1. Field of the Invention
The present invention relates generally to devices and methods for delivering implants to an intervertebral disc. Specifically, in some embodiments, apparatus and methods for delivering implants that are oriented and compressed for minimally invasive, yet precise and effective implantation are provided.
2. Description of the Related Art
Various implants, surgical meshes, patches, barriers, tissue scaffolds and the like may be used to treat intervertebral discs and are known in the art. Surgical repair meshes are used throughout the body to treat and repair damaged tissue structures such as intralinguinal hernias, herniated discs and to close iatrogenic holes and incisions as may occur elsewhere. Certain physiological environments present challenges to precise and minimally invasive delivery.
An intervertebral disc provides a dynamic environment that produces high loads and pressures. Typically, implants designed for this environment, unless used for temporary purposes, must be capable of enduring such conditions for long periods of time. Also, the difficulty and danger of the implantation procedure itself, due to the proximity of the spinal cord, limits the size and ease of placement of the implant. In light of the inherent limitations involved with delivery of medical devices to the disc environment, such devices should preferably be delivered precisely with respect to the location of the defect.
In one embodiment of the present invention, devices and methods for delivering implants to an intervertebral disc are provided. In a preferred embodiment, delivery methods are designed to prevent or reduce exacerbation of the existing defect or iatrogenic hole. One of skill in the art will understand that several embodiments of the invention can be used to deliver implants, or other medical devices, to sites in the body other than the intervertebral disc. For example, several embodiments of the invention can be used to deliver medical devices (such as implants) into the heart, bladder, liver, cranium, vertebrae, femur and other bones
In one embodiment, a method of delivering and positioning a medical device (such as an implant) within an intervertebral disc is provided. In one embodiment, the method comprises providing a cannula, an advancer, one or more expanders and an implant. The advancer is at least partially coupled to, slideably engaged to, or housed within the cannula. The advancer is coupled to an implant, or is operable to be coupled to an implant. The implant is operable to exhibit a compressed profile along one or more axes. The method further comprises compressing the implant along a first axis, and inserting the cannula into a interverterbral disc. The method further comprises positioning the cannula in the disc such that the implant is positioned beyond the innermost surface of the anulus, rotating the cannula or advancer, retracting the cannula, thereby initially expanding the implant, advancing one or more expanders, thereby further expanding the implant, advancing the cannula, thereby substantially completely expanding the implant, uncoupling the implant from the advancer, and removing the cannula and the advancer from the disc. In one embodiment, the cannula or advancer is rotated clockwise or counterclockwise to enable the implant to be rotate in a range from about 80 degrees to about 120 degrees. Preferably the implant is rotated about 90 degrees. In other embodiments, the above steps are performed using a medical device other than an implant. In some embodiments, the medical device (such as an implant) is delivered to a site other than the disc. These sites include, but are not limited to, the heart, cranium or femur. In one embodiment, one or more depth stops are coupled to the cannula, advancer, or delivered as a separate component. In one embodiment, when the cannula is inserted into the disc, the depth stop is placed at a position adjacent an external surface of an intervertebral disc and the implant is delivered relative to that position.
In one embodiment, the step of compressing the implant comprises folding the implant. In other embodiments, compressing the implant comprises folding, deflating, compacting, compressing, closing or condensing the implant, or a combination thereof.
In one embodiment, the step of expanding the implant comprises unfolding the implant. In other embodiments, expanding the implant comprises unfolding, inflating, enlarging, swelling, or opening the implant, or a combination thereof.
In one embodiment, the implant is a barrier or patch. Implants suitable for implantation according to one or more embodiments of the invention include the implants described in U.S. Pat. Nos. 6,425,919, 6,482,235, and 6,508,839, all herein incorporated by reference.
In a further embodiments, one or more implants are inserted through a defect or iatrogenic hole.
In one embodiment, a method of delivering a medical device (such as an implant) within an intervertebral disc is provided. In one embodiment, the method comprises providing an implant that is capable of exhibiting a compressed profile along one or more axes, compressing the implant along a first axis, inserting the implant within an intervertebral disc along a second axis and beyond the innermost lamella of an anulus lamella, rotating the implant about an axis perpendicular to the second axis; and causing or allowing the implant to transform from a compressed profile to an expanded profile.
In another embodiment, a method of delivering a medical device (such as an implant) within an intervertebral disc comprises providing a delivery device having an elongate implant advancer carried within or alongside an elongate sleeve. In one embodiment, the advancer is releaseably coupled to an implant, wherein the implant is compressed within the sleeve at a distal end of the sleeve. The method further comprises advancing the distal end of the sleeve with an intervertebral disc along a first axis, rotating the advancer, releasing the implant from the sleeve thereby decompressing the implant, and releasing the implant from the advancer.
In a further embodiment, a method of delivering a medical device (such as an implant) in an intervertebral disc wherein the disc has a defect or iatrogenic hole forming a void in the anulus of the disc is provided. In one embodiment, the method comprises providing a compressible implant having a first and second axis, compressing an implant along a first axis, orienting the implant to such that the short axis of the compressed implant presents a profile the is smaller than the largest dimension of the void, inserting the implant beyond the defect or iatrogenic hole, rotating the implant clockwise or counterclockwise about ninety degrees, causing or allowing the implant to expand or unfold, and retracting at least a portion of the implant against an inner surface of the anulus.
In yet another embodiment, a method of delivering a medical device (such as an implant) in an intervertebral disc along an innermost surface of an anulus of the disc is provided. In one embodiment, the method comprises inserting the implant through and beyond the innermost surface of the anulus, retracting the implant toward the innermost surface of the anulus, and deflecting at least a portion of the implant against the innermost surface of the anulus, thereby causing the implant to advance laterally along said surface.
