This is the U.S. National Phase application of PCT/JP2019/042113, filed Oct. 28, 2019, which claims priority to Japanese Patent Application No. 2018-205005, filed Oct. 31, 2018, the disclosures of each of these applications being incorporated herein by reference in their entireties for all purposes.
This invention relates to a device for correcting meandering in non-contact conveyance of a strip material where a continuously travelling strip material is conveyed at a non-contact state with a conveyance roll while being floated by a group of one or more floaters.
The production process of steel products includes various steps for subjecting a strip material such as cold-rolled steel strip to various process such as heat treatment, plating treatment, painting treatment and so on while keeping the strip material travel continuously. Such processes usually use “roll conveyance” in which the strip material is conveyed while being supported in contact with a roll as a means for the conveyance of the strip material.
However, conventional roll conveyance methods have problems that, for example, in a process in which a strip material such as cold-rolled steel strip is coated on its surface with various coatings, then dried and baked or a process in which a strip material is subjected to a heat treatment at a high temperature while travelling continuously, defects such as scratches, scraping and the like are easily caused on the material surface or on the coated film due to the contact between the strip material and the conveyance roll. As a method for solving such a problem, there has been developed a non-contact conveyance apparatus for conveying a strip material at a non-contact state with a conveyance roll by using a floater which can float the strip material by a gaseous pressure or the like.
Since the strip is floated in the non-contact conveyance apparatus that uses the floater, a friction force by the contact with a supporter is not caused. Accordingly, it is pointed out that the non-contact conveyance apparatus has such a problem in the sheet passing stability that the strip material slips laterally to cause meandering or the strip material is flapped by air draft or the like that is jetted to float the strip material. Therefore, many examinations have been made to prevent the floated strip material from meandering and flapping for stable conveyance of the strip material.
As a method for correcting the meandering, for example, Patent Literature 1 proposes a conveyance method of a strip material by using a floater that supports the strip material in a catenary form at a non-contact state by jetting gas, in which a side plate having a height higher than a usual conveyance level of the strip material is arranged outside each widthwise end portion of the strip material on the floater, whereby a meandering strip material can be conveyed without each widthwise end portion thereof coming in contact with the side plate. In the floater of Patent Literature 1, however, the height of the outermost side plate only in the widthwise direction of the strip material is made high, and hence driving force for returning the strip material to the center is not exerted unless the strip material largely meanders. Therefore, it is difficult to convey the strip material in the central part in the widthwise direction at a high accuracy when the meandering amount of the strip material is relatively small.
As a method for correcting a shifting force applied to the strip material, Patent Literature 2 discloses a method of disposing a gas jet nozzle for jetting a high-pressure gas from above or below an edge portion of the strip material above the floater to operate the tilting of the strip material.
As a method for forcibly exerting a correction force when the strip material is shifted from a center position, Patent Literature 3 discloses a method for correcting meandering by dividing the inside of the floater chamber to adjust a gas pressure in the widthwise direction.
Patent Literature 1: JP-A-H06-107360
Patent Literature 2: JP-A-S63-216928
Patent Literature 3: JP-A-H04-7249
In the technique disclosed in Patent Literature 2, however, the gas jetting to directly above the floater or to the floater affects stable floating of the strip material above the floater, which is not preferable. In the technique disclosed in Patent Literature 3, the configuration of the floater becomes complicated to cause a disadvantage that the introduction cost increases, and also the stable floating of the strip material above the floater may be badly affected by changing the pressure distribution in the widthwise direction to correct meandering.
The invention is made in consideration of the above problems inherent to the conventional techniques, and an object thereof is to provide a device for correcting meandering of a strip material in a non-contact conveyance apparatus that floats and conveys a strip material at a non-contact state by jetting gas or the like, in which, even when the meandering amount of the strip material is small, the meandering of the strip material can be corrected to perform stable conveyance without adversely affecting the surface of the strip material.
