The disclosure generally relates to vaporizing devices used to make and distribute airborne scents such as those used to add a scent to the air in a room or an automobile, distribute an insect repellant, or as aromatic hunting lures, repellants, scent eliminators, or scent covers. More particularly, the disclosure relates to an electric vaporizing device that vaporizes liquid aromatic compositions and distributes the vaporized scents to the atmosphere surrounding the device. Specifically, the disclosure relates to an electric vaporizer configured to vaporize a liquid scent material upon exposure to a heating coil wherein the resulting vapor is distributed with air flow from an airflow generator.
Aromatic materials have long been used by hunters to lure or attract game animals toward a position within range of the hunter. Examples of aromatic materials include doe urine and sweet smelling items such as apple and corn. In some cases, a hunter spreads the smell of a buck in order to lure a different buck seeking to defend territory. Other urines and gland secretions are also used as well as naturally occurring smells from trees and bushes favored by game.
In certain instances, deer hunters, utilizing the aforementioned liquid urine, hunt near scrape marks which have been formed in the ground by the hooves of the deer crossing the territory. Deer scrape the ground to provide a location for defecation or urination, and consequently other deer are attracted to the odors emanating from previously formed scrapes. As a consequence, it is advantageous for hunters to distribute quantities of urine near the previously formed scrapes. A few drops of the liquid urine may be sprinkled in each of the scrapes within range, and in addition a bottle or vial containing some of the liquid urine may be left open on the ground, so that a portion of the liquid urine evaporates into the air to further distribute the aroma.
Unfortunately, individuals hunting in freezing conditions have found that the urine freezes after a certain time in the field, rendering the relatively expensive product useless. In addition, containers or vials which are left on the ground for vaporization of the liquid urine occasionally tip due to the influence of wind and spill the expensive liquid contents onto the earth. Another problem is that a liquid aromatic material has a strong scent immediately after being distributed which then tapers off over time. Hunters design a way to re-strengthen the scent without leaving a blind or stand position.
One solution to the problem of freezing lure is disclosed in U.S. Pat. No. 3,046,192 which uses a hand warmer to warm the lure. Other devices use a burning fuel to warm the material in order to increase the rate of evaporation. One device uses an electrically-power heater disposed within a wick to warm material drawn to the heater.
Other uses for scents during hunting include cover scents and scents that repel game. Repelling scents can be used to prevent game from entering or leaving an area. Other situations where one desires to distribute a scent include freshening the air in a room or inside an automobile. Some scents are used to ward off insects such as citronella used for mosquitos.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The disclosure provides a vaporizing and distribution device that uses an electric heating element to rapidly vaporize a scent material that is provided as a liquid to the heating element. The scent material can include a propylene glycol (PG), a vegetable glycerin (VG), a combination of PG and VG, or a combination of PG or VG and water. These substances are mixed with an aromatic material that can be added as a solid or a liquid. The aromatic material can be a hunting lure or a material having a smell that is pleasant to humans or a material that repels animals or insects. The solid aromatic material can be a dehydrated material such as dehydrated animal or game urine such as a deer urine, elk urine, bear urine, or other dehydrated glandular secretions. The liquid aromatic material can be the liquid forms of these materials or scented oils. The scent material is a combination of dehydrated powders, oils created from the distilling of natural ingredients or a combination of both. The powder, oil or combination of the two are combined with propylene glycol or vegetable glycerin. The scent is used for: attractant scent for hunting, cover scent for hunting, pleasant smelling scent, or repellant scent. The disclosure also provides a vaporizable material that eliminates or substantially reduces the user's scent. In an exemplary configuration, the vaporizable material includes an activated carbon mixed with glycol or a mixture of glycol and water.
Another aspect of the disclosure is a vaporizable material that repels game and a method of using the repellant to influence the movement of the game. The repellant material can include the scent of a predator, soap, humans, dogs, and the like. The user can set a scent fence line of vaporizing devices timed to form and distribute the vaporized scent at periodic times. This creates a scent barrier than helps keep game from passing through the area.