In yet another embodiment, a method of delivering a medical device (such as an implant) in an intervertebral disc along an innermost surface of an anulus of the disc is provided. In one embodiment, the method comprises inserting the implant within the disc and beyond the innermost surface of the anulus, retracting the implant toward the innermost surface of the anulus, and deflecting at least a portion of the implant against the innermost surface of the anulus, thereby causing the implant to advance laterally along said surface. In one embodiment, the implant is expanded. In some embodiments, the method further comprises simultaneously retracting and deflecting the implant. In sever embodiments, the method further comprises simultaneously retracting and deflecting the implant in a synchronized manner. In a preferred embodiment, the method comprises rotating the implant.
In one embodiment of the invention, a device for delivering and positioning an implant within an intervertebral disc is provided. In one embodiment, the device comprises a cannula and an advancer. In one embodiment, the cannula has a proximal end and a distal end, wherein the distal end comprises one or more expanders operable to expand an implant positioned beyond the innermost lamella of a disc anulus. In one embodiment, the advancer has a proximal end and a distal end, wherein the advancer is positioned at least partially within the cannula. The distal end of the advancer comprises a coupling mechanism, wherein the coupling mechanism is coupled to the advancer and to the implant. In another embodiment, the expanders are not located on the cannula, but instead coupled to the advancer. In one embodiment, the expanders are located on a separate instrument. In one embodiment, the device comprises one or more depth stops. The depth stop can be coupled to any portion of the cannula or advancer, or can be independently delivered. In one embodiment, the depth stop is operable to limit and/or guide travel within the intervertebral disc. In a further embodiment, the depth stop is rotatably coupled to the cannula, thereby allowing it to rotate while the depth of the cannula is maintained.
In one embodiment, the advancer is advanced through a sheath or other constraining means, and no cannula is used. In another embodiment, the advancer is coupled to a constraining means at its distal end that is operable to constrain the implant until the implant reaches the desired site (such as a site located beyond the innermost lamella of the anulus)
Several embodiments of the invention will be discussed herein through the demonstration of its use in the spine, with particular emphasis on intervertebral disc treatment. One of skill in the art will certain understand that several embodiments of the invention can be used to access or treat other sites in the body.
Intervertebral disc 315 is comprised of the outer AF 310, which normally surrounds and constrains the NP 320 to be wholly within the borders of the intervertebral disc space. Axis M extends between the anterior (A) and posterior (P) of the functional spine unit. The vertebrae also include facet joints 360 and the superior 390 and inferior 390′ pedicle that form the neural foramen 395. The facet joints and intervertebral disc translate motion and transfer load between the adjacent vertebral bodies. This complex biomechanical arrangement allows for flexion, extension, lateral bending, compression, and can withstand intense axial loading and bending cycles of around a million per year. The disc height can vary from 50% to 200% of its resting value.
In one embodiment of the invention, a method and device capable of delivering a therapeutic implant in a minimally invasive manner is provided. In a preferred embodiment, delivery provides accurate and precise placement of the implant, while still being minimally invasive. In one embodiment, the implant is placed along a tissue surface in an expanded or manipulated configuration and orientation that differs from the insertion configuration and orientation.
In several embodiments, methods and apparatuses for delivering surgical meshes, barriers, patches, or the like, for treatment or augmentation of tissues within pathologic spinal discs and other structures are provided. In one embodiment, a dynamic and synergistic delivery method and device that allow for an integrated re-orientation, expansion and delivery of an implant in a confined and limiting environment is provided.
According to one embodiment, an instrument designed to assist in the delivery and positioning of a implant within or adjacent to the various tissues generic to intervertebral disc, including the vertebral bodies and their endplates, the anulus fibrosis, the nucleus pulposus, and the surrounding ligaments, is provided.
One advantage of several embodiments of the invention are particularly advantageous because, in some indications, a practitioner has to deliver an implant or other medical device that has a complicated configuration. For example, some implants have one or more dimensions in their implanted or deployed state that make it difficult or impossible to insert due, for example, to physiological size or geometrical constraints. Such implants may have a second dimension which is also larger than the allowed dimensions available for insertion. For example, the height of the implant may be greater than the height of the opening or anulotomy or the height of the space between the adjacent endplates at their. Further, the length of some implants may also be larger than the width anulotomy.
In one embodiment, an instrument and method that can effectively deliver medical devices to a desired site is provided. The method is particularly advantageous for delivering medical devices having challenging configurations. In one embodiment, the method comprises first inserting the implant rotated relative to the limiting dimension to achieve a diminished or compatible profile and then rotating the implant back to the desired orientation and expanded during final positioning. In a preferred embodiment, this method is accomplished using a single instrument. Other embodiments comprise using two or more compatible instruments.
In one embodiment of the invention, a delivery device comprising a cannula, a proximal end and a distal end is provided. In one embodiment, the elongated, hollow cannula or sleeve has a proximal end for handling by a physician and a distal end for inserting within a patient is provided. The distal end of the cannula can be dimensioned to fit within a small anulotomy as might be created by a surgeon or through a naturally occurring hole or lesion in the anulus.
In a further embodiment, an implant guide or advancer is carried within the cannula or sleeve. In one embodiment, the guide or advancer is releaseably coupled to an implant that may be compressed within the cannula along one or more axes. In one embodiment, the guide or advancer is axially moveable within the cannula and can rotate depending on the implant used or implantation site selected. The cannula functions as a guide for the axial reciprocal movement the advancer. As such, in one embodiment, the cannula can, therefore, be provided in the form of an elongate tube having a central lumen for receiving advancer therethrough. Alternatively, the cannula can comprise a nontubular structure or simply a sleeve or partial restraining member in an embodiment in which the advancer travels concentrically over or alongside it.
In one embodiment, a substantially rectangular implant is provided. In several embodiments, the implant is a mesh comprised of nitinol, steel, or polymer, or a combination thereof. In other embodiment, the implant comprises a seeded or unseeded tissue scaffold, such as collagen or small intestine sub mucosa, and the like.
