable in systems for generating energy, such as compressor units provided with gas turbines as well as installations for gas separation or combustion engines. In principle, the invention is applicable to all gases that have to be compressed, such as natural gas, ammoniac, air, nitrogen and oxygen, hydrogen, synthesis gas, carbon dioxide and inert gases.




The compression device according to the invention may also be used in a rotating or piston engine, such as a combustion engine, e.g. a gas engine, diesel engine and Otto engine. The piston compression in a piston compressor or during the compression stroke in a combustion engine may be reduced in work in the same manner as in the axial or radial (gas turbine) compressor by applying quasi-isothermal compression. In a diesel engine with turbocharger atomisation may take place both before and in the turbocharger and before and in the compression chamber. The finely atomised water will evaporate and the temperature and the compressor-work will be lower than with adiabatic compression.




As indicated above, in a combustion engine the flash atomisation unit is preferably incorporated in the separate compression chamber or compression unit. Thus, quasi-isothermal compression may occur during the compression stroke of the combustion engine. A heat exchanger is arranged between the compression chamber or unit and the combustion chamber of the combustion engine which is in heat-exchanging contact with an exhaust outlet of the combustion engine. Thus it is possible to recuperate heat in the cool, compressed air from the heat of the exhaust gases.




The features stated and other features of the compressor device and of the systems in which such devices are used, will be given below as examples without restricting the invention thereto.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic representation of a system for generating energy (biomass TOP Humidified Air Turbine (TOPHAT)); utilising flash atomisation according to the invention;





FIG. 2

is a schematic representation of another system for generating energy (coal-TOPHAT);





FIG. 3

represents a system for air separation;





FIG. 4

is a schematic representation of still another system for generating energy, with specific attention for the cooling of hot gas parts;





FIGS. 5 and 6

are schematic representations of ship diesel engines;





FIG. 7

is a schematic representation of a flash swirl atomiser;





FIG. 8

is a schematic representation of a swirl-flash retrofit system for generating energy;





FIG. 9

is a variant of the system shown in

FIG. 8

, which uses an evaporation agent comprising evaporation substances with different boiling points;





FIG. 10

shows another system for generating energy according to the invention according to the TOPHAT principle; and





FIG. 11

shows a energy generating system according to the TOPHACE principle (TOP Humidified Air Combustion Engine).











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

shows a system


1


for generating energy. The system


1


includes a compressor unit


2


driven via a shaft


3


by a gas expansion turbine


4


, which also drives a generator


5


.




The compressor unit


2


is provided with a (medium) air inlet


6


and an outlet


7


for compressed air. In the air inlet


6


, atomising means


8


are included for atomising evaporation agent, in this case water is supplied via water supply


9


, into the air. The atomising means


8


comprise a casing containing a ring through which the air flows that is to be compressed. This ring contains a large number of (known) flash atomisation units spaced over the circumference at short distances from each other, each connected to the water supply


9


. In the heat exchanger


16


—and if so required in heat exchanger


10


—the water is preheated to 140-250° C. The flash atomisation units are constructed as swirl atomisers (see

FIG. 7

) and water droplets with a median size of 1-2 μm are ejected into the air. The maximum flow rate of ejected atomised water droplets is 20 kg/s, at an air flow rate of 100 kg/s. For existing compressor units, as present in a gas turbine, the traditional flow rate will be at most 5% of the air supply; for new gas turbines at most 20%.




After passing though a recuperator


10


, the is compressed and heated gas is brought, via outlet


7


, into the combustion unit


11


, to which fuel is fed via the fuel inlet.




The flue gas is cleaned in unit


13


, wherein the ashes are removed via outlet


14


. The cleaned flue gas drives gas turbine


4


. After passing the gas turbine, the gas passes the recuperator


10


and a heat exchanger


16


via line


15


and leaves the system


1


via the stack


17


.




If the fuel is biomass, the dried biomass originating from the heat exchanger


16


is pressurised in unit


18


.





FIG. 2

shows a similar system


20


, for the generating of energy. Identical units are indicated by identical reference numbers.




