Information
-
Patent Grant
-
6595457
-
Patent Number
6,595,457
-
Date Filed
Monday, September 17, 200123 years ago
-
Date Issued
Tuesday, July 22, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Mansen; Michael R.
- Pham; Minh-Chau
Agents
- Kennedy Covington Lobdell & Hickman, LLP
-
CPC
-
US Classifications
Field of Search
US
- 242 4864
- 242 4863
- 242 4866
- 242 4867
- 242 4219
- 242 5968
- 242 4774
- 242 4858
-
International Classifications
-
Abstract
A device for controlling a creel (12) of a textile machine, which is supported to be pivotable to a limited degree by a pivot shaft (14) via a defined torque generated by a torque generator (24, 28, 30) controlled by a drive mechanism (34). The torque generator (24, 28, 30) is connected with the creel (12) by means of a reduction gear arrangement (20, 22; 60, 62).
Description
CROSS-REFERENCES TO RELATED APPLICATIONS
This application claims the benefit of German patent application DEP10045919.6, filed Sep. 16, 2000, herein incorporated by reference.
FIELD OF THE INVENTION
The present invention relates generally to a device for controlling a creel of a textile machine and, more particularly, to a device for controlling a creel which is pivotable to a limited degree and can be loaded with a defined torque by a torque generator which is controlled by a drive mechanism.
BACKGROUND OF THE INVENTION
A device of the described type for controlling a creel of a textile machine is described in German Patent Publication DE 198 17 363 A1, for example.
With this known device, a bobbin held in a creel is driven by a roller by means of friction. It is intended in this device to provide an exactly predetermined bobbin contact pressure between the driving roller and the bobbin, which can be controlled in order to be able, for example, to set a defined slippage between the bobbin and the roller.
Therefore the creel is supported by means of a pivot shaft to be pivotable to a limited degree thereabout, with a connecting disk being fixedly connected with the pivot shaft against relative rotation.
In addition, the connecting disk is connected by means of helical springs with a gear wheel such that rotation of the gear wheel by means of a drive motor, in particular a step motor, generates a torque acting on the connecting disk and therefore on the pivot shaft. In order to be able to introduce a sufficiently large torque into the pivot shaft, a total of six helical springs, which are arranged tangentially in respect to the pivot shaft, are provided between the gear wheel and the connecting disk.
SUMMARY OF THE INVENTION
In view of the above mentioned state of the art, an object of the present invention is to provide a device for the defined control of a creel, which is particularly effective and at the same time cost-effective and simple in construction.
In accordance with the present invention, this object is addressed in a creel of the aforedescribed type by providing a reduction gear arrangement for connecting the torque generator with the creel.
By the employment of a reduction gear arrangement, it is possible to utilize a torque generator which is relatively low-powered and simply. The high torque required for the defined control of the creel is nevertheless assuredly provided.
In a preferred embodiment, the torque generator advantageously has a flat coil spring.
By using a flat coil spring it is possible to achieve a very simple, cost-effective construction of the entire device. For this purpose, one end of the flat coil spring is fastened on a first element of the torque generator, which is displaced by a drive element. The other end of the flat coil spring is connected with a second element, which is coupled with a gear. The flat coil spring generates a defined force by the rotation of the first element in respect to the second element, and this force is converted into torque. Advantageously, this defined force can be adjusted within wide margins since the flat coil spring can be rotated over a large angle because of its type of construction.
In an advantageous embodiment of the invention, the gear arrangement is embodied as a ribbon gear. A generation of the torque free of play at the pivot shaft can be achieved with the aid of a ribbon gear. This is advantageous in promoting the exact control of the creel, and therefore in promoting an exactly set bobbin contact pressure.
In an alternative embodiment, the torque generator can also be directly connected with a driveshaft of the drive element, which results in a direct control of the torque generator by means of the drive element. The number of required components is reduced by this arrangement.