In one embodiment, the implant can be folded across its long axis, connected to the advancer, and inserted within the sleeve at the distal end of the delivery device. If the fold created along the short axis is larger that the sleeve diameter then one or more slots can be formed at the tip of the sleeve to accept the implant. Alternatively, the implant can be compressed along the second or short axis of the implant so that both dimensions are held compressed within the sleeve. One of skill in the art will understand the implant, if needed, can be compressed along any axis in accordance with several embodiments of the invention. Compressing the implant (or medical device), as used herein, shall be given its ordinary meaning and shall also include folding, deflating, compacting, compressing and condensing the implant or medical device.
In one embodiment, in use, the distal end of the sleeve is inserted into the desired organ or tissue structure, such as an intervertebral disc. The implant is loaded into the sleeve such that the fold is at or near the distal end of the sleeve. Depending on the shape of the insertion site (e.g., a rectangular anulotomy), and its orientation (vertical or horizontal), the implant or advancer can be rotated in order to pass through the aperture regardless of the desired implantation orientation. Accordingly, devices according to one or more embodiments of the invention can cause the implant to rotate between around 5 and 150 degrees and preferably between around 60 and 120 degrees. In one embodiment, at least a portion of the delivery device is rotated clockwise or counterclockwise in the range of between about 2 to 170 degrees, preferably between about 50 to 140 degrees, more preferably about 80 to 120 degrees, thereby enabling rotation of the implant. In one embodiment, the device or the implant is rotated about 90 degrees.
In one embodiment, as the sleeve loaded with the compressed implant is inserted medially into the disc, the surgeon may stop inserting when the edges of the folded-over implant pass beyond the corresponding tissue surface against which implantation is desired. In this example, the surgeon would stop after passing the anulus or the outer and more narrow gap between the periphery of the adjacent vertebral endplates. Thereafter, the implant can be rotated about an axis perpendicular to the insertion axis to correspond to the desired insertion orientation. Next, the sleeve is retracted relative to the advancer to reveal the folded (and now unrestrained or actively compressed) implant. Depending on the orientation of the implant within the sleeve (after the rotation step), the implant will expand inferiorly and superiorly with respect to the endplates or laterally to the left and right along the anulus. In one embodiment, as the implant unfolds due to its inherent resilience, or by a force imparted by the coupling member or cannula, or by active manipulation by the physician, the advancer is then retracted such that the folded part of the implant is pulled posteriorly in the direction of the posterior anulus and the sides or extensions of the implant advance laterally or travel along the anulus surface. When the action of the advancer causes the implant to be fully retracted flat along the tissue surface or is otherwise in its fully expanded position then the surgeon may detach the implant from the advancer.
One of ordinary skill in the art will understand the kinematics, order, relative position, and orientation of the implant, sleeve, and advancer can be reversed or altered to achieve similar or equivalent results for a given implantation according to several embodiments to the invention. For example, in one embodiment, the advancer can be used to extrude the implant out from the sleeve. In another embodiment, the sleeve can be retracted relative to the advancer. In a further embodiment, the advancer can be retracted to pull the implant posteriorly and along the posterior anulus or alternatively, the whole device (including the sleeve or cannula and advancer) can be pulled back. Both the advancer and the sleeve independently or the device itself can be used to rotate the implant. In one embodiment, at least a potion of the device remains stationary while one or more of its elements are manipulated. In another embodiment the delivery device is simplified with the use of a constraining member used in place of the sleeve to hold the implant in a compressed state at the distal end of the advancer. For example a suture, clamp, ring, band, pincher, or an adhesive could be used to constrain the implant and then the advancer could still server to advance the implant within the disc and rotate it into position.
In several embodiments, parts of the device can serve different purposes during steps of the implantation. In one embodiment, the sleeve can constrain and then release the folded or compressed implant and later, when the implant is released and in a slightly expanded state (larger that the profile of the cannula opening or tip), the cannula can be advanced (or the advancer can be retracted) such that the cannula or sleeve tip contacts the inside surface of the folded sides of the implant and forces them to open. Accordingly, in one embodiment, the retracting step involving posterior movement of the midsection of the implant and lateral movement of the sides of the implant along the anulus surface caused by the opposing force of the anulus causing lateral deflection may be unnecessary since the opposing and synchronized action and relative motion of the advancer and cannula tip effectively act like a lever and fulcrum to open, expand or unfold the implant. In one embodiment, the connector at the fold or hinge of the implant acts like a fulcrum and the distal tips of the cannula act like levers to push the fold flat and open the implant. This alternative or complimentary step or method of opening may be particularly useful in expanding the implant proximal to a large defect of weakened portion of the anulus since such tissue might not offer a solid deflection surface for the opposing ends of the implant to advance along.
In one embodiment, a coupling member 35 is used. The coupling member 35 is any device or mechanism that is capable of attaching or connecting the implant in reversible manner. Coupling members include, but are not limited to, sutures, snaps, locks, lynch pins or the like, levers and slots, or any active or passive linking mechanism known in the art that would permit a surgeon to disengage the implant at the desired point of the procedure. In one embodiment, one or more coupling members are used. In one embodiment, two coupling members are used to connect the implant.
In one embodiment, the device 10 is designed to be operated by one hand, e.g., utilizing the thumb, index, and ring fingers to position the device 10 and advance and retract the advancer 30. However, one skilled in the art will understand that any of a variety of proximal handpieces can alternatively be used, including, but not limited to, triggers, slider switches, rotatable knobs or other actuators to advance and retract the advancer 30.
In one embodiment, the delivery device 10 can be manufactured in accordance with any of a variety of techniques well known in the medical device arts. In one embodiment, the cannula 15 comprises a metal tube such as stainless steel or other medical grade metal. Alternatively, the device 10 can comprise a polymeric extrusion, such as high density polyethylene, PTFE, PEEK, PEBAX, or others well known in the medical device arts.