Another aspect of the disclosure is a vaporizable material and method of using a vaporizable material for scent elimination. The disclosure provides a vaporizable mixture that includes a percentage of carbon, charcoal, activated carbon, or coconut shell activated carbon, or palm kernel shell charcoal or a combination of these substances. The combination of these substances with a vaporizable material such as the glycol materials discussed above allow a scent elimination substance to be generated to be used by a hunter to eliminate or reduce scents that can alert game to the hunter's presence.
The disclosure provides a vaporizing and distribution device configured to selectively receive disposable cartridges that hold the scent material. In one configuration, the cartridge includes the liquid scent material without a heating element. In another configuration, the cartridge includes the electric heating element as well as the liquid scent material. In any of these configurations, the cartridge can be single use or refillable. In any of these configurations, the cartridge can hold the liquid scent material disposed around a centrally-disposed distribution outlet that directs vapor to a distributor that allows the vapor to be distributed around the entire perimeter of the device.
The disclosure provides a configuration of the device that uses liquid tank and a seal that is used to seal off the liquid tank when the device is not in use.
The disclosure provides scent material composition that includes a base that is readily vaporized by an electric resistive heater and an animal lure aromatic material which can be a dehydrated urine or an animal material such as gland secretions that attract game. Deer urine is provided as an example. The aromatic material also can be a pleasant-smelling material such as a fruit-based material, a flower-based material, or another pleasant-smelling plant or item such that the device may be used for an alternative purpose of freshening air in a room or the air in an automobile. These scents also may be used to cover the scents humans leave while entering or exiting hunting grounds. In one configuration, the user of the scent material mixes the liquid scent material immediately prior to adding it to a vaporizing device in order to provide a fresh liquid scent material. In this configuration, the components of the liquid scent material are provided in separate containers such as one with the scent components (dehydrated urine or glandular secretion materials or other dry scent materials as described above or a scent oil) and the other being the vaporizable liquid (PG, VG, combination or PG and VG, or combination of these with water). The user mixes the two and agitates until the scent material is dissolved into a vaporizable liquid scent that is fresh when added to the vaporizing device. These can be provided in separate bottles or separate chambers of a container that can be mixed on demand by removing a barrier.
The disclosure provides a vaporizer that includes an airflow generator that creates an air flow used to distribute the vapor from the device. The airflow generator can be a fan, a compressed gas cartridge, an air pump, or a device that is collapsed by the user to generate the airflow. The airflow generator can be controlled to provide different airflow speeds. Different embodiments and mounting configurations are provided. In one configuration, the fan is mounted about an axis of rotation that is substantially perpendicular to the longitudinal axis of the device. In another configuration, the axis of rotation for the fan is parallel to the longitudinal dimension of the device. In this second configuration, a magnetic mount is provided. Compressed gas canisters can be used and hand-squeezable bladders can be used. An air pump having a movable bellows can be used to generate the airflow.
The disclosure provides configurations with an electric vaporizer that is selectively connectable to an air bladder that provides the airflow for distributing vapor created by the vaporizer. The devices can use the airflow created by the bladder to activate the vaporizer to create the vapor that is then distributed from the vaporizer by the airflow.
The disclosure provides a vaporizer with a removable power source and a removable power source housing.
The disclosure provides a vapor distribution device having a timer and/or a controller chip that allows the distribution of the hunting lure at selected intervals based on time, temperature, or climate conditions. In one configuration, the user can program the timer and/or controller chip or change the settings of the controller chip in order to change the operation of the device. Another configuration allows the device to be controlled by a remote control such as a mobile computing device such as a mobile smart phone with WIFI, Bluetooth, radio frequency, or cellular communications protocols.
The disclosure also provides a non-programmable hunting lure distribution device which has a fixed distribution timing and volume pattern. This may be combined with a manual trigger to allow for manual operation of the device.
The disclosure provides a vaporizing device having a power supply that is selectively connectable to the vaporizing device and other devices such as a flashlight, an electric device charger, a power adapter for a cell phone, or other devices operable from battery power.
The preceding non-limiting aspects, as well as others, are more particularly described below. A more complete understanding of the processes and the structures of the vaporizing device can be obtained by reference to the accompanying drawings, which are not intended to indicate relative size and dimensions of the assemblies or components thereof. In those drawings and the description below, like numeric designations refer to components of like function. Specific terms used in that description are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings, and are not intended to define or limit the scope of the disclosure.