In system


20


the evaporation agent (water) is supplied via water supply


9


prior and to the various compression stages of the compressor unit


2


. To this end, the compressor unit


2


comprises a number of atomising means, each mounted with flash atomisation units. Thus quasi-isothermal cooling is obtained. Furthermore, reference is made to the presence of a bypass line


21


for the combustion unit


11


such that the combustion temperature and/or the temperature of the turbine can be adjusted. The gas that leaving gas turbine


4


via line


15


is removed via line


22


.





FIG. 3

shows a system


23


for compression for air separation. Via a number of compressors


24


the air supplied via inlet


6


is pressurised. The air is cooled with water that is added to the atomising means


8


, of which at least one contains a flash atomisation unit, via line


9


. The pressurised air is supplied to the conventional air separator


26


. In a variant to the system


23


shown in

FIG. 3

, which includes only one compressor


24


and atomising means


8


, which atomises the evaporation agent by flash atomisation in the air supplied via inlet


6


. The air (29 kg/s) is compressed quasi-isothermally under flash atomisation of water (100 bar at 200° C.). The air is heated from 15° C. to 83° C. It is subsequently cooled to 25° C. The compression work is 5.3 MW. The cooling capacity is 6.9 MW. If adiabatic compression was applied (5 bar at 200° C.), followed by cooling to 25° C., the compression work is 5.6 MW and the cooling capacity 5.9 MW. By using the system according to the invention the energy consumption is reduced with 5.5%. Moreover, the capacity of the compressor


24


increases by approximately 10%;. The cooling capacity increases notably, as a result of the presence of water in the air and the fact that the increased capacity is caused by condensation of the water.




For the compression of oxygen, nitrogen and hydrogen from ambient pressure to 16 bar, the state of the art uses multi-stage compressors with intermediate intercoolers. For oxygen (32 kg/s), the oxygen is adiabatically compressed in a first compressor stage to 4 bar (temperature 175° C.) and subsequently cooled down to 40° C., whereby the pressure is reduced to 3.8 bar. The compression work is 4.7 MW and the cooling capacity 4 MW. In a second compressor the oxygen is compressed to 8 bar (at 214° C.) and subsequently cooled to 25° C. In this case the compression work is 5.8 MW and the cooling capacity 5.5 MW. The total amount of compressor energy is 10.5 MW and the total cooling capacity 9.5 MW.




In the event of quasi-isothermal oxygen compression according to the invention, utilising the atomising means


8


according to the invention, 4 kg/s water at 100 bar and 200° C. is atomised in the oxygen via flash atomisation. The compressed oxygen (131° C.) is subsequently cooled to 25° C. In this case the compression work is 10.4 MW and the cooling capacity 12.8 MW. The increase of the cooling capacity is caused by the condensation of water, which reduces the costs of cooling. By using one compression step only, the construction of the device is considerably simpler, which reduces the costs of the device substantially. An additional advantage for the compression of oxygen and hydrogen is increased safety, as a result of the inherently lower temperatures over the entire pressure range, together with the presence of water droplets, making the process considerably safer.





FIG. 4

shows a system


25


for generating energy. System


25


includes a compressor


27


mounted with an air inlet


26


, and an outlet


28


for compressed air, which connects to the inlet


29


for the cooling air of turbine


30


. The air inlet


29


is mounted with a flash atomisation unit


31


, in which an evaporation agent, such as water, is supplied via line


32


, sprayed in the compressed air, and supplied to turbine


30


via two inlets


33


and


34


. In this way, it is possible to feed cooled air into the turbine. In fact, the existing rotor air coolers and optionally the booster compressor may be reduced in number or size or replaced by the flash atomisation unit described.




Incidentally, compressed air is also supplied to the combustion unit


37


, via the outlet


35


and the heat exchanger


36


. Fuel is supplied to the combustion unit


37


via line


38


. An outlet


39


for exhaust from the turbine also passes the heat exchanger


36


and is carried away via stack


40


.




In comparison with existing gas turbines mounted with rotor air coolers, the capacity of the gas turbine may be increased by applying the flash atomisation unit, e.g. from 58.7 MW to 60.8 MW or even 61.3 MW (in the latter instance the booster compressor is shut down as well).