In a preferred embodiment, the axial length of the delivery device 10 is sufficient to reach the desired treatment site from a percutaneous or small incision access through the skin. In one embodiment, the length of the delivery device 10 is within the range of about 10 centimeters to about 30 centimeters with a length from a proximal end to distal end within the range of about 10 to about 20 centimeters contemplated for most posterior lateral access pathways. The length can be varied depending upon the intended access pathway and patient size.
In one embodiment, the outside diameter of the delivery device 10, and the distal end of the cannula 15, is no greater than necessary to accomplish the intended functions disclosed herein. In one embodiment, outside diameters of less than about one centimeter are preferred. In preferred embodiments of the present invention, the cannula 15 has an outside diameter of no greater than approximately 5 millimeters.
An exemplary embodiment having additional features is presented in
The device, in one embodiment, also includes a distal depth stop 150 feature that provides a limit and guide to the anterior/posterior positioning of the implant during implantation and in the final positioning of the implant. The depth stop 150 and 150′ is carried by the cannula 115 and can be adjusted to rest along certain points of its length by manipulating the depth stop adjustment member 155 and holding the depth stop handle 160. A calibrated measuring surface 156 can be etched onto to the cannula or attached separately to the cannula as a sleeve to display depth correlations. Alternatively, non adjustable depth stops in a variety of lengths can be included as a kit and the precise depth stop for a given procedure can be selected preoperatively. In one embodiment, the depth stop 150 can be coupled to the cannula such that free rotation of the cannula 115 and advancer 130 are possible while maintaining the desired depth of the distal tip of the device.
In a further embodiment, to assist opening or expanding the implant, an implant expander 170 having a wedge surface(s) 175, 175′ at its distal end an expander handle 140 attached at its proximal end is carried within the cannula 115 and over or along each side of the advancer 130. One or more expanders can be coupled to the cannula or the advancer. In one embodiment, a separate instrument comprising one or more expanders at its distal end is passed through the cannula.
In
The series presented in
In several embodiments, relatively simple rectangular meshes or patches are provided for implantation. In other embodiments, more complex devices can be used, including, but not limited to stents, grafts, arterial septal defect closure devices and the like.
As part of an implantation procedure according to one embodiment of the invention, active and passive systems can be incorporated into the delivery devices or the implants to aid the in preparation of the delivery site or in manipulating the implant. For instance, in one embodiment, a gas, liquid and/or solid component can be added to the implant during positioning or after positioning to further reshape the implant or adjust its size. In some embodiments, the implant comprises one or more pharmaceutical agents. The pharmaceutical agent can facilitate pain reduction or inhibition of scarring, and can include genetically active growth or healing factors. In a further embodiment, lubrication is provided to reduce friction as the implant exits the delivery device. One or more pharmaceutical agents can also be provided by or through the cannula or advancer. In yet another embodiment, materials that aid in the visualization of the implant are provided, including, but not limited to, material for radio opaque location through a radiograph. Visual markers can be located on the implant and/or the delivery device.
In one embodiment, the implant can be anchored to adjacent or nearby tissue and an anchoring mechanism, such as a stapler, can be incorporated into the delivery device. In another embodiment, a mechanism for activating an anchoring mechanism can be contained within the implant itself. Heat, energy delivery from the electromagnetic spectrum, or the removal of heat (chilling or freezing) can be employed before, after or during the implant deployment to aid in positioning, function of the implant, or related disc or spine treatments such as the vaporization of unwanted tissue, the deadening of pain receptors, and the removal of bone or scar tissue. In one embodiment, means for adjusting the temperature of surrounding tissue is coupled to or integral with the delivery device. In another embodiment, means for adjusting temperature is an instrument that is separate from the delivery device.
In some embodiments, a delivery device comprises one or more axially extending lumens, for placing the proximal end of the device in fluid communication with the distal end, for any of a variety of purposes. For example, one or more lumens can extend through the advancer 130. Alternatively or in addition, the outside diameter the advancer can be dimensioned smaller than the inside diameter of the delivery cannula 115 to create an annular space as is well understood in the catheter arts. A first lumen can be utilized for introduction of radiopaque dye to facilitate visualization of the progress of the implant 100 and or distal end 2 of the device 200 during the procedure. The first lumen or second lumen can be utilized to introduce any of a variety of media. In one embodiment, one or more lumens are used to deliver saline solution. In another embodiment, one or more lumens are used to deliver pharmaceutical agents, including but not limited to, anti-inflammatory agents, steroids, growth factors (such as TNf-α antagonists), antibiotics, vasodilators, vasoconstrictors, and functional proteins and enzymes (such as chymopapain). In one embodiment, one or more lumens is used to aspirate material, such as biological fluids or nucleus pulposus. In another embodiment, one or more lumens is used to introduce nucleus augmentation material, or other biological or biocompatible material, before, during or at the end of the procedure. In several embodiments, one or more lumens are used to deliver fluid, or other material, to a site to aid in heating or cooling the site tissue.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims. In addition, one of skill in the art will understand that the steps recited in some embodiments need not be performed sequentially or in the order disclosed.