The inventors have made various studies to solve the above task. Consequently, it has been found out that, when a continuously travelling strip material is conveyed while being floated by a floater group comprising one or more floaters, meandering of the strip material can be controlled with a high accuracy even when the meandering amount is small, by forcibly changing a height position in the widthwise direction of the strip material so that the strip material tilts in at least one section between the most upstream floater in the floater group and a conveyance roll located immediately upstream of the floater, between two adjacent floaters, and between the most downstream floater in the floater group and a conveyance roll located immediately downstream of the floater, and thus, the invention has been accomplished.
That is, the invention according to exemplary embodiments provides a device for correcting meandering in a non-contact conveyance of a strip material that supports and conveys a continuously travelling strip material at a non-contact state by floating the strip material with a group of one or more floaters arranged in series, in which a gas nozzle for jetting gas to a lower surface of the strip material is disposed as a mechanism for imparting tilting to the strip material to operate tilting of the strip material in the widthwise direction above the floater, in at least one section between the most upstream floater among the floater group and a conveyance roll located immediately upstream of the floater, between two adjacent floaters, and between the most downstream floater among the floater group and a conveyance roll located immediately downstream of the floater.
In the device for correcting meandering of a strip material according to the invention, it is preferable to dispose the gas nozzle at a position within S/2 from the floater, where S is defined as a center distance between the most upstream floater among the floater group and the conveyance roll located immediately upstream of the floater, a center distance between the adjacent two floaters and a center distance between the most downstream floater among the floater group and the conveyance roll located immediately downstream of the floater.
In the device for correcting meandering of a strip material according to the invention, it is preferable to dispose the gas nozzle at a position lower than the height position of the strip material before the gas jetting by not less than H, where H is defined as an average floating amount of the strip material above the floater.
In the device for correcting meandering of a strip material according to the invention, it is preferable to adjust the gas pressure jetted from the gas nozzle in proportion to the total tension of the strip material.
According to an embodiment of the invention, in an apparatus for conveying a continuously travelling strip material at a non-contact state with a conveyance roll while floating the strip material with a floater, gas is jetted from the nozzle, which is disposed at a position below the strip material and other than the floater floating the strip material, to forcibly tilt the strip material, whereby the meandering of the strip material is corrected, and hence the strip material can be returned to the center position in the widthwise direction even in the meandering of a slight amount to stably convey the strip material.
Here, the meandering correction capability of the floater 2, shown in
However, the end portion of the strip material 1 needs to sufficiently approach to the side plate 3 in order that the correction force Fc correcting the meandering acts, which requires a certain amount meandering to be generated. In other words, the conventional floater 2 is effective in large meandering, but hardly causes the meandering correction force Fc in small meandering.
The inventors have studied the meandering correction method that is effective even in the small meandering. As a result, referring the above meandering correction capability of the floater as a clue, they have conceived that forcibly tilting the strip material 1 allows the meandering correction force Fc to be generated even in small meandering, and the invention has been accomplished. Concretely, the present invention according to exemplary embodiments is a method for correcting meandering comprising:
In an embodiment of the invention, a device for correcting meandering 20 is configured by arranging a meandering correction gas nozzle 7 for tilting the strip material 1 at a position below the strip material in the vicinity of the floater 2 as shown in
In order to exert the meandering correction force Fc more effectively, it is preferable to dispose the meandering correction gas nozzle 7 close to the floater 2 so that the tilting of the strip material above the floater 2 can be largely changed by the gas jetting with high responsivity. As shown in
It is preferable to adjust the gas pressure of the meandering correction gas nozzle 7 to 0 (no gas jetting) or within the range of not less than 0.1 P but not more than 10 P, where P is defined as the pressure of the floater. This is due to the fact that when the pressure is too high, the behavior of the strip material is rapidly changed to cause the sheet to pass unstably and also the floater is tilted by a force which is larger than the floating force (static pressure) above the floater 2 and hence the floater 2 has a high possibility of coming in contact with the strip material 1. When the pressure is too low, on the other hand, it is necessary to increase the opening area of the meandering correction gas nozzle in order to impart tilting to the strip material, resulting in poor response. Also, it is preferable to increase the gas pressure of the meandering correction gas nozzle in proportion to the total tension of the strip material. As the tension of the strip material becomes higher, the strip material is more unlikely be tilted, and hence it is preferable to increase the gas pressure of the meandering correction gas nozzle. In order to maintain the corresponding tilting capability of the strip material when the tension is changed, therefore, it is preferable to also change the gas pressure in proportion to the total tension of the strip material.
