This invention relates to a device for cooling products that consist of an adhesive material that is packaged in a non-adhesive envelope.
Such a packaging is generally achieved by a process that comprises a stage for co-extrusion of the adhesive material and the envelope, followed by a stage for gripping the envelope, so that the product that is obtained comes in the form of a string of small cartons that consist of adhesive material that is encased by the envelope. At the time of the coextrusion, the adhesive material is in pasty form and at high temperature. Thus, to prevent the envelope of the products from being altered by the adhesive material, the string of small cartons is immediately immersed in a cooling basin. This basin is filled with a cooling liquid, generally cold water, and comprises baffles in spirals, such that the string of small cartons extends in a spiral into the basin. After this passage into the basin, the string is cut so as to separate the small cartons.
This operating mode is not very efficient for the following reasons.
The guiding of small cartons in a string is not simple, and it is common that the small cartons stick to one another, which disturbs the passage of the string into the basin and makes its evacuation more difficult.
Furthermore, such a cooling device is not suitable for small cartons whose density is greater than one since the latter remain immersed in the basin, which makes the monitoring of their movements even more difficult.
In addition, the cooling basin is to have large dimensions, for example up to 15 m*2 m on three levels, so as to be able to collect the strings of small cartons, which leads to a large consumption of water.
In addition, the temperature of the cooling basin is to be regulated so as to maintain a suitable temperature for cooling. The temperature regulation of a large volume of water consumes a large quantity of energy.
Finally, at the end of the cooling stage, it is necessary to provide a cutting station that is to be synchronized with the advance of the string of small cartons so that the cutting is carried out at the gripping zone.
To eliminate this drawback, it is possible to cut the small cartons immediately after the coextrusion stage and to allow the thus separated small cartons to cool in a large basin.
Nevertheless, this process does not make it possible to monitor the time that each small carton remains in the basin, and it is common that certain small cartons stay too long in the basin while others are collected too early, when they are not cool enough. In addition, this process also has the same drawbacks of high energy consumption as the process described above.
The object of the invention is to eliminate these drawbacks by proposing a cooling device of simple design, economical to produce, whose energy consumption is reduced and makes possible an effective cooling.
For this purpose, the invention relates to a device for cooling products that consist of an adhesive material that is packaged in a non-adhesive envelope, characterized in that it comprises at least two successive segments of sloped pipe for the flow of a cooling liquid, and able to transport said products, said upstream segment and said downstream segment, at least one means for evacuation of at least one portion of the cooling liquid that is provided between said at least two successive segments, and at least one means for supplying the downstream segment with cooling liquid.
Thus, the cooling device according to the invention can independently supply each pipe segment since the water that is obtained from the upstream segment is evacuated at least partially from the pipe by at least one evacuation means.
The invention will now be described in more detail with reference to the accompanying figures that are provided only by way of example and in which:
The invention applies in particular to small cartons 12 that are obtained by a process that comprises a stage for co-extrusion of the adhesive material and the envelope, followed by a stage for gripping the envelope, and then cutting.
Nevertheless, the framework of the invention is not limited to single small cartons obtained from such a process and is also suitable for all products comprising a core made of adhesive material encased by a non-adhesive envelope, regardless of the manufacturing process of such a product.
The cooling device 10 according to the invention comprises:
Thus, the cooling device according to the invention makes it possible to supply each pipe segment independently, since the water that is obtained from the upstream segment is evacuated at least partially via each evacuation means between the two upstream and downstream segments and therefore does not disturb the cooling liquid that supplies the downstream segment.
In the examples that are illustrated in
According to another characteristic of the invention, said at least two successive segments 14, 16, 18 are integrated in the same pipe 13, whereby said at least one means 20 for evacuating at least a portion of the cooling liquid is provided in the pipe 13 so as to split the pipe 13 into said at least upstream and downstream segments 14, 16, 18.
Thus, as illustrated in
On the contrary, in the embodiment that is illustrated in
Below, under reference 24, the portion of the pipe 13, 13′ is noted at the level of which is arranged the means 20 for evacuating at least a portion of the cooling liquid.
According to another characteristic of the invention, the device 10 comprises means for regulating, not shown, each segment at a temperature that is different from those temperatures of other segments. To ensure cooling, each temperature of the cooling liquid in each segment is less than the temperature of the small cartons penetrating the cooling device 10.
Thus, the device 10 makes possible a gradual cooling of the small cartons 12 that it transports when it comprises several successive segments whose cooling liquid temperatures are increasingly lower, which makes it possible to avoid any thermal shock to the small cartons while ensuring effective cooling.
This gradual cooling has the major advantage that it only requires a small temperature difference between two consecutive segments, which considerably reduces the energy consumption.
In the same manner, the temperature difference of the water between the ends of the same segment is slight, which also tends to reduce the energy consumption.
The evacuation is preferably partial, so that the water that circulates in the portion 24 of pipe 13, 13′ that is equipped with evacuation means 20 participates in the transport of the small cartons 12. In the case of total evacuation, the small cartons move under the action of a descending slope value of the segments and/or using assistance means (rollers, conveyors, . . . ).
To provide an order of magnitude, the flow rate of cooling liquid in each portion 24 is on the order of 10% of the flow rate of the associated upstream segment. Advantageously, the portion 24 is also equipped with rollers, not shown, preferably motorized, contributing to the transport of the small cartons 12 in each portion 24 of the pipe 13.