Similar numbers refer to similar parts through the specification.
The different configurations of the vaporizing device of the disclosure are indicated generally by the numeral 100 in the accompanying drawings. When assembled for use, each of these configurations generally includes a power source, a heating device, and a reservoir that contains a liquid scent material that vaporizes into an airborne scent that can be used as a lure designed to attract hunting game, as a repellant, as an air freshener, or as a scent eliminator. Device 100 can be provided to the user without a power source with the power source being supplied by the end user. Some of the configurations include an airflow generator such as an electric fan, an air pump, a canister of compressed gas, or a squeezable bladder that is used to create a flow of air or gas that distributes the vaporized scent material from device 100. One configuration is operated by an on-off switch which can be activated manually or with a remote control. Another configuration includes a timer that controls the operation of the device. A further configuration includes a sensor that activates the device when an airflow through the device is detected. An option is to provide a timer that is programmable by the user. The timer controls the creation and distribution of the vaporized scent material. These power options can be used alone or in combination. One configuration provides a refillable liquid cartridge while another configuration provides a sealed liquid cartridge that is removed and replaced after depletion. The cartridge carries the liquid scent material that is vaporized. One configuration of the cartridge simply includes the liquid composition that is vaporized. Another configuration of the cartridge includes the liquid composition as well as the burner element. The cartridges are selectively connectable to the other components or another component of device 100 to allow the user to readily recharge the device for continued use. These general elements of device 100 may be used alone or in combination with each other and the other elements described below to define the different configurations of device 100.
Although the following descriptions refer to the exemplary configurations of
Base 112 carries an airflow generator in the form of an electrically-powered fan 114 that creates a flow of air that is delivered to cartridge 110 to distribute the vaporized scent material from device 100. Base 112 also carries a power source 116. Optionally, base 112 includes an on-off switch 118. Additional options carried by base 112 include a controller 120 that can be in the form of a programmable timer that provides the user a selection of preset operating modes or a programmable controller that allows the user to customize the operation of device 100 to match the hunting conditions.
Base 112 carries a power source 116 such as a battery or a plurality of batteries which can be disposable or rechargeable. Power source 116 can be removable. Power source 116 is carried by a power source housing 130 that forms part of base 112 and can carry the optional on-off switch 118. Switch 118 can be located at the lower end of device 100 and is in the form of a push button style on-off switch or a twisting or rotating-style switch.
In one configuration, to turn on the unit, the user presses and holds the button 118 on the control center 120 for five seconds. The user then immediately chooses the disbursement interval, by pressing the button 118 on the control center 120 briefly. A light will come on immediately followed by the unit indicating a five second scent disbursement. This light can be any one of the lights or a combination of all lights. Three options of adjustment are indicated by the color of light on the control center 120. Red: one minute intervals between scent disbursements. Yellow: three minute intervals between scent disbursement. Green: five minute intervals between scent disbursement. To turn the unit off, the user presses and holds the button 118 on the control center 120 for five seconds. All lights will turn off and scent disbursements will stop.
The connection between power source housing 130 and fan housing 132 of base 112 functions as the negative ground for the power circuit of device 100. The connection between housings 130 and 132 can be a threaded connection 134 or a snap-together connection. A seal in the form of an O-ring can be provided to make the connected water-resistant or water-proof.
In order to form this part of the electric circuit of device 100, electrically conductive elements are provided in base 112 that are in electrical contact with the negative side of power source 116. In the exemplary configuration, housings 130 and 132 are fabricated from an electrically conductive metal and the housings themselves define part of the electrical circuit. In other configurations, housings 130 and 132 can be fabricated from a material that is electrically insulating and conductive elements are be carried by each housing 130 and 132 to define the negative side of the electrical circuit.
The positive side of power source 116 is contacted by an electrical connector 136 that either extends into power source housing 130 or is recessed within fan housing 132. These positive and negative sides of the electrical circuit provide the electrical power for fan 114, controller 120 and the vaporizing coil of device 100.
