The present invention relates to a device for connection between a rail for fuel under pressure and at least one injector, for an internal-combustion engine.
As is known, in injection engines the rail for fuel under pressure, common for all the injectors, is connected to the injectors themselves by means of metal tubes. The rail has a tubular shape and has an external diameter in the region of 30 mm, an internal diameter in the region of 10 mm, and a weight of approximately 3 kg. The tubes are normally connected to the rail by welding and have the only function of hydraulic connection. In turn, the rail is fixed on the engine block by means of an appropriate supporting plate. Both this plate and the rail require a considerable space in the engine compartment, so that their placing on the engine is rather complicated, and the injection system proves relatively heavy and costly.
From the document No. EP 0866 221 A1, a common rail for fuel is known having a reduced diameter, on which the tubes have an end with oversized external diameter, i.e., a swelling, which engages in a fluid-tight way a conical seat present on the rail. Each tube is fixed via a connection element carried by the rail, screwed on which is a ring nut designed to press directly on the swelling of the tube, to ensure tightness thereof with the conical seat. The connection element is fixed on the rail by welding, or force fitted.
The above connection device presents various drawbacks. In the first place, since the diameter of the rail is rather contained to reduce its weight, cost and overall dimensions, and since the size of the swelling of the tube is not smaller than a minimum diameter of encumbrance, the conical seat designed to house the swelling of the tube entails a diameter to ensure tightness of the swelling on the rail at a radial level of the rail that is too external. On account of the high operating pressures, said fit consequently proves structurally critical.
In addition, since the swelling of the tube is in direct contact with the rail, without any intermediate connection, it is not possible to set, between the rail itself and each tube, a calibrated restriction for hydraulically uncoupling the tube from the rail. The direct seal of the swelling of the tube on the rail penalizes the flexibility of the system, so that any even slight misalignment of the axis of the tube with respect to the axis of the conical seat of the rail, for example due to normal activities of maintenance of the engine, could jeopardize its tightness.
Finally, since in couplings for high-pressure tightness between two elements it is often necessary to adopt materials with different hardnesses to improve tightness thereof, in the initial assembly the element made of softer material undergoes permanent plastic deformations. Consequently, should the two elements be uncoupled, it would no longer be possible to guarantee tightness in the subsequent assembly. In general, the softer material is adopted for the less costly component, which must then be replaced whenever it is uncoupled. It is evident that, if for reasons of simple maintenance the tubes were to be removed from the rail, it would be necessary to replace also the tubes or the rail, according to the choice made for the element of softer material, with evident prejudice from the economic standpoint.
The aim of the invention is to provide a device for connection between a fuel rail and a set of injectors for an internal-combustion engine, which will present high reliability and limited cost, eliminating the drawbacks of the connection devices of the known art.
According to the invention, the above aim is achieved by a connection device as defined in Claim 1.
For a better understanding of the invention some preferred embodiments are described hereinafter, purely by way of example, with the aid of the attached plate of drawings, wherein:
With reference to
The rail 7 is provided with a series of radial holes 11 associated to the injectors 6. Each injector 6 is connected to the rail 7 in a position corresponding to the respective radial hole 11, by means of a connection device, designated as a whole by 12. The device 12 comprises a metal tube 13, having standard external and internal diameters. The holes 11 are normally aligned along a generatrix of the cylinder of the hollow body 9.
Each hole 11 has a pre-set diameter and is flared outwards so as to form a conical seat 14 (
According to the invention, set between the hole 11 and the swelling 16 of the tube 13 is a removable seal element, designated as a whole by 21, which is designed to be coupled in a fluid-tight way both to the conical seat 14 of the hole 11 and with the swelling 16 of the tube 13. In particular, in a position corresponding to the swelling 16, the tube 13 has another conical seat 22 having a flared surface shaped like a truncated cone. Said conical seat 22 is more or less extensive according to the material and the profile adopted for the seal element 21 and sometimes can be just sketched. The seal element 21 has the shape of a body of revolution 23 (
The body 23 comprises a central flange 24 having a diameter usually equal to the external diameter of the swelling 16, and a second cylindrical end nose 27 designed to be guided in the hole 11 of the hollow body 9. Between the flange 24 and the nose 26, the body 23 has a tapered stretch 28, machined so as to form a seal with the conical seat 22 of the swelling 16.
Between the flange 24 and the other nose 27, the body 23 has another tapered stretch 29, machined so as to form a seal with the conical seat 14 of the hole 11. The two parts 26, 28 and 27, 29 of the body 23 may not be the same as one another, as indicated in the variants of
According to a first variant of the seal element 21, each tapered stretch 28, 29 (
For hydraulic reasons (contained injection-pressure oscillations in the various operating conditions of the engine), the sealing diameter is fixed according to the internal diameter of the hollow body 9, which is determined on the basis of the minimum external diameter of the hollow body 9, in such a way that the thickness of the body 9 will enable a good structural sturdiness. In addition, each tapered stretch 28, 29 between the seal element 21 and the conical seat 14 of the hole 11 of the hollow body 9 is appropriately sized at a radial level of the hollow body 9 itself, in such a way that its structural sturdiness will not be jeopardized.