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Appl. No. 60/480,276, filed Jun. 20, 2003, and this application is a related application of U.S. application Ser. No. 10/873,074, filed Jun. 21, 2004, all herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3526567 | Macone | Sep 1970 | A |
3867728 | Stubstad et al. | Feb 1975 | A |
3875595 | Froning | Apr 1975 | A |
3921632 | Bardani | Nov 1975 | A |
4280954 | Yannas et al. | Jul 1981 | A |
4349921 | Kuntz | Sep 1982 | A |
4365357 | Draenert | Dec 1982 | A |
4473070 | Matthews et al. | Sep 1984 | A |
4502161 | Wall | Mar 1985 | A |
4532926 | O'Holla | Aug 1985 | A |
4665906 | Jervis | May 1987 | A |
4741330 | Hayhurst | May 1988 | A |
4744364 | Kensey | May 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4781190 | Lee | Nov 1988 | A |
4798205 | Bonomo et al. | Jan 1989 | A |
4821942 | Richards et al. | Apr 1989 | A |
4837285 | Berg et al. | Jun 1989 | A |
4852568 | Kensey | Aug 1989 | A |
4863477 | Monson | Sep 1989 | A |
4871094 | Gall et al. | Oct 1989 | A |
4873976 | Schreiber | Oct 1989 | A |
4890612 | Kensey | Jan 1990 | A |
4904260 | Ray et al. | Feb 1990 | A |
4911718 | Lee et al. | Mar 1990 | A |
4917704 | Frey et al. | Apr 1990 | A |
4919667 | Richmond | Apr 1990 | A |
4932969 | Frey et al. | Jun 1990 | A |
4946378 | Hirayama et al. | Aug 1990 | A |
4955908 | Frey et al. | Sep 1990 | A |
5002576 | Fuhrmann et al. | Mar 1991 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5035716 | Downey | Jul 1991 | A |
5046513 | Gatturna et al. | Sep 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5053046 | Janese | Oct 1991 | A |
5059206 | Winters | Oct 1991 | A |
5061274 | Kensey | Oct 1991 | A |
5071437 | Steffee | Dec 1991 | A |
5100422 | Berguer et al. | Mar 1992 | A |
5108420 | Marks | Apr 1992 | A |
5108438 | Stone | Apr 1992 | A |
5116357 | Eberbach | May 1992 | A |
5122155 | Eberbach | Jun 1992 | A |
5123926 | Pisharodi | Jun 1992 | A |
5129906 | Ross et al. | Jul 1992 | A |
5141515 | Eberbach | Aug 1992 | A |
5147374 | Fernandez | Sep 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5171280 | Baumgartner | Dec 1992 | A |
5171281 | Parsons et al. | Dec 1992 | A |
5176692 | Wilk et al. | Jan 1993 | A |
5189789 | Hall | Mar 1993 | A |
5192300 | Fowler | Mar 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5192326 | Bao et al. | Mar 1993 | A |
5201729 | Hertzmann et al. | Apr 1993 | A |
5207649 | Aruny | May 1993 | A |
5219359 | McQuilkin et al. | Jun 1993 | A |
5222974 | Kensey et al. | Jun 1993 | A |
5239982 | Trauthen | Aug 1993 | A |
5242448 | Pettine et al. | Sep 1993 | A |
5254133 | Seid | Oct 1993 | A |
5258000 | Gianturco | Nov 1993 | A |
5258031 | Salib et al. | Nov 1993 | A |
5258043 | Stone | Nov 1993 | A |
5269783 | Sander | Dec 1993 | A |
5282827 | Kensey et al. | Feb 1994 | A |
5292332 | Lee | Mar 1994 | A |
5306311 | Stone et al. | Apr 1994 | A |
5312435 | Nash et al. | May 1994 | A |
5320633 | Allen et al. | Jun 1994 | A |
5320644 | Baumgartner | Jun 1994 | A |
5342393 | Stack | Aug 1994 | A |
5342394 | Matsuno et al. | Aug 1994 | A |
5356432 | Rutkow et al. | Oct 1994 | A |
5366460 | Eberbach | Nov 1994 | A |
5368602 | De la Torre | Nov 1994 | A |
5370697 | Baumgartner | Dec 1994 | A |
5383477 | DeMatteis | Jan 1995 | A |
5383905 | Golds et al. | Jan 1995 | A |
5397331 | Himpens et al. | Mar 1995 | A |
5397332 | Kammerer et al. | Mar 1995 | A |
5397355 | Marin et al. | Mar 1995 | A |
5405360 | Tovey | Apr 1995 | A |
5425773 | Boyd et al. | Jun 1995 | A |
5431658 | Moskovich | Jul 1995 | A |
5437631 | Janzen | Aug 1995 | A |
5445639 | Kuslich et al. | Aug 1995 | A |
5456720 | Schultz | Oct 1995 | A |
5464407 | McGuire | Nov 1995 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5507754 | Green et al. | Apr 1996 | A |
5514130 | Baker | May 1996 | A |
5514180 | Heggeness et al. | May 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5522898 | Bao et al. | Jun 1996 | A |
5531759 | Kensey et al. | Jul 1996 | A |
5534028 | Bao et al. | Jul 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5545178 | Kensey et al. | Aug 1996 | A |
5545229 | Parsons et al. | Aug 1996 | A |
5549617 | Green et al. | Aug 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5552100 | Shannon et al. | Sep 1996 | A |
5556428 | Shah | Sep 1996 | A |
5556429 | Felt | Sep 1996 | A |
5562689 | Green et al. | Oct 1996 | A |
