Device for control of an electric motor driving a moving object

Abstract
The control device includes a switch (12) controlling the power supply to the motor and an actuator which actuates this switch by rotatably reacting against the moving object being restrained so as to cause said switch to be opened and to cut off the power supply to the motor. This actuator consists of a bistable mechanical device (11) capable of taking up a first state in which the switch (12) is closed and a second state in which the switch is open. The actuating device also includes a cable (17) for putting the actuating device into its first state, this device being brought into its second state by reacting against the moving object.
Description




BACKGROUND OF THE INVENTION




The subject of the present invention is a device for control of an electric motor driving a moving object, for example a roller shutter or a door.




Such a device is known from the DE patent application 27 34 512. In this device, the switch controlling the power supply to the motor is open at rest, and it is closed by a centrifugal mechanism driven by the motor, the starting of the motor being undertaken by a delayed-drop-out start-up relay controlled by a manual push-button switch. The means of starting up the motor and the means of automatic stopping in the event of excess torque are thus combined, but in addition to its relative complexity, such a device requires special-purpose wiring for supplying the start-up relay.




A control device for a motorized roller shutter is also known from the patent EP 0 703 344, operating by detecting a sudden increase in the resisting torque exerted by the roller shutter on the motor. To this end, the chassis of the motor is mounted so that it can rotate and its rotation is limited by two springs acting in opposition and determining the excess torque to be reached in each direction of rotation for the rotation of the chassis to actuate a switch which cuts off the power supply to the motor. The reacting against the moving object may be caused either by its arrival at end-of-travel, or by an obstacle. Starting up the motor is carried out, in the conventional way, by means of a switch.




SUMMARY OF THE INVENTION




A device is provided for control of an electric motor driving a moving object, for example a roller shutter or a door, comprising a switch controlling the power supply to the motor and means for actuating this switch reacting to the moving object being restrained, particularly by an obstacle, so as to cause said switch to be opened and to cut off the power supply to the motor, these actuating means comprising a mechanical actuating device capable of taking up a first state in which the switch is closed and a second state in which the switch is open, and means for putting the mechanical actuating device into its first state, the actuating device being brought into its second state by the reacting against the moving object.




The object of the present invention is also to combine the means for automatic stopping of the motor with the manual control of the starting up of the motor, but via simple mechanical means requiring no auxiliary wiring and using a mechanical manual control, such as a rod control, with a cable or a cord.




The control device according to the invention is characterized by the fact that the mechanical actuating device is a bistable device and in that the means for putting the actuating device into its first state are exclusively manual.




The invention is applicable equally to a motor with one direction of rotation and to a motor with two directions of rotation.




The device requires no external wiring other than that necessary for supplying power to the motor. Installation is thereby simplified.




In its simplest execution, the actuating device is a rotating cam actuating a monostable switch and having, on its periphery, a notch with an angular width corresponding to the rotation of the cam which is necessary for actuating the switch and in which a spigot of the casing of the motor is engaged for driving it when the casing of the motor is driven in rotation, against the action of a spring, by the resisting torque.




According to another embodiment, the bistable mechanical device consists of a cylindrical part which is movable in translation and in rotation within a fixed cylindrical tubular part to which it is linked by the interaction of at least one stud guided by at least one ramp, this moving part being, on the one hand, pushed by a spring in the direction of the switch and, on the other hand, linked to a pulling element which can be actuated manually, making it possible to exert a pulling force opposite to the thrust of the spring, the device being brought into its second stable state either by the rotation of the casing of the motor against the action of a spring, this rotation of the casing being caused by the resisting torque created by said moving object being restrained, or by a further pulling force on the pulling element.











BRIEF DESCRIPTION OF THE DRAWING(S)




The attached drawing, by way of example, represents three embodiments of the invention, as well as two embodiment variants of the first embodiment.





FIG. 1

represents a theoretical diagram illustrating the philosophy of the control device according to the invention.





FIG. 2

, by way of reminder, represents the diagram of an electric motor used in the two embodiments described.





FIG. 3

is a partial view, in perspective, of the first embodiment.





FIGS. 4



a


,


4




b


,


4




c


,


4




d


and


4




e


represent five successive states of the bistable device used in the embodiment represented in FIG.


3


.





FIG. 5

represents a first embodiment variant, and a first improvement respectively, of the first embodiment.





FIG. 6

represents a second variant of the first embodiment.





FIG. 7

is a diagrammatic view in a radial section of a second embodiment applied to the case of a roller shutter.