FIG. 5

shows a diesel engine


41


, mounted with a turbocharger


42


. Via inlet


43


diesel oil is supplied to six cylinders


44


, to which the inlets for compressed air are connected as well. The air compression takes place in a compressor


46


, which is connected to the main inlet and mounted with an air inlet


47


. Water supplied via line


48


is brought under pressure by pump


50


and is heated in heat exchanger


49


before being supplied to the flash atomisation unit


51


, by which means very finely distributed water droplets are sprayed into compressor


46


.




The exhaust of the diesel engine


41


is carried off via line


52


and passes the turbine


53


, the heat exchanger


49


and the valve


54


and exits the system via the stack


56


, By using the flash atomisation units


51


, cooler and moister compressed air is supplied to the cylinders of diesel engine


41


, thus reducing the NO


2


emission.




As

FIG. 6

shows, in a similar diesel


56


engine flash atomisation units


57


may also be utilised in each cylinder


44


for the atomisation of diesel oil. The diesel oil is supplied via line


43


and heated up by passing it via the heat exchanger


58


and if necessary by exchanging heat with the cylinder. The diesel oil has to be brought at such temperature as to enable the flash atomisation to take place at an accepted cylinder pressure, e.g. approximately 40 bar. A further advantage is that the injection pressure may be reduced from approximately 1000 bar or more to e.g. 200 bar.




Fuels like diesel oil have a boiling range. By temperatures of 350° C., a significant flash effect will already occur for diesel oil. This may be lower for kerosene/gasoline (250/150° C.) and higher for slow speed ship diesel engines—up to 400° C. Because the combustion of much smaller droplets is much more efficient, a more homogeneous combustion will take place, which results in a lower emission of soot.





FIG. 7

shows a swirl atomiser


59


, as known in the state of the art. Via line


60


the evaporation agent


61


is tangentially supplied to a swirl chamber


63


via an inlet


62


. The evaporation agent attains a swirling movement


64


and leaves swirl chamber


63


via outlet


65


. The swirling evaporation agent enters the space in which gaseous medium is present in the shape of a cone. The thickness of the layer of evaporation agent is reduced and ends up in very tiny droplets as the result of fragmentation. It may clearly be observed that the thickness of the layer of evaporation agent is less than the diameter of the outlet passage


65


of the swirl chamber


63


. Because of the smaller size and relatively simple construction of the swirl atomiser


59


, large numbers of such swirl atomisers may be applied for the flash atomisation of the liquid evaporation agent in the gaseous medium being or to be compressed.





FIG. 8

shows a system


66


for generating energy. This system


66


includes a compressor


67


, connected to a turbine


69


by a shaft


68


. Turbine


69


drives a generator


70


. From a vessel


71


water at 15° C. is pumped via a heat exchanger


73


by a pump


71


. In heat exchanger


73


the water is heated to 140-250° C. by exchanging heat with the exhaust


74


of turbine


69


. This warm and pressurised water is supplied to the flash atomisation unit


75


, in which the water is atomised in air


76


of 15° C. After quasi-isothermal compression in the compressor


67


the compressed air is supplied to a combustion unit


77


, after which the exhaust gases are supplied to turbine


69


via the line


78


.




The use of the compressor device (of the type shown in

FIG. 8

according to the invention) has been studied with an existing system according to the invention: an Allison Centrax 400 kW gas turbine. This gas turbine is retromounted. In an early model


21


swirl atomisers with a 0.2 mm bore are mounted in the air inlet. In a second model


14


swirl atomisers with a 0.4 mm bore are mounted in the air inlet. A series of tests was carried out at charges of 100, 200, 300, and 400 kW respectively. These tests were carried out at these charges with and without water injection. The relative amount of injected water was 1.3% and 1.0%, respectively. During the tests, the charge of the gas turbine was maintained at permanent level by adjusting the turbine inlet temperature. In order to attain a first rate forecast for the increase of capacity, the full load capacity and the NO


x


emission, interpolations and extrapolations were carried out.