5562736 | Ray et al. | Oct 1996 | A |
5562738 | Boyd et al. | Oct 1996 | A |
5569252 | Justin et al. | Oct 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5591204 | Jansen et al. | Jan 1997 | A |
5591223 | Lock et al. | Jan 1997 | A |
5613974 | Andreas et al. | Mar 1997 | A |
5620012 | Benderev et al. | Apr 1997 | A |
5624463 | Stone et al. | Apr 1997 | A |
5626613 | Schmieding | May 1997 | A |
5634931 | Kugel | Jun 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5641373 | Shannon et al. | Jun 1997 | A |
5645084 | McKay | Jul 1997 | A |
5645597 | Krapiva | Jul 1997 | A |
5658343 | Hauselmann et al. | Aug 1997 | A |
5662683 | Kay | Sep 1997 | A |
5669935 | Rosenman et al. | Sep 1997 | A |
5674294 | Bainville et al. | Oct 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676698 | Janzen et al. | Oct 1997 | A |
5676701 | Yuan et al. | Oct 1997 | A |
5681351 | Jamiolkowski | Oct 1997 | A |
5683465 | Shinn et al. | Nov 1997 | A |
5690674 | Diaz | Nov 1997 | A |
5695525 | Mulhauser et al. | Dec 1997 | A |
5702450 | Bisserie | Dec 1997 | A |
5702451 | Biedermann et al. | Dec 1997 | A |
5702454 | Baumgartner | Dec 1997 | A |
5702462 | Oberlander | Dec 1997 | A |
5705780 | Bao | Jan 1998 | A |
5716408 | Eldridge et al. | Feb 1998 | A |
5716409 | Debbas | Feb 1998 | A |
5716413 | Walter et al. | Feb 1998 | A |
5716416 | Lin | Feb 1998 | A |
5725577 | Saxon | Mar 1998 | A |
5728150 | McDonald et al. | Mar 1998 | A |
5730744 | Justin et al. | Mar 1998 | A |
5733337 | Carr, Jr. et al. | Mar 1998 | A |
5743917 | Saxon | Apr 1998 | A |
5746755 | Wood et al. | May 1998 | A |
5746765 | Kleshinski et al. | May 1998 | A |
5755797 | Baumgartner | May 1998 | A |
5766246 | Mulhauser et al. | Jun 1998 | A |
5769864 | Kugel | Jun 1998 | A |
5769893 | Shah | Jun 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5776183 | Kanesaka et al. | Jul 1998 | A |
5782844 | Yoon et al. | Jul 1998 | A |
5785705 | Baker | Jul 1998 | A |
5800549 | Bao et al. | Sep 1998 | A |
5810851 | Yoon | Sep 1998 | A |
5823994 | Sharkey et al. | Oct 1998 | A |
5824008 | Bolduc et al. | Oct 1998 | A |
5824082 | Brown | Oct 1998 | A |
5824093 | Ray et al. | Oct 1998 | A |
5824094 | Serhan et al. | Oct 1998 | A |
5827298 | Hart et al. | Oct 1998 | A |
5836315 | Benderev et al. | Nov 1998 | A |
5843084 | Hart et al. | Dec 1998 | A |
5843173 | Shannon et al. | Dec 1998 | A |
5846261 | Kotula et al. | Dec 1998 | A |
5860425 | Benderev et al. | Jan 1999 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5865845 | Thalgott | Feb 1999 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5888220 | Felt et al. | Mar 1999 | A |
5888226 | Rogozinski | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5916225 | Kugel | Jun 1999 | A |
5919235 | Husson et al. | Jul 1999 | A |
5922026 | Chin | Jul 1999 | A |
5928279 | Shannon et al. | Jul 1999 | A |
5928284 | Mehdizadeh | Jul 1999 | A |
5935147 | Kensey et al. | Aug 1999 | A |
5954716 | Sharkey et al. | Sep 1999 | A |
5954767 | Pajotin et al. | Sep 1999 | A |
5957939 | Heaven et al. | Sep 1999 | A |
5961545 | Lentz et al. | Oct 1999 | A |
5972000 | Beyar et al. | Oct 1999 | A |
5972007 | Sheffield et al. | Oct 1999 | A |
5972022 | Huxel | Oct 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5976186 | Bao et al. | Nov 1999 | A |
5976192 | McIntyre et al. | Nov 1999 | A |
5980504 | Sharkey et al. | Nov 1999 | A |
6001056 | Jassawalla et al. | Dec 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6007570 | Sharkey et al. | Dec 1999 | A |
6007575 | Samuels | Dec 1999 | A |
6019792 | Cauthen | Feb 2000 | A |
6019793 | Perren et al. | Feb 2000 | A |
6024096 | Buckberg | Feb 2000 | A |
6027527 | Asano et al. | Feb 2000 | A |
6066175 | Henderson et al. | May 2000 | A |
6073051 | Sharkey et al. | Jun 2000 | A |
6096044 | Boyd et al. | Aug 2000 | A |
6099791 | Shannon et al. | Aug 2000 | A |
6102930 | Simmons, Jr. | Aug 2000 | A |
6105581 | Eggers et al. | Aug 2000 | A |
6113639 | Ray et al. | Sep 2000 | A |
6120539 | Eldridge et al. | Sep 2000 | A |
6124523 | Banas et al. | Sep 2000 | A |
6126682 | Sharkey et al. | Oct 2000 | A |
6132465 | Ray et al. | Oct 2000 | A |
6140452 | Felt et al. | Oct 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6153292 | Bell et al. | Nov 2000 | A |
6174311 | Branch et al. | Jan 2001 | B1 |
6179836 | Eggers et al. | Jan 2001 | B1 |
6183518 | Ross et al. | Feb 2001 | B1 |