The use of a removable power source 116 carried by housing 130 allows charged replacement power sources 116 to be quickly added to fan housing 132 as needed. The removable power source housing 130 allows optional attachments such as flashlight attachments, power adapters for charging phones, radio attachments, and other powered devices to be used with power source housing 130. In one optional configuration, switch 118 is disposed on the side of housing 130 and a flashlight attachment can be selective added to the end of device 100.
In one configuration, power source 116 is integrated into housing 130 such and is not readily removable from housing 130. Such a power source 130 can be a rechargeable-type of power source 116. The user can swap housings 130 in the field in a situation where the power is low. The housing can include a charging port.
Device 100 can be provided in a simple on-off configuration wherein device 100 forms and dispenses vapor when the users turns device 100 on and stops when the user turns device 100 off. Device 100 can be provided with controller 120 that provides operating configurations that are more useful for some hunting situations. In the configuration depicted in
Fan housing 132 defines one or a plurality of air channels 148 for the air flow created by fan 114. Air channels 148 extends from the exit of fan 114 to the upper end of base 112. When cartridge 110 is connected, the outlet of air channel 148 is in communication with a plenum 146 that receives a lower end portion of the burner 150. The removable and replaceable cartridge 110 contains the liquid that is vaporized by device 100 and the burner 150 that, when powered or energized, is adapted to vaporize a selected volume of the liquid. Burner 150 defines an air inlet 160 that is in fluid communication with plenum 146 when cartridge 110 is installed. The air flow from fan 114 pressurized plenum 146 causing air flow into inlet 160 and through an air flow channel 162 defined by burner 150 from inlet 160 to its outlet 164.
Before cartridge 110 is connected to fan housing 132, cartridge 110 is substantially sealed such that the user is not readily exposed to the liquid during the transport and storage of cartridge 110. A removable seal can be provided over the lower end of cartridge 110. This seal is either removed by the user or pierced by base 112 during the installation of cartridge 110. Another configuration only seals air inlets 160 with a removable or meltable seal. The upper end of cartridge 110 can be sealed with its own removable seal or the top portion of cartridge 110 can be rotated between a sealed condition and an open condition.
When cartridge 110 is installed, a gasket, seal, or O-ring 152 forms a seal between the burner holder 154 and the top of fan housing 132. The connection between burner holder 154 and fan housing 132 can be a snap fit, a threaded connection, or a slide and twist locking connection similar to a bayonet connection. In the configuration wherein the installation of cartridge 110 is designed to pierce the lower seal of cartridge 110, the remaining portions of that seal remain on cartridge 110 and form seal 152 when the cartridge 100 is fully seated on fan housing 132.
Burner 150 defines a liquid scent material inlet 170. Within burner 150 in fluid communication with both channel 162 and inlet 170 is a heating element 172 and a wick 174. Heating element 172 is an electric resistive heating-style element (burner coil) that creates heat when electric current is passed through element 172. Wick 174 limits the amount of liquid that is brought into contact or proximity with heating element 172. Wick 174 can be a screen having small openings or an absorbent material. Electricity is delivered to heating element 172 through burner 150 and the circuit is formed through burner holder 154.
Burner 150 is seated in burner holder 154 against an inner shoulder 155 defined by burner holder 154. This connection can be used to form the negative electrical connection between burner holder 154 and heating element 172. Burner 150 can be held in place by being sandwiched between shoulder 155 of holder 154 and end cap 182. A burner cap seal 178 forms a seal between burner 150 and end cap 182. Alternatively or in combination with the sandwiched fit, burner 150 can be held by a friction fit, a threaded connection, or a snap fit. Burner 150 defines a shoulder 176 that seats against inner shoulder 155 of burner holder 150. A seal is disposed between burner 150 and the inner surface of burner holder 154. This connection provides that air inlet 160 is in fluid communication with plenum 146 of burner holder 154. The upper end 179 of burner holder 154 is funnel shaped to direct the liquid into inlet 170.
Burner 150 extends to engage a central portion 180 of end cap 182. Central portion 180 defines a vapor distribution channel 186 of end cap 182. End cap 182 defines a plurality of vapor outlets 188 that allow the vapor to be distributed about the entire perimeter of the device.