FIG. 8

is a view in section along VIII—VIII of FIG.


7


.





FIG. 9

is a partial diagrammatic view in a radial section of a third embodiment.





FIG. 10

is a section along X—X of

FIG. 9













DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)




In

FIG. 1

, C designates a manual control, for example a flexible cord to be pulled or a rigid rod to be pushed/pulled, B is a bistable actuating device, M a motor the casing of which can pivot about the axis of the motor against the action of a retaining spring, and D a detector of the angular offset between the casing of the motor M and a fixed point. The motor M drives a load L, for example a roller shutter. Assuming initially that the power supply switch of the motor is open, that is to say that the actuating device B is in a stable state P, action by the user on the control C has the effect of causing the bistable device B to switch over from its state P into its state P. If, in this state, the angular offset detector D does not detect any angular offset, the motor M is energized. This function can be expressed M=(P & S).




When the detector D detects an angular offset of the casing of the motor, it sends out a stop signal S to the bistable device B which then switches over into its state P. The motor M is no longer supplied with power.




The motor represented in

FIG. 2

is a conventional single-phase motor with two windings and a phase-shifting capacitor, in which each of the windings acts as an auxiliary winding according to whether the power supply voltage is applied between P1 and N or P2 and N.




The first embodiment will be described in connection with

FIGS. 3 and 4



a


to


4




e.






In

FIG. 3

, a cylindrical support


1


is represented, constituting a fixed point, for example one of the supports of the tube for winding a motorized roller shutter. This cylindrical support


1


has two diametrally opposed longitudinal slots


2


. Coaxially with the cylindrical support


1


, and in the extension thereof, is a cylindrical sleeve


3


integral with the casing of the motor (not represented), capable of constituting the extension of this casing. The other end of the casing of the motor is held so as to be able to turn freely about is axis. The sleeve


3


is extended by two longitudinal bars


4


and


5


fixed rigidly to the sleeve


3


and extending respectively in each of the slots


2


of the fixed cylinder


1


. These bars


4


and


5


are held, in angular terms, by means of a pair of springs in a V,


6


and


7


, inserted between each bar and the walls of the corresponding slot


2


. The casing of the motor is thus held in position elastically, in angular terms. The bars


4


and


5


are additionally linked by a crosspiece


8


within the sleeve


3


. This crosspiece


8


, in its mid-part, carries a pair of cams


9


and


10


arranged symmetrically relative to a plane passing through the axis of pivoting of the sleeve


3


. The cam


9


is intended to interact with a first bistable actuating device


11


and the cam


10


to interact with a second bistable actuating device, not represented, arranged, like the cams


9


and


10


, symmetrically relative to the same diametral plane of symmetry. The bistable device


11


actuates a switch


12


which controls the power supply of the motor for one of the directions of rotation. The other bistable device controls a second switch identical to the switch


12


and mounted, like the bistable device, symmetrically relative to the same plane of symmetry.




The bistable device


11


consists of a fixed tubular cylindrical part


13


and of a cylindrical part


14


which is movable in rotation and in translation in the part


13


. The wall of the fixed part


13


is pierced by a slot


15


forming a circuit of ramps and traps for a radial spigot


16


fixed to the movable part


14


passing through the slot


15


with a slight clearance and extending radially outside the part


13


so as to be able to be driven by the cam


9


, as far as the bistable


11


is concerned. The movable part


14


is linked to one end of a rod or cable


17


so as not to be impeded in its rotation. The movable part


14


is furthermore subject to the action of a spring


18


working in compression and tending to push the part


14


toward the switch


12


.




The operation of this embodiment will be described in connection with

FIGS. 4



a


to


4




e.






In the position represented in

FIG. 4



a


, the spigot


16


of the movable part


14


of the bistable is held by the spring


18


in the left-hand end of the circuit


15


close to the switch


12


. The part


14


bears against the pusher of the switch


12


and its contact


12




a


is open: the motor is not supplied with power. If the user pulls on the rod


17


in the direction of the arrow F1, the part


14


is pulled backwards. During this movement, its spigot


16


slides along the ramp


15




a


, driving the part


14


, as indicated by the arrow F2. The spigot


16


finally comes into abutment against the stop


15




b.






When the pulling force on the rod


17


is released, the spigot


16


becomes engaged in the trap


15




c


of the circuit


15


, as represented in

FIG. 4



b


. The bistable device is then in its second stable state. The part


14


is moved away from the switch


12


, its contact is closed and the motor is supplied with power.