6187048 | Milner et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6203735 | Edwin et al. | Mar 2001 | B1 |
6206921 | Guagliano et al. | Mar 2001 | B1 |
6214039 | Banas et al. | Apr 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6224631 | Kohrs | May 2001 | B1 |
6231597 | Deem et al. | May 2001 | B1 |
6241722 | Dobak et al. | Jun 2001 | B1 |
6245099 | Edwin et al. | Jun 2001 | B1 |
6245107 | Ferree | Jun 2001 | B1 |
6248106 | Ferree | Jun 2001 | B1 |
6258086 | Ashley et al. | Jul 2001 | B1 |
6264659 | Ross et al. | Jul 2001 | B1 |
6264695 | Stoy | Jul 2001 | B1 |
6267834 | Shannon et al. | Jul 2001 | B1 |
6273912 | Scholz et al. | Aug 2001 | B1 |
6280475 | Bao et al. | Aug 2001 | B1 |
6312462 | McDermott et al. | Nov 2001 | B1 |
6325805 | Oglivie et al. | Dec 2001 | B1 |
6340369 | Ferree | Jan 2002 | B1 |
6344058 | Ferree et al. | Feb 2002 | B1 |
6352557 | Ferree et al. | Mar 2002 | B1 |
6355063 | Calcote | Mar 2002 | B1 |
6371990 | Ferree | Apr 2002 | B1 |
6383214 | Banas et al. | May 2002 | B1 |
6398803 | Layne et al. | Jun 2002 | B1 |
6402750 | Atkinson et al. | Jun 2002 | B1 |
6416537 | Martakos et al. | Jul 2002 | B1 |
6419702 | Ferree | Jul 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6425919 | Lambrecht et al. | Jul 2002 | B1 |
6428575 | Koo et al. | Aug 2002 | B2 |
6428576 | Haldimann | Aug 2002 | B1 |
6436143 | Ross et al. | Aug 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6454804 | Ferree | Sep 2002 | B1 |
6482235 | Lambrecht et al. | Nov 2002 | B1 |
6491690 | Goble et al. | Dec 2002 | B1 |
6503269 | Neild et al. | Jan 2003 | B2 |
6508839 | Lambrecht et al. | Jan 2003 | B1 |
6520967 | Cauthen | Feb 2003 | B1 |
6530932 | Swayze et al. | Mar 2003 | B1 |
6530933 | Yeung et al. | Mar 2003 | B1 |
6579291 | Keith et al. | Jun 2003 | B1 |
6592625 | Cauthen | Jul 2003 | B2 |
6610094 | Husson | Aug 2003 | B2 |
6613074 | Mitelberg et al. | Sep 2003 | B1 |
6645247 | Ferree | Nov 2003 | B2 |
6648915 | Sazy | Nov 2003 | B2 |
6648918 | Ferree | Nov 2003 | B2 |
6648919 | Ferree | Nov 2003 | B2 |
6648920 | Ferree | Nov 2003 | B2 |
6685695 | Ferree | Feb 2004 | B2 |
6712853 | Kuslich | Mar 2004 | B2 |
6719797 | Ferree | Apr 2004 | B1 |
6726696 | Houser et al. | Apr 2004 | B1 |
6733496 | Sharkey et al. | May 2004 | B2 |
6733531 | Trieu | May 2004 | B1 |
6749605 | Ashley et al. | Jun 2004 | B2 |
6783546 | Zucherman et al. | Aug 2004 | B2 |
6793677 | Ferree | Sep 2004 | B2 |
6805695 | Keith et al. | Oct 2004 | B2 |
6821276 | Lambrecht et al. | Nov 2004 | B2 |
6855166 | Kohrs | Feb 2005 | B2 |
6883520 | Lambrecht et al. | Apr 2005 | B2 |
6932841 | Skylar et al. | Aug 2005 | B2 |
6936072 | Lambrecht et al. | Aug 2005 | B2 |
6964674 | Matsuura et al. | Nov 2005 | B1 |
6969404 | Ferree | Nov 2005 | B2 |
6984247 | Cauthen | Jan 2006 | B2 |
6997956 | Cauthen | Feb 2006 | B2 |
7004970 | Cauthen | Feb 2006 | B2 |
7033393 | Gainer et al. | Apr 2006 | B2 |
7033395 | Cauthen | Apr 2006 | B2 |
7052516 | Cauthen, III et al. | May 2006 | B2 |
7094258 | Lambrecht et al. | Aug 2006 | B2 |
7124761 | Lambrecht et al. | Oct 2006 | B2 |
7144397 | Lambrecht et al. | Dec 2006 | B2 |
7163561 | Michelson | Jan 2007 | B2 |
7189235 | Cauthen | Mar 2007 | B2 |
7198047 | Lambrecht et al. | Apr 2007 | B2 |
7220281 | Lambrecht et al. | May 2007 | B2 |
7223289 | Trieu et al. | May 2007 | B2 |
7258700 | Lambrecht et al. | Aug 2007 | B2 |
7273497 | Ferree et al. | Sep 2007 | B2 |
7344539 | Serhan et al. | Mar 2008 | B2 |
7435260 | Ferree | Oct 2008 | B2 |
7500978 | Gorensek et al. | Mar 2009 | B2 |
7507243 | Lambrecht et al. | Mar 2009 | B2 |
7513911 | Lambrecht et al. | Apr 2009 | B2 |
7524333 | Lambrecht et al. | Apr 2009 | B2 |
7553329 | Lambrecht et al. | Jun 2009 | B2 |
7553330 | Lambrecht et al. | Jun 2009 | B2 |
7563282 | Lambrecht et al. | Jul 2009 | B2 |
7615076 | Cauthen et al. | Nov 2009 | B2 |
20010004710 | Felt et al. | Jun 2001 | A1 |
20020007218 | Cauthen | Jan 2002 | A1 |
20020026244 | Trieu | Feb 2002 | A1 |
20020045942 | Ham | Apr 2002 | A1 |
20020049498 | Yuksel et al. | Apr 2002 | A1 |
20020111688 | Cauthen | Aug 2002 | A1 |
20020120337 | Cauthen | Aug 2002 | A1 |
20020123807 | Cauthen, III | Sep 2002 | A1 |
20020143329 | Serhan et al. | Oct 2002 | A1 |
20020147496 | Belef et al. | Oct 2002 | A1 |
20020151979 | Lambrecht et al. | Oct 2002 | A1 |
20020151980 | Cauthen | Oct 2002 | A1 |
20020165542 | Ferree | Nov 2002 | A1 |