As can be seen in
It is noted that the pipe 13, 13′ advantageously is not entirely filled with cooling liquid and that preferably the cooling liquid occupies slightly more than half of one cross-section of the pipe 13, 13′. According to another characteristic of the invention that can be seen in
Thus, as illustrated in
Advantageously, each recirculation system 28 comprises means, not shown, for regulating the temperature of the liquid in the associated segment. These means come in the form of heat exchangers between the cooling liquid and a coolant and can be equipped with mixing valves so as to be able to regulate the temperature of the cooling liquid in each segment 14, 16, 18.
According to another characteristic that is illustrated in
The embodiment that is illustrated in
The device 10 comprises two segments 14 and 16 of the pipe 13 and a portion 24 between the two segments 14 and 16. Each segment 14, 16 comprises a number of windings that constitute a single column 30 that is formed on one turn. The segment 14 is arranged above the segment 16.
Thus, the small cartons 12 penetrate the segment 14 via an entry 32 that is provided at the top of the column 30, and then move down the column 30 of windings under the combined action of gravity, whereby each winding is sloped, and the thrust of the water that is contained in the segment 14. Once they have passed through all of the windings of the segment 14, the small cartons 12 pass one after the other into the portion 24 where they continue to move down the column 30 by being conveyed from an exit 34 of the segment 14 up until they reach an entry 36 of the second segment 16. In the same way as for the first segment 14, the small cartons 12 continue to move down the column 30 of windings under the action of the slope and the thrust of water, up until they reach the exit 38 that is arranged at the bottom of the column where, cooled to the desired temperature, they are evacuated for the purpose of their storage.
According to the variant that is illustrated in
According to this variant, the small cartons 12 penetrate the segment 14 via the entry 32 that is provided at the top of the turn 40, move down the windings of the segment 14 under the combined action of the slope and the thrust of the water, and then are transported into the portion 24 up until they reach the entry 36 of the segment 16. The small cartons 12 then move down the windings of the second segment 16 under the combined action of the slope and the thrust of the water up until they reach the exit 38 of the column 30, arranged at the bottom of the turn 42. The small cartons are then cooled to the desired temperature and evacuated for being stored.
According to another embodiment that is illustrated in
According to the embodiment that is illustrated in
Thus, the small cartons 12 penetrate the segment 14 via the entry 32 that is provided at the top of the column 30, and then move down the column 30 of windings e under the combined action of gravity, whereby each winding is sloped, and the thrust of the water that is contained in the segment 14. Once they have passed through all of the windings e of the segment 14, the small cartons 12 are deposited one after the other in the first portion 24 where they continue to move down the column by being conveyed from the exit 34 of the segment 14 up until they reach the entry 36 of the second segment 16. In the same way as for the first segment 14, the small cartons 12 continue to move down the column 30 of windings under the action of the slope and the water thrust, up until they reach the exit 38 where they are conveyed into the second portion 24 up until they reach an entry 44 of the segment 18. They are then transported up to an exit 46 of the segment 18 that is arranged at the bottom of the column, where, cooled to the desired temperature, they are evacuated for the purpose of their storage.
For an optimum operation of the cooling device 10, it is important that the slope of the windings be between 0.5% and 2% and that the flow rate of the water be between 5 m3/h to 15 m3/h, which makes it possible to regulate the speed of the small cartons 12 in each segment 14, 16, 18 to a speed on the order of 10 m/minute to 40 m/minute.
To provide an order of magnitude, the temperature of the cooling liquid is between 50° C. and 70° C. in the first segment 14, and between 2° C. and 10° C. in the last segment 16, 18 for an initial temperature of the small cartons of between 100° C. and 200° C. It is preferably on the order of 5° C. in the last segment 16, 18.
Thus, regardless of the embodiment, the small cartons 12 successively pass through each pipe segment of the device 10 and are cooled little by little, from a high initial temperature, preferably on the order of 100° C. to 200° C., up to an exit temperature of the last pipe segment on the order of 30° C. to 45° C.
It is noted that each embodiment that is presented is both suitable for small cartons whose density is greater than one and for small cartons whose density is less than one, whereby the small cartons with a density that is less than one float on the cooling liquid that circulates in each pipe segment, while the small cartons with a density of greater than one are immersed in the cooling liquid of each segment.
The invention is not limited to the embodiments that are illustrated in
The cooling device 10 according to this invention has numerous advantages.
Thus, whereby the device 10 is in pipe form, it prevents any sticking-together of the small cartons, which can no longer stick to one another.
In addition, the device 10 according to the invention is entirely suitable for all categories of small cartons, as already explained, whether they have a density that is greater than one or else a density that is less than one.
Furthermore, the consumption of cooling liquid is greatly reduced since the latter is only contained in the pipe segments, instead of a basin, as is known from the prior art.
In addition, a major advantage of this invention is the monitoring of the temperature of the cooling liquid in each segment of the device 10. This monitoring of the temperature makes it possible to prevent any thermal shock that would make the small cartons brittle. This monitoring also ensures a more effective cooling and makes possible a reduction of the energy consumption by a monitoring of a slight temperature difference between two successive segments.
The independence of the cooling liquid supply circuits from each segment is ensured by the at least partial evacuation of the cooling liquid outside of each portion 24, which ensures an independence from the temperatures of successive segments.
Thus, the device 10 according to the invention proposes a cooling device that is simple in design, economical to produce, and whose water and energy consumption is reduced and makes possible an effective and rapid cooling.
Number | Date | Country | Kind |
---|---|---|---|
09 58396 | Nov 2009 | FR | national |