End cap 182 defines a liquid holding chamber 190 that holds the liquid aromatic lure material. Inlet 170 of burner 150 is exposed to the liquid in chamber 190. Chamber 190 is defined between the outer surface of central portion and the inner surface of the outer wall 192 of end cap 182. Chamber 190 is thus substantially ring-shaped and surrounds vapor distribution channel 186. End cap 182 is mounted to burner holder 154 with a mounting collar 200 by threads, snap fit, adhesive, or weld/fusion. A seal such as an O-ring 202 can be used as needed.
End cap 182 can define a mounting hole 210 for a lanyard that keeps device 100 in a generally upright configuration so that any liquid in the liquid holding chamber 190 is disposed against the heating element 172 or the wick 174 for the heating element 172 by gravity.
Cartridge 110 is used and discarded. Heating element 172 eventually burns out which allows burner 150 to be disposed with cartridge 110. Disposable cartridges 110 allow the user of device 100 to stay out of contact with the liquid lure and does away with the problem of refilling device 100. When device 100 is empty, the user simply removes cartridge 100 by disconnecting burner holder 154 from fan housing 132. A new cartridge 110 is added and device 100 is ready to use.
In an alternative configuration, the replacement cartridge does not include burner 150. In this configuration, end cap 182 is removed after it is used and a full end cap 182 is replaced onto burner holder 154.
In another alternative configuration, end cap 182 has a refill opening 220 that allows the user to refill liquid into chamber 190 as needed. This configuration is depicted in
In the configuration of
Controller 120 can control the delivery of power to burner 150 or an airflow sensor 248 can be used to active burner 150 whenever fan 114 is generating an airflow. When sensor 248 is used, controller 120 controls the operation of fan 114 and the delivery of power to burner 150 is controlled by sensor 248. Sensor 248 can operate by being moved by the airflow to provide an electrical connection.
In each of the configurations of
In each of the configurations of
Also in the configurations of
In any of these configurations, an additional one-way valve positioned downstream of the outlet of bladder 260 can be used as an option to prevent back flow from burner 150. An example of this configuration is depicted in
Each of the configurations of
In the configuration of
In the configuration of
In the configuration of
In the configuration of
Electric vaporizer 280 can be used with battery-powered air pump that has a timer controller 120. This unit can be placed in a location and left alone to operate automatically. These can be used to create a scent fence to control wildlife movement or to draw game into a hunt area. The battery-powered air pump can be disposed in a stable base that limits the risk that the device would be tipped over. Vaporizer 280 can be readily detached from the pump with a quick connection that can be a threaded connection, a snap fit, a resilient fit or a friction fit.
An exemplary configuration of such a device is depicted in
Base 304 carries an airflow generator 310 in the form of an electrically-powered fan, a valved cartridge of compressed gas, a mechanical bellows, or an air pump (such as a diaphragm pump) that creates a flow of air that is delivered to adapter 302 such that the airflow is delivered to device 100 or directly into electric vaporizer 280 to activate the creation of vapor as described above.
Base 304 also carries a power source 312 such as a battery or a plurality of batteries which can be disposable or rechargeable. Power source 312 can be removable. Optionally, base 304 includes an on-off switch 314. Additional options carried by base 304 include a controller 316 that can be in the form of a programmable timer that provides the user a selection of preset operating modes or a programmable controller that allows the user to customize the operation of the unit to match the hunting conditions. Controller 316 also can be activated remotely with a wireless device such as a handheld computer using cell phone, Bluetooth, WIFI, or other communications protocols. Controller 316 also can be activated, deactivated, and switched between operating modes with a radio frequency remote controller that is carried by the user. These options allow this configuration to be used at a location remote from the immediate location of the hunter. The remote control can operate like a garage door opener with one button for power on and one button for power off (or standby). When powered on, the device can dispense vapor continuously until turned off or can operate on a timed schedule.
As above, airflow generator 310 can be used on-demand by the user by turning it on and off with the switch 314 or a remote control unit. Controller 316 also can be provided with distribution timing patterns such as those described above or a pattern that creates and distributes vapor for three seconds followed by sixty seconds of standby with the pattern repeating until the user changes the condition with the remote control or by using switch 314.