The results are given in the table below.



















Relative amount of








water injection (%)














1.0




1.3



















Increase full load capacity (%)




+5.4




+9.2







Relative increase of efficiency (%)




+1.5




+2.9







Reduction in NO


x


emission (%)




+16 




+21 















The use of the compressor device according to the invention in the Centrax 400 kW gas turbine resulted in a considerable reduction of the No


x


emission. Moreover, the full load capacity increases as well as the relative efficiency. It may be clear that by retrofitting existing gas turbines the output and full load output may be improved and the emission of No


x


reduced.





FIG. 9

shows a system


79


for generating energy. In comparison with system


66


—FIG.


8


—not only water


80


is supplied to the vessel


71


but carbon dioxide


81


as well. The water in the vessel


71


is saturated with carbon dioxide. This water is supplied under pressure to the flash atomisation unit


75


by means of pump


72


in order to cool the air


76


by generating very small water droplets. The moistened air is subsequently compressed in the compressor


67


while water droplets are evaporated. After combustion with fuel in the combustion unit


77


, the exhaust is carried off via the exhaust outlet


82


via turbine


69


which drives the generator


70


.





FIG. 10

shows another system


83


for generating energy according to the invention, in accordance with the so-called TOPHAT principle. Air


85


is moistened and cooled in a flash atomisation unit


84


by means of water


86


supplied by means of flash atomisation. The air is supplied to a compressor


87


connected by a shaft


88


to a gas turbine


89


which drives a generator


90


. The cool, compressed air passes a heat exchanger


92


via a line


91


and is supplied to the combustion unit


93


, to which fuel is supplied via the line


94


. The exhaust of gas turbine


89


passes the heat exchanger


92


via line


95


to be brought in heat exchanging contact with the cool, compressed air from the compressor


87


. Via the line


96


the exhaust passes a heat exchanger


97


and the condenser


98


on its way to the stack


99


. In the condenser


98


water is condensed from the exhaust and pumped under pressure by pump


99


to the heat exchanger


97


, after which the water


86


, now under pressure and at the right temperature, reaches the flash atomisation unit


84


. If necessary, water may be added to the condense water from the condenser


98


via line


100


.





FIG. 11

, finally, shows a system


101


according to the invention for generating energy in accordance with the TOPHACE principle.




Water at 140-250° C. and 150 bar, is pumped by pump


102


to a flash atomisation unit


103


to which air is supplied via line


104


(at 15° C.). From the flash atomisation unit


103


the air reaches a compressor


105


which works with an efficiency of 0.8. The compressed air (now 140° C.) is supplied via line


106


to a heat exchanger


107


to exchange heat with the exhaust gases of a combustion engine


108


. The combustion engine comprises four cylinders


109


from which an air inlet


110


connects to the line


106


via a valve


111


. From each of the cylinders


109


an exhaust pipe


112


passes the heat exchanger


107


and is led via a heat exchanger


114


via the line


113


and ends up via the condenser


98


in the stack


99


. In the condenser


98


condense


115


is formed which after passing a water purifier


116


and after being brought under pressure by a pump


123


is added to the pump


102


via the heat exchanger


114


.




Fuel is supplied to each of the cylinders by the pump


124


via line


125


and the valves (not shown).




In the recuperator the air is heated from 140° C. to 377° C., whereas the exhaust from the cylinders


109


is cooled down from 465° C. to 210° C. At a pressure of 9 bar, the air is supplied to the cylinders


108


and atomised fuel is injected. The cylinders


109


are also mounted with an ignitor


117


for igniting the mixture in each of the cylinders


109


. The cylinders


109


are all mounted with a piston


118


connected to a shaft


119


which in turn is connected to the shaft


120


of the compressor


105


at one end and with the generator


121


on the other, via a 1:5 gear assembly


122


.




Under ideal conditions, system


101


provides a power of 226 kW at 64% efficiency. A known device according to the Atkinson principle provides power of only 170 kW at 48% efficiency.



