The invention relates to a device for creating a free transcutaneous access to an endoscopic operating area, in particular to a hollow internal body organ, which device has a conical inset that can be inserted into an incision.
In minimally invasive surgery, transcutaneous accesses to operating areas are provided as a rule by means of so-called trocars. Trocars consist of a rigid metallic housing and the trocar triblet that can be inserted into the trocar housing and constitutes the actual trocar, which has a sharp point for forming an incision. After forming the incision, the trocar housing is pushed into the patient's body and the trocar triblet is removed from the trocar housing. Subsequently a surgeon can introduce through the trocar housing surgical instruments such as endoscopes and other surgical operating implements.
In hollow internal organs, such as the stomach, even during anesthesia relative motions occur over a certain area between the abdominal surface and the hollow internal organ, so that here it is necessary to employ relatively long trocar housings to ensure that the trocar housing does not slip out of the hollow organ because of the motions of the hollow organ.
A generic device for creating a free transcutaneous access to an endoscopic operating area is known, for instance, from U.S. Pat. No. 5,634,937 A. The disadvantage of this device is that only one medical instrument at a time can be introduced into the operating area through the conical inset.
From DE 199 16 088 A1, another device for creating a transcutaneous access to a hollow internal body organ is known. This familiar device serving for endoluminal operations consists of a foot portion, which can be secured by clamping to a hollow probe, which is guided outward from the body interior through the incisions in the wall of the hollow organ and in the abdominal surface. A tubular-shaped shaft can be connected to this foot portion, secured in this manner on the incision site by means of a coupling element, and said shaft outside the body extends the hollow probe in such a way that medical instruments, for instance endoscopes and other operating implements, can be introduced into the hollow organ by way of the hollow shaft and the probe.
This familiar device has proven itself thorough in practice; however, it is, for one thing, relatively expense to produce and, in addition, the free threshold of the hollow shaft and the probe are not of such dimensions that an endoscope and other instruments can be introduced into the operating area simultaneously, and thus in the customary working angle of 30 degrees to one another, by means of this device.
It is consequently the aim of the invention to produce a device for creating a free transcutaneous access, which device is of simple construction and offers good maneuverability for several medical instruments.
The means of achieving this aim, according to the invention, is characterized in that several medical instruments can be introduced simultaneously into the operating areas by way of the conical inset, so that the individual medical implements are positioned at a determined angle to one another in the conical inset.
Thanks to the configuration of the device according to the invention, it is possible for the surgeon simultaneously to introduce several implements into the operating area by way of a conical inset, so that thanks to the determined angle of the medical implements to one another, an exact guidance of the instruments is ensured in the operating area.
It is further proposed with the invention that on the inside of the inset at least one guidance device for a medical instrument, in particular an endoscope, is configured. By providing this guidance device, which can be configured, for instance, as a guide channel running in the conic direction of the inset, the surgeon can be considerably relieved because he or she no longer needs to use one hand to secure, during the entire operation, the instrument positioned in this guidance device, such as an endoscope. The guidance devices furthermore guarantee that the medical instruments are held at a firmly predetermined angle to one another.
The conic angle (alpha) spread apart by the inner wall of the inset is advantageously between 30 and 90 degrees, and preferably 60 degrees. This preferred conic angle of the inset according to this invention ensures that the angle of 30 degrees desired in practice can be maintained between the optic axis of the endoscope and the other instruments without problems, even with two instruments present.
According to a practical embodiment of the invention, it is proposed that the conic inset is of blunted conic form configured in such a way that the inset has an aperture on the distal side smaller in diameter than on the proximal side.
To prevent the inset according to this invention from slipping out of the incision, it is proposed with the invention that the conic inset can be secured in the incision. For this purpose, according to a preferred embodiment of the invention, it is proposed that on the exterior of the inset, which preferably consists of a rigid plastic, at least one securing element is positioned.
According to a first practical embodiment of the invention, it is proposed that the at least one securing element takes the form of a screw-in socket, which is at least single-threaded and is mounted on the exterior of the inset, and by means of which the inset can be screwed into the incision.
According to a second embodiment according to the invention for configuring the at least one securing element, it is proposed that the at least one securing element is configured as a surrounding click-stop ridge. At least two surrounding click-stop ridges are advantageously configured, positioned parallel to one another, on the exterior of the inset as securing elements. By means of series of click-stop ridges, it is possible to vary insertion depth of the inset into the incision or to adjust it flexibly to the specific operating conditions.
To facilitate insertion of the conical inset into the incision and to be able to tilt the inset, once inserted in the incision, with respect to its longitudinal axis, it is proposed by the invention that a guide arm can be secured on the inset. For this purpose, a coupling element for securing the guide arm is advantageously positioned on the exterior of the inset.
Finally, it is proposed with the invention that at least the aperture on the proximal side of the inset can be closed by means of a covering element in order to insulate the operating area hygienically from its surroundings.
According to a first embodiment of the invention, the covering element is configured as a membrane that can be penetrated by the medical implements that are to be inserted into the inset, in such a way that the membrane can be configured for instance as an insulating disc made of a silicon material.
