Information
-
Patent Grant
-
6693497
-
Patent Number
6,693,497
-
Date Filed
Monday, April 16, 200123 years ago
-
Date Issued
Tuesday, February 17, 200421 years ago
-
Inventors
-
-
Examiners
- Pascal; Robert
- Glenn; Kimberly E
Agents
-
CPC
-
US Classifications
Field of Search
US
- 333 21 A
- 333 248
- 333 251
- 333 21 R
- 333 125
- 333 135
- 333 137
- 343 756
- 359 483
-
International Classifications
-
Abstract
A device is disclosed for converting a circularly polarized electromagnetic radiation into linearly polarized electromagnetic radiation. The device includes a depolarizer with depolarizing elements supported in a polarization mode converter for rotation between a vertical output and a horizontal output. A depolarization position for circularly polarized radiation exists between the horizontal output and the vertical output. The rotation direction of the depolarizer can be adjusted to selectively direct left-handed circularly polarized and right-handed circularly polarized radiation either to the vertical or the horizontal output.
Description
BACKGROUND OF THE INVENTION
The invention relates to a device for converting circularly oscillating electromagnetic radiation beams into linearly oscillating radiation beams.
Some transmitters used in satellite transmission technology emit linearly polarized radiation beams, whereas others emit circularly polarized radiation beams. The radiation beam of a transmitter emitting linearly oscillating radiation beams can be converted from a horizontally extending oscillation beam into a vertically extending oscillation beam, and vice versa from a vertically extending radiation beam into a horizontally extending radiation beams using an oscillation mode converter (OMT), so that the received radiation beam can be oriented to match the antenna characteristic.
Difficulties arise with radiation beams having a circular oscillation, which can only be received by antennas capable of receiving circularly oscillating radiation beams. A conversion of a circularly oscillating radiation beam into a radiation beams that can be received by an antenna adapted for linearly oscillating radiation beams has not been possible hereto.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide an apparatus which can allows circularly oscillating radiation beams to be received by antennas that are adapted to receive linearly oscillating radiation beams.
This object is solved by the invention in that a depolarizer is supported in an oscillation converter for rotation between a vertical output for vertically oscillating radiation beams and a horizontal output for horizontally oscillating radiation beams, and that between the horizontal output and the vertical output a depolarization position for circularly oscillating radiation beams is provided, in which depending on the rotation direction of the depolarizer radiation, a beam performing a left-handed oscillation can be supplied either to the horizontal output or the vertical output and a radiation beam performing a right-handed oscillation can be supplied either to the vertical output or the horizontal output.
In this way, linearly oscillating radiation beams can appear at the respective outputs of the oscillation converter, regardless if a linearly or circularly oscillating radiation beam is supplied to the oscillation converter. The device can output either horizontally or vertically oscillating radiation beams depending on the antenna design. Accordingly, antennas adapted for receiving linearly oscillating radiation beams can always be used for receiving the radiation beams, independent of the respective radiation beam source.
According to a preferred embodiment of the invention, the depolarization position for circularly oscillating radiation beams is at an angle of 45° relative to both the horizontal and the vertical direction. By selecting a 45° angle, the received energy of the circularly oscillating radiation beams can be optimized.
According to another preferred embodiment of the invention, a motor drive is provided for rotating the depolarizer. Advantageously, the drives are implemented as electric drives which can be easily controlled.
According to another preferred embodiment of the invention, the motor drive includes a controller that relies on the oscillation direction of the incident radiation beams. With this controller, the depolarizer can be automatically rotated independent of the oscillation direction of the incident radiation beams. By rotating the depolarizer, the orientation of the depolarizer inside the oscillation converter can be adjusted so that the radiation beams exiting the oscillation converter have the desired oscillation direction.
According to another preferred embodiment of the invention, the depolarizer has depolarizing elements which are oriented vertically to match a vertical oscillation of the incident radiation beams. With this design, vertically oscillating radiation beams exits the oscillation converter without conversion. A horizontally oscillating radiation beam can be treated in an analogous manner.
According to another preferred embodiment of the invention, for a circular oscillation of the incident radiation beams, the depolarizing elements are oriented at an angle of 45° with respect to both the horizontal and the vertical direction. With this orientation of the depolarizer, either the horizontal or the vertical component of the incident radiation beams exits the oscillation converter.
According to another preferred embodiment of the invention, the depolarizing elements of the depolarizer can be rotated from the vertical direction towards the horizontal direction by 45° for obtaining horizontally oscillating radiation beams from circularly oscillating radiation beams. By rotating the depolarizing elements from the vertical direction into the horizontal direction in this manner, the oscillation converter is able to convert centrally oscillating radiation beams into horizontally oscillating radiation beams.