Base 304 can include a threaded tripod mount 320 to allow the user to mount this configuration above the ground. Base 304 also includes feet 322 that support base 304 directly on the ground.
A feature of this configuration is noise deadening insulation 324 disposed around airflow generator 310 to ensure the quiet release of the vapor. Insulation 324 can be a foamed polymer insulation material disposed around at least the upper portion of airflow generator 310 but it may be disposed around five sides or substantially surround airflow generator 310. In one configuration, airflow generator 310 is disposed in a chamber defined by walls within base 304 with an airflow tube extending up to adapter 302 through insulation disposed on the outside of the walls.
In each of the embodiments describe above, the liquid scent material that is being vaporized can be a combination of a glycol substance with an aromatic material or a scent-elimination material. The aromatic material can be a solid or liquid animal lure substance. The glycol substance can be a propylene glycol, a vegetable glycerin, a combination of both, and/or a combination of these with water. The animal lure aromatic material can be a liquid or solid animal urine or glandular secretion. The solid materials can be made by dehydration. In any of these combinations, water can be added as needed. The dehydrated urine can be formed by freeze drying, flash drying liquid urine, or otherwise dehydrating the liquid urine to form the additive to the glycol. The aromatic material can be designed to repel animals or insects and can thus be a predator smell or a citronella. The aromatic material can be a cover scent used by a hunter to cover his scent when entering or leaving a hunt area. The aromatic material can be a pleasant-smelling material that one can use to freshen room air or an automobile. These aromatic materials can be clean-smelling materials, flower-based materials, fruit-based materials, pleasant-smelling food materials, pleasant-smelling outdoor smells, spices, tropical smells, and others enjoyable to human users. These can be provided as oils or powders and mixed with the glycol.
In one configuration, the user of the scent material mixes the liquid scent material immediately prior to adding it to a vaporizing device in order to provide a fresh liquid scent material. In this configuration, the components of the liquid scent material are provided in separate containers such as one with the scent components (dehydrated urine or glandular secretion materials or other dry scent materials as described above or a scent oil) and the other being the vaporizable liquid (PG, VG, combination or PG and VG, or combination of these with water). The user mixes the two and agitates until the scent material is dissolved into a vaporizable liquid scent that is fresh when added to the vaporizing device. These can be provided in separate bottles or separate chambers of a container that can be mixed on demand by removing a barrier by displacement or breaking the barrier. In another configuration, the vaporizable liquid can be disposed in the tank 190 or in the electric vaporizer 280 and the user adds the solid scent material or oil before using.
Device 100 has the advantage of only vaporizing the liquid scent material on demand. The device does not waste the liquid scent material by continuously vaporizing unless the user selects continuous operation as an option. The device will function in cold weather and the vaporized glycol-based vapor substance hangs in the air and does not distribute itself in the air as fast as other scent materials. The electric heating element does not create any additional fuel scent through a combustion process. The removable and replaceable cartridges keep the scent fresh and allow the user to readily refill the device without skin contact with the scent liquid. There is also no risk of spilling the liquid. The user can program the device to automatically freshen the scent at intervals.
One method of using device 100 is to provide device with a repellant scent that drives game away from the scent. Device 100 is then used along a boundary or in an area such as a user's yard wherein the user does not want the game to cross or to congregate. The repellant material can include the scent of a predator, a soap, a human, a dog, or the like. The user can set a scent fence line of vaporizing devices timed to form and distribute the vaporized scent at periodic times. This creates a scent barrier than helps keep game from passing through the area. This configuration of the device can be used to deter game such as deer from entering a garden area or a landscaped area where the deer feed on the plantings.
Another use for device 100 is to provide a vaporizable material in device 100 that reduces or eliminates scent particles from the air that is exposed to the vaporized material. This device is used for scent elimination. The disclosure provides a vaporizable mixture that includes a percentage of carbon, charcoal, activated carbon, or coconut shell activated carbon, or palm kernel shell charcoal or a combination of these substances. The combination of these substances with a vaporizable material such as the glycol materials discussed above allow a scent elimination substance to be generated to be used by a hunter to eliminate or reduce scents that can alert game to the hunter's presence.