It is further preferred in an advantageous embodiment of the present invention that another gear arrangement is arranged between the drive element and the torque generator. Thus, the torque generator is arranged between two gears, or between two gear arrangements, which results in an extremely flexible design of the device in accordance with the invention. For example, a low-powered and cost-effective step motor can be used as the drive motor.
Further characteristics and advantages of the present invention will be described and understood from the following description together with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
schematically represents a lateral view of a device in accordance with the present invention for controlling a creel in accordance with a first embodiment of the invention,
FIG. 2
is a schematic front view of the device in
FIG. 1
,
FIG. 3
is a lateral view of a ribbon drive in accordance with a second embodiment of the invention, and
FIG. 4
is a top view of a ribbon drive in accordance with FIG.
3
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A winding head housing
10
of a textile machine is shown in the schematic representations in
FIGS. 1 and 2
, on which a creel
12
is supported by means of a pivot shaft
14
to be pivotable in a limited manner. A bobbin
16
is rotatably seated in the creel
12
and is driven by frictional force from surface contact with a drive roller
18
. In order to provide a predefined contact pressure of the bobbin
16
on the roller
18
, a defined, adjustable torque is applied to the pivot shaft
14
of the creel
12
, the torque, as a rule, being set to reduce the load on the creel
12
.
Such a predefined even contact pressure is very important in connection with producing cheese-type bobbins, since otherwise not only the outer appearance of the bobbins, but also their unwinding behavior, are negatively affected.
However, in areas of pattern disruption, the introduction of a defined slippage between the bobbin
16
and the roller
18
is desirable, for which purpose the torque acting on the creel
12
is increased, thereby definitively reducing the contact pressure of the bobbin
16
on the roller
18
.
As represented in the drawings, one end of the pivot shaft
14
is fixed with the creel
12
against relative rotation, and the other end of the pivot shaft
14
is fixed against relative rotation with a gear wheel
20
of a reduction gear arrangement. The gear wheel
20
meshes with a pinion
22
, which is fixedly connected against relative rotation with a stop plate
24
and is rotatably seated on an axle stub
26
.
In turn, the axle stub
26
is fastened on the winding head housing
10
of the textile machine. A flat coil spring
28
is fastened with one of its ends on the stop plate
24
, and its other end is connected with an adjustment gear wheel
30
, which meshes with a motor pinion
32
of an electric step motor
34
.
The flat coil spring
28
is fastened on the adjustment gear wheel
30
with the aid of three fastening bolts
36
,
38
,
40
, for example. One end of the flat coil spring
28
is clamped between the bolts
36
,
38
,
40
for this purpose, and is fixed in this position by its inherent prestress. The other end of the flat coil spring
28
is fastened on the stop plate
24
with two bolts
42
and
44
.
If the adjustment gear wheel
30
is rotated with respect to the stop plate
24
, the flat coil spring
28
is stressed or relaxed, and, as a result, it generates a force acting on the stop plate
24
, which is converted to a torque acting on the creel
12
via the pinion
22
, the gear wheel
20
and the pivot shaft
14
.
A relative rotation between the adjustment gear wheel
30
and the stop plate
24
is limited by the bolt
40
, so that two end positions of the stop plate
24
are defined. A first end position is defined by the abutment of a first edge
46
of a first radially extending protrusion of the stop plate
24
against the bolt
40
. A second end position is defined by the abutment against the bolt
40
of a second edge
48
of a second protrusion of the stop plate, which extends radially outwardly relative to the axle stub
26
opposite to the first protrusion. The force, which can be minimally or maximally generated by the flat coil spring
28
, and the resultant minimum, or maximum, torque, are fixed by these two end positions.
In order to control the creel
12
, and therefore the contact pressure of the bobbin
16
on the roller
18
, the motor pinion
32
is displaced by the step motor
34
by a defined number of rotational steps in a desired direction. This rotation of the pinion
32
causes a rotation of the adjustment gear wheel
30
, and therefore the stressing or relaxation of the flat coil spring
28
. The force generated by the flat coil spring
28
changes because of the stressing or relaxation of the flat coil spring
28
and is transmitted via the bolts
42
,
44
to the stop plate
24
and the pinion
22
which is fixedly connected therewith against relative rotation. The force generated by the flat coil spring
28
is converted into a torque by the pinion
22
, which meshes with the larger gear wheel
20
and thereby applies the torque to the pivot shaft
14
to decrease or increase the contact pressure of the bobbin
16
on the roller
18
.