According to another preferred embodiment of the invention, the depolarizing elements of the depolarizer can be rotated from the horizontal direction towards the vertical direction by 45° for obtaining vertically oscillating radiation beams. In this position, the circularly oscillating radiation beams exit the converter predominantly as radiation beams oscillating in the vertical direction.
BRIEF DESCRIPTION OF THE DRAWINGS
Further details of the invention will described in the following detailed description and the appended drawings, which illustrate an exemplary preferred embodiment of the invention.
It is shown in the drawings:
FIG. 1
a perspective view of an oscillation converter,
FIG. 2
a side view of an oscillation converter,
FIG. 3
a side view of an oscillation converter, rotated by 90° with respect to
FIG. 2
,
FIG. 4
a front view of an oscillation converter,
FIG. 5
a side view of the oscillation converter, rotated by 90° with respect to
FIG. 3
,
FIG. 6
a side view of a cylindrical depolarizer,
FIG. 7
a cross-section through a depolarizer taken along of the line VII—VII in
FIG. 6
,
FIG. 8
a cross-section through an oscillation converter, rotated by 45° with respect to
FIG. 7
,
FIG. 9
a cross-section through an oscillation converter with an installed depolarizer taken along the line IX—IX in
FIG. 5
,
FIG. 10
a cross-section through an oscillation converter with a depolarizer that is rotated by 90° with respect to
FIG. 9
,
FIG. 11
a cross-section through an oscillation converter with a depolarizer that is rotated towards the right by 45° with respect to
FIG. 9
, and
FIG. 12
a cross-section through an oscillation converter with a depolarizer that is rotated towards the left by 45° with respect to FIG.
9
.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
A device for converting circularly oscillating electromagnetic radiation beams consists essentially of an oscillation converter
1
and a depolarizer
2
. The oscillation converter
2
has a cylindrical section
3
that surrounds a cylindrical interior space
4
. Both ends
5
of the interior space
4
include a flange
6
with threaded through bores
7
,
8
,
9
. The oscillation converter
1
is attached with flange
6
to a radiation beam source (not shown), allowing the radiation beams exiting from the radiation beams source to enter the interior space
4
.
The oscillation converter
1
includes an additional flange
10
which is also provided with threaded bores
11
,
12
,
13
,
14
. An opening
15
extends through the additional flange
10
and is connected with an access
16
to the interior space
4
. The center axis
17
extending through the access
16
is oriented perpendicular to a center axis
18
that extends through the interior space
4
.
The side of the cylindrical section
3
facing away from the flange
6
is bound by an exit port
19
. The exit port
19
has slits
20
,
21
which extend through a center section
22
of the exit port
19
. The center section
22
is rotatably supported for rotation about the center axis
18
of the interior space
4
. The slits
20
,
21
can thereby be oriented relative to the interior space
4
so as to extend in a horizontal direction (
FIG. 4
) or perpendicular thereto in a vertical direction. The slits
20
,
21
are parallel to one another.
A switch
23
is rotatably supported on the cylindrical section
3
in a region where the additional flange
10
terminates in the cylindrical section
3
. Rotation of this switch
23
also rotates deflection planes (not shown) disposed inside the interior space
4
. For radiation beams that enters the cylindrical section
3
in the direction of the center axis
17
, the deflection plane (not shown) can be adjusted so that the radiation beam entering through the opening
15
in the direction of the center axis
17
are deflected towards the center axis
18
and exit from the interior space
4
in the region of the exit port
19
. Depending on the position of the slits
20
,
21
, the radiation beam that is deflected inside the interior space
4
exits either as a horizontally oscillating radiation beam or as a vertically oscillating radiation beam.
Likewise, the slits
20
,
21
can also influence the oscillation plane of the radiation beams that enter the interior space
4
through the end
5
along the center axis
18
and exit through the output port
19
. Depending on their position, the slits
20
,
21
can convert the radiation beams traveling in the longitudinal direction of the cylindrical section
3
, or alternatively can pass the radiation beams in their original oscillation direction.
The depolarizer
2
consists essentially of a cylinder
24
with a cylinder surface
25
on which depolarizing elements
26
are placed. These depolarizing elements
26
are able to depolarize polarized radiation beams, with the depolarized radiation beams having a large number of oscillation directions.
The depolarizer
2
is fitted into the interior space
4
so as to be rotatable about the center axis
18
. The depolarizer
2
can be rotated manually. Alternatively or in addition, at least one end
17
of the depolarizer can have a drive motor
28
which rotates the depolarizer
2
about its longitudinal axis
29
. The rotation can orient the depolarizing elements
26
in an arbitrary position relative to the interior space
4
.
For example, if the depolarizing element
26
is oriented with its longitudinal axis
30
parallel to the direction of the slits
20
,
21
, then approximately the entire beam that has been depolarized by the depolarizing element
26
passes through the slits
20
,
21
in the horizontal direction. This orientation of the depolarizer
26
is illustrated in FIG.