According to another variant of the seal element 21, each of the tapered stretches 28, 29 (
In addition, assuming a pre-set diameter for the portion 31 having the shape of a spherical cap, it is possible to define uniquely the sealing diameter. Consequently, once the tightening torque for the threaded element 19 is fixed, it is possible to determine the stresses exchanged between the seal element 21 and the rail 9. The tightening torque applied will be consequently chosen in such a way as not to induce stresses above the structural limit value for the components of the system. A similar process is followed for the portion 32 of the tapered stretch 28 having the shape of a spherical cap, which determines the stresses exchanged between the tube 13 and the element 21.
The passage 25 of the seal element 21 has a circular cross section and comprises a portion 33 of reduced diameter. The portion 33 is designed to be set towards the hole 11 or alternatively towards the swelling 16, for the purpose of reducing the dependence of the amount of fuel injected upon the pressure waves in the rail 7.
As is known, in modern injection engines, having a common fuel rail, control of the delivery of the pump 8 and of the corresponding synchronization with the injection enables reduction to the minimum of the size of the rail itself. The latter can hence have an external diameter reduced to less than 20 mm, and an internal diameter of approximately 7.5 mm, with a total weight of approximately 1 kg.
According to a first embodiment of the invention, the first threaded element 18 has the function of connection element and comprises a sleeve 34 (
The ring nut 38 has a top wall 41, having a central opening 42 for the passage of the tube 13. Set in the sleeve 34 is a bushing 43 having an internal diameter substantially equal to the external diameter of the tube 13. The bushing 43 is moreover provided with a top flange 44, designed to be engaged by the wall 41 of the ring nut 38, and with a bottom edge 46 flared so as to engage the shoulder 17 of the swelling 16 correctly.
The support 36 for the sleeve 34 is formed by a ring 47 designed to be force fitted on the body 9 of the rail 7, for example by prior thermal expansion. Alternatively, the internal diameter of the ring 47 can be slightly larger than the external diameter of the hollow body 9 so that blocking of any axial displacement of the support 36 with respect to the hollow body 9 is entrusted to the seal element 21, which now functions as a key. The ring 47 (
When the ring nut 38 is screwed on the sleeve 34, the wall 41 acts on the flange 44 pushing the bushing 43 towards the seal element 21. The edge 46 engages the shoulder 17 of the swelling 16, which is pushed in the direction of the seal element 21, until the desired tightness is achieved both on the conical seat 14 of the hole 11 and on the conical seat 22 of the swelling 16. In this way, the tube 13 is rigidly guided and fixed on the threaded element 18. Consequently, also by virtue of the contained weight, the rail 7 can be supported directly by the tubes 13, thus eliminating the usual plate for fixing of the rail on the engine.
According to another embodiment of the invention illustrated in
According to a further embodiment of the invention illustrated in
Illustrated in
When the ring nut 53 is screwed in the sleeve 49, the edge 61 engages the shoulder 17 of the swelling 16, which is pushed towards the seal element 21, until the desired tightness is obtained, both on the conical seat 14 of the hole 11 and on the conical seat 22 of the swelling 16.
According to a further embodiment of the invention illustrated in
From the foregoing description, the advantages of the connection device according to the invention as compared to the known art are evident. In particular, the removable seal element 21 enables use of commercially available tubes 13, in which the swelling 16 is formed with simple machining operations. By appropriately sizing the end noses 26, 27 of the seal element 21, it is consequently possible to reduce the sealing diameter as compared to that defined by a direct coupling of the swelling 16 of the standard tube 13 with the hole 11 of the rail 7, and between the element 21 and the conical seat 14 of the hole 11 of the rail 7, thus increasing the structural sturdiness of the rail 7. This can now enable a contained external diameter, since the tightness between the element 21 and the rail 7 occurs at a lower radial level.
In addition, by adopting a relatively soft material for the seal element 21, it is possible to preserve from permanent plastic deformations both the tubes 13 and the rail 7 itself, with the evident economical advantage of not having to replace either the tubes or the rail 7 during normal maintenance operations. In fact, during said operations, should it be necessary, only the element 21 of lower cost as compared to the other components would be replaced. The element 21, especially in the embodiment provided in
In addition, the guide bushing 43 and the ring nut 53, by guiding exactly the tube 13, enable direct support of the rail 7, thus eliminating the usual fixing plate for connection of the rail 7 on the engine block 5. Finally, the restriction 33 present in the element 21 enables a reduction in the dependence of the amount of fuel injected upon the pressure waves in the rail 7. Said restriction would in fact be difficult to obtain in the case where, in the absence of the element 21, it were necessary to make it directly in the tube 13 or in the rail 7.
It is understood that various modifications and improvements may be made to the connection device described above without departing from the scope of the claims. For example, the holes 11 can be arranged on different generatrices of the body 9. In addition, the shape and the material of the seal element 21 and/or the connection of the threaded element 18 with the body 9 can be varied. In
Finally, if the end nose 26 of the seal element 21 is appropriately sized, the shoulder 17 of the swelling 16 of the standard tube 13 can coincide with the original profile of the tube 13, without having to resort to further machining operations on the tube 13 itself.
Number | Date | Country | Kind |
---|---|---|---|
05425484.2 | Jul 2005 | EP | regional |