Claims
  • 1. A device for compressing a gaseous medium, comprising a compressor unit provided with a medium inlet, a compressed medium outlet, and means for atomising an evaporation agent in the medium, wherein the atomising means includes at least one flash atomisation unit arranged and mounted such that the atomised evaporation agent fragmentises by means of formation of gas in the atomised evaporation agent, wherein the flash atomisation unit is a flash swirl atomisation unit.
  • 2. The device according to claim 1, wherein the flash atomisation unit includes means for adjusting the temperature of the evaporation agent.
  • 3. The device according to claim 2, wherein the means for adjusting the temperature of the evaporation agent at or near the critical temperature of the evaporation agent.
  • 4. The device according to claim 1, wherein the evaporation agent includes agents for reducing the surface tension of the evaporation agent.
  • 5. The device according to claim 4, wherein the agents for reducing the surface tension includes combustible or vaporisable substances.
  • 6. The device according to claim 1, wherein the evaporation agent is a mixture of evaporation substances having different boiling points.
  • 7. The device according to claim 5, wherein the mixture comprises water and carbon dioxide or water and carbon monoxide.
  • 8. The device according to claim 1, wherein the atomising means are arranged and mounted such that the evaporation agent is added before, during, or after compressing the medium.
  • 9. The device according to claim 8, wherein the atomising means are arranged and mounted such that cooling takes place over substantially the entire length of the compressor unit.
  • 10. A system for generating energy comprising at least one gas turbine and at least one compressor unit driven by the gas turbine, with the compressor unit including a medium inlet, a compressed medium outlet, and means for atomising an evaporation agent in the medium, wherein the compressor unit has at least one flash atomisation unit arranged and mounted such that the atomised evaporation agent fragmentises by means of the formation of gas in the atomised evaporation agent, wherein the flash atomisation unit is a flash swirl atomisation unit.
  • 11. The system according to claim 10, wherein the flash atomisation unit is incorporated in an air supply line of the compressor device.
  • 12. The system according to claim 10, wherein a flash atomisation unit is incorporated in a cool-air supply line of the gas turbine.
  • 13. The system according to claim 10, wherein the system is connected to a combustion engine.
  • 14. The system according to claim 12, wherein the flash atomisation unit is incorporated in either the air inlet or in the fuel inlet of the combustion engine.
  • 15. The system for generating energy as claimed in claim 10, further comprising a heat exchanger for heat exchanging contact between compressed medium supplied to the combustion engine and exhaust gas originating from the combustion engine.
  • 16. The device according to claim 1, wherein the flash atomisation unit includes means for adjusting the atomise pressure.
  • 17. The device according to claim 2, wherein the flash atomisation unit includes means for also adjusting the temperature of the evaporation agent.
  • 18. The system according to claim 13, wherein the flash atomization unit is incorporated in either the air inlet or in the fuel inlet of the combustion engine.
Priority Claims (2)
Number Date Country Kind
1009484 Jun 1998 NL
1011383 Feb 1999 NL
PCT Information
Filing Document Filing Date Country Kind
PCT/NL99/00380 WO 00
Publishing Document Publishing Date Country Kind
WO99/67519 12/29/1999 WO A
US Referenced Citations (12)
Number Name Date Kind
3885390 Evans May 1975 A
3964263 Tibbs Jun 1976 A
3973395 Markowski et al. Aug 1976 A
4189914 Marek et al. Feb 1980 A
4261169 Zimmern Apr 1981 A
4383645 Figiel et al. May 1983 A
4478553 Leibowitz et al. Oct 1984 A
5375580 Stolz et al. Dec 1994 A
5388397 Frutschi Feb 1995 A
5622044 Bronicki et al. Apr 1997 A
5669217 Anderson Sep 1997 A
6216443 Utamura Apr 2001 B1
Foreign Referenced Citations (9)
Number Date Country
2925091 Jan 1981 DE
2931178 Feb 1981 DE
4114678 Nov 1992 DE
0379880 Aug 1990 EP
0524435 Jan 1993 EP
0821137 Jan 1998 EP
0384667 Dec 1932 GB
59160032 Jan 1994 JP
0039361 Oct 1936 NL