A distance L between the position 12 of the strip material when the meandering correction gas nozzle is not used and the upper end of the meandering correction gas nozzle is preferable to be not less than H downward, where H is defined as an average floating amount of the strip material above the floater. As vertical vibration is caused in the strip material due to the floating by the gas, the strip material is more likely to come in contact with the nozzle, when the position of the meandering correction gas nozzle is higher than the above position 12. As to the upper limit of the distance L for separating the meandering correction gas nozzle from the strip material, it is preferable to arrange the top of the meandering correction gas nozzle within 20 D, where D is defined as the nozzle diameter or a slit width when slit nozzle is used. When the meandering correction gas nozzle is arranged separated from the strip material farther than the above maximum position, it is difficult to impart tilting to the strip material with high responsivity, influenced by the attenuation of the gas jetting stream. Therefore, the distance L between the meandering correction gas nozzle and the strip material is preferably within the range of H to 20 D, more preferably 1.5H to 15 D. The average floating amount H is defined as the average value of the distance from the top of the rib plate to the strip material over full width of the strip material when the rib plate is used, as also shown in
In order to prevent the opening of the meandering correction gas nozzle from displaced out of the surface of the strip material due to the change in the width or meandering of the strip material, the opening of the meandering correction gas nozzle is preferable to have a long-slit-like shape in the widthwise direction of the strip material. Here, the slit-like shape includes such a shape that a plurality of nozzles are densely arranged in the widthwise direction of the strip material.
The tilting angle α of the strip material 1 above the floater 2 by jetting the gas from the meandering correction gas nozzle 7 is preferable to fall within the range of ±0.3 to 6° with respect to the horizontal face, although it depends on the width of the strip material and the floating amount. When the absolute value of the tilting angle α is less than 0.3°, the tilting amount of the strip material is too small to generate sufficient meandering correction force. On the other hand, when the absolute value of the tilting angle α exceeds 6°, it is necessary to float the strip material higher above the floater, which deteriorates the sheet passing stability. More preferably, the tilting angle α of the strip material above the floater falls within the range of ±0.5 to 5°.
The meandering correction gas nozzle 7 is preferable to have a mechanism for evacuating and separating from the strip material 1, in preparation for a case that the meandering correction function is not used. A method of adjusting the distance between the meandering correction gas nozzle 7 and the strip material 1 can use electromotive cylinder, hydraulically operated cylinder and the like.
Since no friction force (binding force in widthwise direction) acts on the strip material, the meandering speed in the conveyance apparatus that floats the strip material by the floater or the like is very fast, and hence it is necessary to control the generated meandering with high responsivity. To this end, it is preferable to measure the meandering amount at the exit side of the conveyance apparatus (floater groups) and feedback the measurement value to control the gas pressure of the meandering correction gas nozzle 7. Also, it is also effective to use a method of measuring the form of the strip material at a stage before the conveyance apparatus to predict a tendency of meandering amount and feedforward the predicted result to control the gas pressure of the meandering correction gas nozzle 7.
The material of the meandering correction gas nozzle is not particularly limited, but is preferably a material that can withstand the high-temperature environment and corrosive environment in an annealing furnace or a drying furnace. The material can preferably use ceramics, steel, stainless steel (SUS) and so on. Also, the top of the meandering correction gas nozzle is preferable to be equipped with a guard capable of suppressing damage of the nozzle when coming in contact with the strip material. The material of the guard can preferably use ceramics, steel, stainless steel (SUS) and so on that can withstand the high-temperature environment and corrosive environment.
One or more blowers feeding gas to the meandering correction gas nozzle may be used. In the meandering correction and control, gas is repeatedly fed and stopped to the plural meandering correction gas nozzles, so that it is preferable to have a switching valve to allow switching of which nozzle to supply or stop gas. A large-capacity blower is difficult to switch from jetting to stopping the gas instantly, so that it is preferable to equip an escape port, which can jet the gas to an area where the strip material is not affected by the jetted gas, with at least in one switching valve system. Thus, by escaping the gas without stopping the blower, it becomes possible to jet and stop the gas repeatedly with high responsivity from the meandering correction gas nozzle by the switching valve.