An optional alternative use for the device is to attach a scent cartridge to the device that creates a pleasant smelling vapor for use in deodorizing a vehicle, a house, clothing, and the like. An advantage here is that by using the removable cartridge, there is no deer urine scent left on the device when a pleasant smelling scent is installed. This is especially true when the cartridges carry their own burner coils. As such, the same device used to distribute the deer urine smell can also be used to distribute a pleasant smelling vapor—such as a vanilla—for the hunter's vehicle on the drive home.
In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. Moreover, the descriptions and illustrations of the exemplary configurations are examples and the claimed invention is not limited to the exact details shown or described. Throughout the description and claims of this specification the words “comprise” and “include” as well as variations of those words, such as “comprises,” “includes,” “comprising,” and “including” are not intended to exclude additives, components, integers, or steps.
This application is a continuation application claiming priority to U.S. patent application Ser. No. 15/858,503 filed Dec. 29, 2017, which is a continuation application claiming priority to U.S. patent application Ser. No. 15/452,318 filed Mar. 7, 2017, U.S. Pat. No. 10,278,382, which is a continuation-in-part application claiming priority to U.S. patent application Ser. No. 15/137,677 filed Apr. 25, 2016, U.S. Pat. No. 9,585,981 which is a continuation-in-part of U.S. patent application Ser. No. 14/941,428 filed Nov. 13, 2015, U.S. Pat. No. 9,426,977; which claims the benefit of U.S. Provisional Patent Application Nos. 62/151,989 filed Apr. 23, 2015; 62/156,023 filed May 1, 2015; and 62/163,603 filed May 19, 2015. The disclosures of each of the above are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3366775 | Mycue | Jan 1968 | A |
3873806 | Schossow | Mar 1975 | A |
4326119 | Swiatosz | Apr 1982 | A |
4771563 | Easley | Sep 1988 | A |
4937431 | Jameson | Jun 1990 | A |
5161646 | Aurich | Nov 1992 | A |
6341718 | Schilthuizen | Jan 2002 | B1 |
6443434 | Prather | Sep 2002 | B1 |
6589487 | Ly | Jul 2003 | B1 |
6783081 | Pedrotti | Aug 2004 | B2 |
7341208 | Peters | Mar 2008 | B2 |
7377493 | Thomas | May 2008 | B2 |
7455248 | Kablik | Nov 2008 | B2 |
7499632 | Granger | Mar 2009 | B2 |
8910640 | Sears | Dec 2014 | B2 |
9072859 | Ishikita | Jul 2015 | B2 |
9739796 | Ferrara, Jr. | Aug 2017 | B2 |
9975668 | Rimmer | May 2018 | B1 |
10405585 | Alarcon | Sep 2019 | B2 |
11140895 | Wynalda, Jr. | Oct 2021 | B2 |
11241007 | Burgeson | Feb 2022 | B2 |
20030020185 | Cox | Jan 2003 | A1 |
20040060192 | Gronka | Apr 2004 | A1 |
20040074991 | Felegy | Apr 2004 | A1 |
20050185940 | Joshi | Aug 2005 | A1 |
20050230426 | de la Guardia | Oct 2005 | A1 |
20060213221 | Lee | Sep 2006 | A1 |
20090199860 | Kress | Aug 2009 | A1 |
20090253101 | Arnold | Oct 2009 | A1 |
20110005535 | Xiu | Jan 2011 | A1 |
20140290650 | Ivey | Oct 2014 | A1 |
20140334801 | Browder | Nov 2014 | A1 |
20150245659 | DePiano | Sep 2015 | A1 |
20160143364 | DePiano | May 2016 | A1 |
20160174611 | Monsees | Jun 2016 | A1 |
20170348505 | Doo | Dec 2017 | A1 |
20220079138 | Wynalda, Jr. | Mar 2022 | A1 |
Number | Date | Country | |
---|---|---|---|
20220079138 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62163603 | May 2015 | US | |
62156023 | May 2015 | US | |
62151989 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15858503 | Dec 2017 | US |
Child | 17537128 | US | |
Parent | 15452318 | Mar 2017 | US |
Child | 15858503 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15137677 | Apr 2016 | US |
Child | 15452318 | US | |
Parent | 14941428 | Nov 2015 | US |
Child | 15137677 | US |