10
. Conversely, if radiation beams oscillating in the vertical direction are desired, then the slits
20
,
21
are rotated by 90° with respect to their respective orientation depicted in FIG.
2
. The depolarizing element
26
of the depolarizer
2
is rotated accordingly to match the direction of the vertically oriented slits
21
,
22
. This orientation is indicated in FIG.
9
. In this case, radiation beams oscillating in the vertical direction exit from the interior space
4
.
However, if circularly oscillating radiation beams enter the interior space
4
with the installed depolarizer
2
through the end
5
of the oscillation converter
1
, then the depolarizer
2
is rotated about the center axis
18
so that the depolarizing elements
26
are oriented at an angle of 45° with respect to the horizontal and vertical directions, respectively. This rotation direction of the depolarizer is depicted in
FIGS. 8
,
11
and
12
. In this rotation direction, the circularly polarized radiation beams are converted into either horizontally or vertically oscillating radiation beams.
The conversion of circularly oscillating radiation beams into linearly oscillating radiation beams is dependent of the rotation direction in which the depolarizer
2
is rotated in the interior space
4
. The conversion of the circularly oscillating radiation beams into linearly oscillating radiation beams depends on the direction in which the depolarizer
2
is rotated. For example, if for incident circularly oscillating radiation beams, the depolarizer is rotated from its initial position, where it is transparent for horizontally oscillating radiation beams, into the position indicated in
FIG. 8
, wherein the depolarizing element
26
is rotated from its horizontal position direction by 45° towards the vertical position, then the incident circularly oscillating radiation beams are converted into linearly vertically oscillating radiation beams. If the depolarizer
2
is rotated from this position by another 45° towards the horizontal position, then circularly oscillating radiation beams are converted into linearly horizontally oscillating radiation beams.
When an electric drive motor
28
is employed for rotating the depolarizer
2
, then a controller can be used for the drive motor
28
which is dependent on the radiation beams to be oriented. Accordingly, if the incident radiation beams are determined to be circularly oscillating, then the controller (not shown) of the drive motor
28
provides a pulse which rotates the depolarizing element into a 45° position halfway between the horizontal and vertical position. If it is determined after the rotation, that the radiation beams exiting the output port
19
do not match the receiving antenna, then the controller (not shown) controls the drive motor
28
again automatically so that for continued incident circularly oscillating radiation beam the depolarizer
2
is rotated once more by 90°. In this position, the circularly oscillating radiation beam received by the oscillation converter
1
is converted into a vertically oscillating radiation beam.
Claims
- 1. A device for converting circularly polarized electromagnetic radiation into linearly polarized electromagnetic radiation, comprising:a polarization mode converter having at least one slit with a slit orientation rotatable between a first output direction and a second output direction; and a depolarizer having depolarizing elements defining a depolarization position and rotatably supported in the polarization mode converter for rotation between the first output direction and the second output direction; wherein for the incident circularly polarized radiation, the depolarization position is intermediate between the first output direction and the second output direction, in which depolarization position incident left-handed circularly polarized radiation is supplied to one of the first output direction and the second output direction, and incident right-handed circularly polarized radiation is supplied to the other of the second output direction and the first output direction.
- 2. The device of claim 1, wherein the depolarization position for circularly polarized radiation is at an angle of 45° intermediate between the first and the second output directions.
- 3. The device of claim 1, further including a manual drive for rotating the depolarizer in the polarization mode converter.
- 4. The device of claim 1, further including a motor drive for rotating the depolarizer in the polarization mode converter.
- 5. The device of claim 4, wherein the motor drive includes a controller that adjusts the motor drive depending on the polarization direction of the incident radiation.
- 6. The device of claim 1, wherein the depolarizing elements are oriented vertically for vertically polarized incident radiation.
- 7. The device of claim 1, wherein the depolarizing elements are oriented horizontally for horizontally polarized incident radiation.
- 8. The device of claim 1, wherein for converting circularly polarized radiation into horizontally polarized radiation, the at least one slit of the polarization mode converter is aligned horizontally and the depolarizing elements of the depolarizer are rotated clockwise from the vertical direction towards the horizontal direction by 45°.
- 9. The device of claim 1, wherein for converting circularly polarized radiation into vertically polarized radiation, the at least one slit of the polarization mode converter is aligned vertically and the depolarizing elements of the depolarizer are rotated clockwise from the horizontal direction towards the vertical direction by 45°.
Priority Claims (1)
Number |
Date |
Country |
Kind |
200 06 916 U |
Apr 2000 |
DE |
|
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
5440279 |
Kinoshita et al. |
Aug 1995 |
A |
6100703 |
Davidov et al. |
Aug 2000 |
A |