If the casing of the motor is then driven in rotation by the reacting against the moving object driven by the motor, for example by the arrival in abutment against the box housing of the end of a roller shutter while it is being wound, the sleeve


3


pivots against the action of one of the springs


6


or


7


, for example the spring


7


, and the cam


9


drives the spigot


16


which escapes from its trap


15




c


so as to come back to its first stable position along the groove


15


, as indicated by the arrow F3,

FIG. 4



c


, under the thrust from the spring


18


. The switch


12


is then actuated, its contact


12




a


opens and the power supply to the motor is cut off.




Stopping can also be controlled manually by pulling on the rod


17


. The bistable device


11


operates in this case as represented in FIGS


4




d


and


4




e


. When there is a pulling force on


17


, the spigot


16


comes into abutment against the ramp


15




d


which moves away from the trap


15




c


. Once released, the spigot


16


moves axially along


15




e


, the ramp


15




f


and brings it back into its position represented in

FIG. 4



a.






If the two bistable actuating devices equipping the control device are independent, nothing prevents the user simultaneously actuating these two bistable devices, that is to say giving two contradictory orders. This can be avoided mechanically or electrically.





FIG. 5

illustrates a mechanical solution. The moving parts


14


and


14


′ of the two bistable devices have an annular groove


19


,


19


′ respectively. Between the two moving parts


14


and


14


′ a slider


20


is mounted, capable of sliding transversely between the two bistable devices and of engaging alternately in the grooves


19


and


19


′. The length of this carriage


20


is such that it is always engaged in one of the grooves


19


or


19


′. In the position represented in

FIG. 5

, the carriage


20


is engaged by one of its ends in the groove


19


of the moving part


14


, while its other end abuts against the cylindrical surface of the moving part


14


′. The part


14


is thus locked, so that a pulling force on its rod


17


has no effect. In contrast, as soon as the part


14


′ comes into abutment against the switch


12


′, the part


14


is freed.




An electrical solution is represented in FIG.


6


. One of the switches, for example the switch


12


, is equipped with an inverter contact making it possible to link terminal a either to terminal b or to terminal c, this terminal c being linked to the switch


12


′ in such a way that the closing of the switch


12


′ is effective only if the switch


12


is actuated and conversely, the actuation of the switch


12


having the effect of bringing the contact


12




b


into the position represented and its release having the effect of bringing it back to the terminal b.




The second mode will now be described in connection with

FIGS. 7 and 8

.




These figures represent one of the ends of a roller shutter installation mounted in a window aperture. The casing


3


of the tubular motor is again visible, housed within a winding tube


21


, shown in part, driven by the motor. The end of the casing


3


which is shown is equipped with a flange


22


by which it is mounted into a rectangular framework


23


complete with a main circular cutout


24


. The flange


22


is equipped with a ring


25


engaged in the circular cutout


24


in which it can turn freely. At its lowest point, the ring


25


is fitted with a first spigot


26


turned toward the center of the ring and with a second radial spigot


27


turned outward, in a rectangular cutout


28


of the framework


23


in which two springs


29


and


29


′ are housed, working against each other in compression and bearing on each of the sides of the spigot


27


. In the center of the ring


25


a switch


30


is fixed, equipped with a bistable latch


31


, that is to say a switch with a central terminal and two contacts for making an electrical connection between the central contact and one or the other of the contacts alternately, that is to say either between N and M1 or N and M2 (

FIG. 2

) so as to make the motor turn in one direction or the other. The visible part of the latch


31


has the profile of an obtuse V. The switch


30


is carried by a support


32


fixed to the framework


23


. Coaxially with the axis X of the motor and of the winding tube, a cam


33


is mounted exhibiting, in its lower part, a notch


34


extending over a well-defined angle, and a projecting part


35


in the form of a dihedron with an angle equal to the angle of the V-shaped profile of the latch


31


of the switch and engaged in this profile. The spigot


26


is engaged in the notch


34


. The space between each of the ends of the notch


34


and the spigot


26


is equal to the angular displacement of the cam


33


which is necessary for actuating the latch


31


, that is to say for closing of the switch


30


in one position or the other. The cam


33


can be driven manually in rotation by a shaft


36


. In order not to risk damaging the switch


30


, the link between the shaft


36


and the cam


33


is an elastic or friction link.