In a drying furnace provided with a non-contact conveyance apparatus where 5 floater devices shown in
The center distance between the most upstream floater and the conveyance roll located immediately upstream thereof and a center distance between the most downstream floater and a conveyance roll located immediately downstream thereof in the above conveyance apparatus are both 10 m. The meandering correction gas nozzle is arranged at an exit side of the fifth floater viewed from an entrance side of the strip material.
The meandering correction gas nozzle are provided with two slit-like shaped openings of 10 mm×600 mm at both sides of the strip material in the widthwise direction. Each opening is arranged so that one end of the 600 mm-length side is 50 mm displaced from the center of the strip material in the widthwise direction and the other end thereof is 50 mm displaced outward from the end of the strip material. The gas pressure of the meandering correction gas nozzle is adjusted within the range of 0 to 10 kPa as a gauge pressure.
Side plates having a height of 50 mm are arranged at an interval of 1500 mm in the widthwise direction in the floater. The floater has a nozzle interval in the longitudinal direction of the strip material of 1100 mm, and a length in the travelling direction of the strip material of 1500 mm, and a length in the widthwise direction of the strip material of 1500 mm. A slit width in the opening of the nozzle is 20 mm. A tension of the strip material in the conveyance is 0.6 kg/mm2, and a conveying speed of the strip material is 100 m/min. Also, the inner pressure of the floater is about 0.6 kPa as a gauge pressure, and a floating height H of the strip material is 25 mm on average. The floating height is a distance from the top of the rib plate (top board when the rib plate is not used) to the average height position in the widthwise direction of the strip material.
In the above experiment, it is possible to conduct such a control that the strip material passing through the center is forcibly meandered and again returned to the center by changing the gas pressure of the meandering correction gas nozzle at a non-meandering state (meandering amount: 0 mm). Although a comparative example is conducted under a condition where no meandering correction gas nozzle is used, it is not possible to forcibly meander the strip material (exert the meandering correction force) passing through the center.
Although the meandering can be controlled even when the distance K from the center of the floater to the gas nozzle, the distance L from the strip material to the top of the nozzle and the gas pressure P of the nozzle are out of the preferable ranges, the meandering response time becomes longer or the occurrence of scratches is observed.
The meandering amount is measured by detecting the edge of the strip material using a two-dimensional laser sensor in the vicinity of the first conveyance roll after the drying furnace. The scratches are visually detected at the exit side of the drying furnace under a sufficiently bright fluorescent lamp.
The technique of the invention is not limited to the strip steel sheet material described in the above example and can be applied to strip metal sheets such as aluminum sheet, copper sheet and so on and strip material such as plastic film, paper and so on.
Number | Date | Country | Kind |
---|---|---|---|
2018-205005 | Oct 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/042113 | 10/28/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/090707 | 5/7/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6091055 | Naka et al. | Jul 2000 | A |
Number | Date | Country |
---|---|---|
4411451 | May 1969 | JP |
472901 | Jan 1972 | JP |
5239261 | Mar 1977 | JP |
62158827 | Jul 1987 | JP |
62235429 | Oct 1987 | JP |
63216928 | Sep 1988 | JP |
03104826 | May 1991 | JP |
047249 | Jan 1992 | JP |
06107360 | Apr 1994 | JP |
11118357 | Apr 1999 | JP |
2015131705 | Jul 2015 | JP |
Entry |
---|
Chinese Office Action with Search Report for Chinese Application No. 201980071438.X, dated Jun. 2, 2022, 9 pages. |
Korean Office Action for Korean Application No. 10-2021-7012702, dated Oct. 26, 2022 with Concise Statement of Relevance of Office Action, 4 pages. |
Japanese Office Action for Japanese Application No. 2020-509130, dated Apr. 13, 2021, with Concise Statement of Relevance of Office Action, 5 pages. |
International Search Report and Written Opinion for International Application No. PCT/JP2019/042113, dated Jan. 21, 2020, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20210387824 A1 | Dec 2021 | US |