It is proposed with a second embodiment of the invention that the covering element is configured as a cap equipped with at least one aperture for receiving a medical implement that is to be inserted into the conical inset, in such a way that every aperture in the cap is provided with an elastic insulating membrane, which provides exterior insulation for the instrument shaft that is to be inserted.
To facilitate precisely aimed insertion of the medical implements into the operating area, the cap according to the invention can be secured onto the conical inset secure against rotation in such a way that, when it is locked, at least one aperture in the cap is aligned with a guide device positioned on the interior of the conical inset. A medical implement inserted into the cap aperture is then guided to the operating area by means of the guide device with exact positioning. The cap advantageously is made of a transparent material, in particular a plastic material, so that it is possible to determine through the transparent cap whether the inserted medical implements are properly seated in the guide devices on the interior of the conical inset.
The cap is insulated from the conical inset, according to the invention, by means of an insulating element as an intermediate layer.
Additional characteristics and advantages of the invention can be seen from the appended illustrations, which present merely a schematic depiction of an embodiment of a device according to this invention for creating a free transcutaneous access to an endoscopic operating area.
In
The structure of the conical inset 4 can be seen more exactly from the depictions in
The conical angle alpha, stretched apart by the conical inner surface of the inset 4, is preferably 60 degrees. This angles is particularly advantageous because in this embodiment, as can be seen from
To be able to secure the conical inset 4 in the incision 2 and, thereby to prevent the inset 4 from slipping out of the incision 2, in the illustrated embodiment a securing element is positioned on the exterior of the inset 4 configured as a screw track 8. By means of this screw track 8, which can also consist of several parallel screw tracks 8, the conical inset 4 can be easily and quickly screwed into the incision 2, as is shown in
Alternatively to the illustrated embodiment, it is also possible, for instance, to configure the securing element as a surrounding click-stop ridge positioned on the exterior of the inset 4, in such a way that is advantageous with this embodiment to use several click-stop ridges arranged parallel to one another, in order to vary the insertion depth of the inset 4 into the incision 2 or to be able to adapt flexibly to the specific operating conditions.
It is possible to facilitate insertion or screwing of the conical inset 4 into the incision 2 if a guide arm, pointing radially outward, can be secured on the inset 4. In the embodiment shown in
The overhead view of the conical inset 4 of
As can further be seen from
As an alternative to the illustrated configuration of the covering element 12 as a membrane, it is also possible of course to configure the covering element 12 as a cap that can be secured on the conical inset 4, in which cap at least one aperture is formed for inserting a medical instrument that is to go into the conical inset and where every aperture in the cap is equipped with an elastic insulating membrane, which insulates the inserted instrument shaft against the exterior.
To facilitate precisely aimed insertion of the medical instrument into the operating area, the cap can be secured on the conical inset 4 secure against rotation in such a way that when it is closed at least one aperture in the cap is aligned with a guide device 10 positioned on the inside of the conical inset 4. A medical implement inserted into the cap aperture is then guided by the guide device 10 and precisely positioned in the operating area. Thanks to the cap, made of a transparent material, in particular a plastic material, in this manner it is possible to ascertain from outside whether the inserted medical implement has been properly seated in the guide devices 10 on the inside of the conical inset 4.
The handling of the previously described device for creating a transcutaneous access to an endoscopic operating area is as follows.
At the start of the operation, by means of a pointed trocar triblet an incision 2 is made in the abdominal covering 3 of the patient 1. In an endoluminal operation a second incision 2 is made by means of the trocar triblet in the outer wall of the hollow interior body organ. In an endoluminal stomach operation the incision is produced in the stomach wall advantageously while controlling and guiding a gastroscope that is inserted into the stomach by way of the digestive tract.
After the incision 2 or incisions 2 are made, the conical inset 4 is placed on the trocar triblet as a guide and, by means of the screwing track 8, it is screwed into the incision or incisions 8. The screwing track 8 serving as a securing element holds the conical inset 4 securely and in an exact position in the body of the patient, so that the trocar triblet can then be withdrawn from the incision or incisions 2 again.
Now the surgeon has an easily accessible transcutaneous access to the operating area. Because of the great conical angle alpha of the conical inset 4, several surgical instruments can be introduced into the operating area simultaneously by way of the only one transcutaneous access, so that it is possible to maintain the 30 degree advantageous optical angle of approach of the working instruments to the optical axis of a viewing instrument. The good accessibility of the operating area, moreover, facilitates the removal of severed tissue from the body and/or the insertion of sewing material, for instance, into the body.
On completion of the operation, the inset 4 is again unscrewed out of the incision 2 and the incision is sewn up. In the endoluminal operation illustrated in
A device of the aforementioned configured for creating a transcutaneous access to an endoscopic operating area is distinguished in that it combines an especially simple construction with the greatest possible freedom of motion for the surgeon during the operation.
For the patient 1, the use of the conical inset 4 is advantageous because as a rule it makes it unnecessary to make a second or third incision 2 for introducing additional surgical implements.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 026 467.0 | Jun 2005 | DE | national |