The device is represented at rest, motor stopped. In order to start up the motor, the user turns the shaft


36


in one direction or the other, according to the desired direction of rotation of the motor. The rotation of the cam


33


has the effect, on the one hand, of closing the switch via the dihedron


35


and, on the other hand, of bringing one of the sides of the notch


34


against the spigot


26


. Let us suppose, for example, that the cam


30


was driven in the clockwise direction. It is therefore the right-hand end of the notch


34


,

FIG. 7

, which comes into contact with the spigot


26


. When a resisting torque manages to make the casing


3


turn in the anti-clockwise direction, by compressing the spring


29


′, the spigot


26


drives the cam


33


in rotation in the same direction, which has the effect of bringing the dihedron


35


into the position represented. The power supply to the motor is cut off. After the resisting excess torque disappears, the spring


29


′ brings the casing


3


back into the position represented.




In this mode of execution, the bistable device therefore consists of the switch itself.




The third embodiment represented in

FIGS. 9 and 10

is in fact an embodiment variant of the second embodiment and replicates the majority of the elements thereof, in particular the elements which are not represented. In

FIG. 9

, the ring


25


of the flange of the casing


3


can be seen with its radial spigots


26


and


27


. The rotating cam


33


′ differs from the cam


33


in that it exhibits a projecting central part


37


engaged between two monostable switches


38


and


38


′ the contact of which is open at rest, in contrast to the switches


12


and


12


′ of the first embodiment. The projecting part


37


of the cam has a shape such that, at rest, the switches


38


and


38


′ are not actuated, although a rotational drive of the cam


33


′ by the shaft


36


actuates one or other of the switches via the part


37


. It can therefore be seen that the part


37


can take various shapes, and that it could also be separated into two parts, for example two pips. Moreover, the outer contour of the cam


33


′, like that of the cam


33


, may be of any shape, except for the notch


34


.




The operation of this third embodiment is the same as that of the second embodiment, the only difference being that the bistability is provided here by the cam


33


′. In the actuated position of one of the switches, the stability of the cam is ensured by the friction between the pusher of the switch and the cam. This stability could be increased by forming a slight recess in the part


37


. The stability in the neutral position could be ensured by friction or by an auxiliary means such as an elastically mounted ball. By means of such a ball, it would be possible to provide stability of the cam


33


′, in its three positions. Such means could also be provided on a knob for driving the shaft


36


.




The bistability can also be provided by offsetting the switches


38


and


38


′ downward, in such a way that their pushers are situated under the axis of pivoting of the cam


37


.




Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitutions is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.