Because the pinion
22
and the gear wheel
20
constitute a reduction gear arrangement, a relatively weak force of the flat coil spring
28
suffices for generating a relatively large torque at the pivot shaft
14
. Therefore the flat coil spring
28
can be designed to be comparatively weak and cost-effective.
In an alternative embodiment, the torque generator may be arranged in the area of a second reduction gear arrangement comprised of the motor pinion
32
and the adjustment gear wheel
30
. It is possible in this manner to generate a large torque at the pivot shaft
14
even with a weak and cost-effective step motor
34
. However, the required stressing of the flat coil spring
28
can only be achieved by tolerating a relatively large displacement track in this case.
For providing a clearer representation, the creel
12
, the bobbin
16
and the roller
18
are not represented in FIG.
2
.
As can be seen from the representation in
FIG. 2
, a torque generator is constituted in this embodiment by the adjustment gear wheel
30
with the bolts
36
,
38
and
40
, the flat coil spring
28
, the stop plate
24
with the bolts
42
and
44
, and the pinion
22
.
FIGS. 3 and 4
schematically show a further embodiment of the invention wherein a ribbon drive is employed. Here, a pivot shaft
51
is only indicated by a broken line in FIG.
4
.
A transfer lever
52
is fixedly connected with the pivot shaft
51
against relative rotation and has a cylindrical section
54
which is centered in respect to the pivot shaft
51
. Ribbons
60
and
62
are respectively fastened at the attachment points
56
and
58
of the cylindrical section
54
. The ribbons
60
and
62
, which are preferably made of steel, extend from the cylindrical section
54
to and are spirally wound on a driveshaft
64
, which is connected with a torque generator.
The ribbon attachment points
56
and
58
on the cylinder section
54
are located on opposite sides relative to the driveshaft
64
, and the respective ribbons
60
,
62
extend in opposite directions spirally about the drive shaft to respective attachment point
66
,
68
at which the ribbons
60
,
62
, are fastened to the drive shaft
64
.
Thus, rotation of the driveshaft
64
causes a winding and unwinding movement of the ribbons
60
,
62
, which is converted into a pivoting movement of the transfer lever
52
, and therefore of the creel.
To the greatest extent the ribbon drive represented in
FIGS. 3 and 4
operates without play and hysteresis.
It will therefore be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those herein described, as well as many variations, modifications and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing description thereof, without departing from the substance or scope of the present invention. Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended or to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications and equivalent arrangements, the present invention being limited only by the claims appended hereto and the equivalents thereof.
Claims
- 1. In a device for controlling a creel of a textile machine, wherein the creel is supported by a pivot shaft for a limited degree of pivoting movement via application to the pivot shaft of a defined torque generated by a torque generator driven by a drive mechanism, the improvement wherein the torque generator is connected with the creel by a reduction gear arrangement.
- 2. The device in accordance with claim 1, characterized in that the torque generator includes a flat coil spring.
- 3. The device in accordance with claim 1, characterized in that the gear arrangement comprises a ribbon gear arrangement.
- 4. The device in accordance with claim 1, characterized in that the torque generator is connected with a drive shaft of the drive mechanism.
- 5. The device in accordance with claim 1, characterized in that another gear arrangement is arranged between the drive mechanism and the torque generator.
Priority Claims (1)
Number |
Date |
Country |
Kind |
100 45 919 |
Sep 2000 |
DE |
|
US Referenced Citations (8)
Foreign Referenced Citations (3)
Number |
Date |
Country |
195 27 214 |
Jan 1997 |
DE |
195 34 333 |
Mar 1997 |
DE |
198 17 363 |
Oct 1999 |
DE |
Non-Patent Literature Citations (1)
Entry |
German Search Report |