Claims
  • 1. A device for control of an electric motor driving a motor object, comprising a switch (12, 12′) controlling a power supply to the motor and means for actuating the switch by reacting against the moving object so as to cause said switch to be opened and to cut off the power supply to the motor, these actuating means comprising:(a) a mechanical actuating device (11) capable of taking up a first state in which the switch is closed and a second state in which the switch is open, and (b) means (17) for putting the mechanical actuating device into its first state, the actuating device being brought into its second state by reacting against the moving object, wherein the mechanical actuating device is a bistable device (11) and the means for putting the actuating device into its first state are exclusively manual, the control device further having a casing (3) which is capable of turning by a limited angle about the axis of the motor against the action of a retaining spring (6, 7) while under the effect of the resisting torque created by the reaction against said moving object, wherein the bistable mechanical device (11) comprises a cylindrical part (14) which is movable in translation and in rotation within a fixed cylindrical tubular part (13) to which it is linked by the interaction of at least one spigot (16) guided by at least one ramp (15), the cylindrical part (14) being pushed by a spring (18) in the direction of the switch and linked to a pulling element (17) which can be actuated manually, making it possible to exert a pulling force opposite to the thrust of the spring, the bistable device being brought into its second stable state either by the rotation of the casing of the motor against the action of its retaining spring, or by further pulling force on the pulling element (17), and wherein further, the bistable device (11) is mounted in the extension of the casing of the motor and its movable part (14) is equipped with a radial spigot (16) passing through a slot (15) of the fixed part forming a circuit of ramps and traps, this spigot being capable of being driven by an arm (8) integral with the casing of the motor when the bistable device (11) is in its first stable position and to allow the spring of the bistable device to push the moving part (14) into its second stable state, an escape being also possible as a result of a pulling force on the pulling element (17).
  • 2. The control device as claimed in claim 1, for a motor with two directions of rotation comprising a second bistable device identical to the fist bistable device and wherein the radial spigot of which is driven by the rotation of the casing of the motor in the other direction.
  • 3. The control device as claimed in claim 2, comprising means (20) for mutual locking of moving parts of the two bistable devices.
  • 4. The control device as claimed in claim 3, wherein the mutual locking means consist of a carriage (20) which is movable transversely to said moving parts (14, 14′) and which interacts with peripheral grooves (19, 19′) of the moving parts, in such a way that the carriage is always held engaged in a groove of one of the moving parts under the effect of the other moving part and such that axial movement of the moving part in the groove in which it is engaged is prevented.
  • 5. A device for control of an electric motor driving a moving object, comprising a switch (12, 12′; 30; 38, 38′) controlling a power supply to the motor and means for actuating the switch by reacting against the moving object so as to cause said switch to be opened and to cut off the power supply to the motor, these actuating means comprising:A mechanical actuating device (11; 33, 33′) capable of taking up a first state in which the switch is closed and a second state in which the switch is open, and means (17; 36) for putting the mechanical actuating device into its first state, the actuating device being brought into its second state by rotatably reacting against the moving object, wherein the mechanical actuating device is a bistable device (11; 30; 37) and the means for putting the actuating device into its first state are exclusively manual, the device further having a casing (3) which is capable of turning by a limited angle about the axis of the motor against the action of a retaining spring (29, 29′) under the effect of the resisting torque created by the reacting against said moving object, wherein the bistable device consists of a bistable switch (30) with a latch (31) fixed in the extension of the axis of the motor and actuated by a rotating cam (33, 35) kinematically linked to the latch of the switch and capable of being driven in rotation by the rotation of the casing of the motor, and wherein the means for putting the bistable device into its first stable state consist of a means (36) for driving said cam in rotation.
  • 6. The device for control of a motor with two directions of rotation as claimed in claim 5, wherein the cam (33) has, on its periphery, a notch (34) with an angular width corresponding to the rotation of the cam which is necessary for actuating said latch (31) and wherein the casing of the motor (3) has a first radial spigot (26) engaged in said notch and a second radial spigot (27) engaged between two springs (29, 29′), the fist spigot being situated in the middle of said notch when the motor is at rest, with the switch open, and the cam in a central position, so that, when the switch is closed to one side or the other, one of the sides of said notch is at least approximately in contact with the first spigot of the casing, the rotation of the casing bringing the cam back into its central position.
  • 7. A device for control of an electric motor driving a moving object, comprising a switch (12, 12′; 30; 38, 38′) controlling a power supply to the motor and means for actuating the switch by reacting against the moving object so as to cause said switch to be opened and to cut off the power supply to the motor, these actuating means comprising:a mechanical actuating device (11; 33, 33′) capable of taking up a first state in which the switch is closed and a second state in which the switch is open, and means (17; 36) for putting the mechanical actuating device into its first state, the actuating device being brought into its second state by rotatably reacting against the moving object, wherein the mechanical actuating device is a bistable device (11; 30; 37) and the means for putting the actuating device into its first state are exclusively manual, the device further having a casing (3) which is capable of turning by a limited angle about the axis of the motor against the action of a retaining spring (29, 29′) under the effect of a resisting torque created by the reacting against the moving object and in which said switch (38, 38′) is a monostable switch open at rest, wherein the bistable device consists of a rotating cam (33′) kinematically linked, with clearance, to the casing of the motor, this cam being capable of occupying a first angular position in which it actuates and closes the switch and a second position in which it does not actuate the switch, and wherein the means for putting the bistable device into its first stable state consist of a means (36) for driving the cam in rotation.
  • 8. The device for control of a motor with two directions of rotation as claimed in claim 7, comprising two monostable switches (38, 38′) which are closed alternately by said cam (33′), and wherein the cam has, on its periphery, a notch (34) with an angular width corresponding to the rotation of the cam which is necessary for actuating the two switches and wherein the casing (3) of the motor has a first radial spigot (26) engaged in said notch and a second radial spigot (27) engaged between two springs (29, 29′), the first spigot (26) being situated in the middle of said notch when the motor is at rest, with the switches open, and the cam being in a central position, so that, when one of the switches is closed, one of the sides of said notch is at least approximately in contact with the first spigot (26) of the casing, the rotation of the casing bringing the cam back into its central position.
Priority Claims (1)
Number Date Country Kind
98 01534 Feb 1998 FR
US Referenced Citations (2)
Number Name Date Kind
3702430 Knetsch Nov 1972 A
4888531 Hormann Dec 1989 A
Foreign Referenced Citations (3)
Number Date Country
27 34 512 Feb 1979 DE
42 30 729 Mar 1993 DE
0 703 344 Mar 1996 EP