20020189622 | Cauthen, III et al. | Dec 2002 | A1 |
20020198599 | Haldimann | Dec 2002 | A1 |
20030004574 | Ferree | Jan 2003 | A1 |
20030009227 | Lambrecht et al. | Jan 2003 | A1 |
20030014118 | Lambrecht et al. | Jan 2003 | A1 |
20030040796 | Ferree | Feb 2003 | A1 |
20030050702 | Berger | Mar 2003 | A1 |
20030074075 | Thomas, Jr. et al. | Apr 2003 | A1 |
20030074076 | Ferree et al. | Apr 2003 | A1 |
20030078579 | Ferree | Apr 2003 | A1 |
20030093155 | Lambrecht et al. | May 2003 | A1 |
20030125807 | Lambrecht et al. | Jul 2003 | A1 |
20030130738 | Hovda et al. | Jul 2003 | A1 |
20030149438 | Nichols et al. | Aug 2003 | A1 |
20030195514 | Trieu et al. | Oct 2003 | A1 |
20040002764 | Gainor et al. | Jan 2004 | A1 |
20040010317 | Lambrecht et al. | Jan 2004 | A1 |
20040024465 | Lambrecht et al. | Feb 2004 | A1 |
20040030392 | Lambrecht et al. | Feb 2004 | A1 |
20040034353 | Michelson | Feb 2004 | A1 |
20040034429 | Lambrecht et al. | Feb 2004 | A1 |
20040044412 | Lambrecht et al. | Mar 2004 | A1 |
20040097924 | Lambrecht et al. | May 2004 | A1 |
20040116922 | Hovda et al. | Jun 2004 | A1 |
20040133229 | Lambrecht et al. | Jul 2004 | A1 |
20040138673 | Lambrecht et al. | Jul 2004 | A1 |
20040260238 | Call | Dec 2004 | A1 |
20040260305 | Gorensek et al. | Dec 2004 | A1 |
20040260397 | Lambrecht et al. | Dec 2004 | A1 |
20050004578 | Lambrecht et al. | Jan 2005 | A1 |
20050010205 | Hovda et al. | Jan 2005 | A1 |
20050027362 | Williams et al. | Feb 2005 | A1 |
20050033440 | Lambrecht et al. | Feb 2005 | A1 |
20050033441 | Lambrecht et al. | Feb 2005 | A1 |
20050038519 | Lambrecht et al. | Feb 2005 | A1 |
20050060038 | Lambrecht et al. | Mar 2005 | A1 |
20050143825 | Enayati | Jun 2005 | A1 |
20050206039 | Lambrecht et al. | Sep 2005 | A1 |
20060030857 | de Villiers et al. | Feb 2006 | A1 |
20060030884 | Yeung et al. | Feb 2006 | A1 |
20060089717 | Krishna et al. | Apr 2006 | A1 |
20060129156 | Cauthen et al. | Jun 2006 | A1 |
20060161162 | Lambrecht et al. | Jul 2006 | A1 |
20060200246 | Lambrecht et al. | Sep 2006 | A1 |
20060217747 | Ferree | Sep 2006 | A1 |
20060217812 | Lambrecht et al. | Sep 2006 | A1 |
20060282167 | Lambrecht et al. | Dec 2006 | A1 |
20070027471 | Ferree | Feb 2007 | A1 |
20070061012 | Cauthen, III | Mar 2007 | A1 |
20070067039 | Lambrecht et al. | Mar 2007 | A1 |
20070118133 | Lambrecht et al. | May 2007 | A1 |
20070118226 | Lambrecht et al. | May 2007 | A1 |
20070142839 | Ferree | Jun 2007 | A1 |
20070156152 | Ferree | Jul 2007 | A1 |
20070156244 | Cauthen | Jul 2007 | A1 |
20070179623 | Trieu et al. | Aug 2007 | A1 |
20080140126 | Ferree | Jun 2008 | A1 |
20080215154 | Lambrecht et al. | Sep 2008 | A1 |
20080221686 | Ferree | Sep 2008 | A1 |
20080243256 | Ferree | Oct 2008 | A1 |
20090024165 | Ferree | Jan 2009 | A1 |
20090281517 | Lambrecht et al. | Nov 2009 | A1 |
20090292322 | Lambrecht | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
0277678 | Aug 1988 | EP |
0298233 | Jan 1989 | EP |
0298235 | Jan 1989 | EP |
0682910 | Mar 1995 | EP |
0700671 | Mar 1996 | EP |
0277678 | Aug 1998 | EP |
0876808 | Nov 1998 | EP |
0722700 | Dec 1998 | EP |
1091776 | May 2004 | EP |
1214026 | Apr 2005 | EP |
1180978 | May 2005 | EP |
2639823 | Jun 1990 | FR |
S63-95043 | Apr 1988 | JP |
S64-887 | Jan 1989 | JP |
H05-29694 | Jul 1993 | JP |
07-148172 | Jun 1995 | JP |
2020901 | Oct 1994 | RU |
93031998 | Nov 1995 | RU |
2055544 | Mar 1996 | RU |
2078551 | May 1997 | RU |
96121354 | Jan 1999 | RU |
WO 9210982 | Sep 1992 | WO |
WO9210982 | Sep 1992 | WO |
WO9526689 | Oct 1995 | WO |
WO9531946 | Nov 1995 | WO |
WO 9534331 | Dec 1995 | WO |
WO9601164 | Jan 1996 | WO |
WO 9601598 | Jan 1996 | WO |
WO 9726847 | Jul 1997 | WO |
WO 9730638 | Aug 1997 | WO |
WO 9817190 | Apr 1998 | WO |
WO9820939 | May 1998 | WO |
WO 9834552 | Aug 1998 | WO |
WO 9838918 | Sep 1998 | WO |
WO 9900074 | Jan 1999 | WO |
WO9902108 | Jan 1999 | WO |
WO 9902214 | Jan 1999 | WO |
WO 9903422 | Jan 1999 | WO |
WO 9930651 | Jun 1999 | WO |
WO 9947058 | Sep 1999 | WO |
WO 9961084 | Sep 1999 | WO |
WO 9961084 | Dec 1999 | WO |
WO 9962439 | Dec 1999 | WO |
WO 0014708 | Mar 2000 | WO |
WO0014708 | Mar 2000 | WO |
WO 0018328 | Apr 2000 | WO |
WO 0042953 | Jul 2000 | WO |
WO 0044288 | Aug 2000 | WO |
WO 0045741 | Aug 2000 | WO |
WO0049978 | Aug 2000 | WO |
WO 0062832 | Oct 2000 | WO |
WO0071043 | Nov 2000 | WO |
WO 0110316 | Feb 2001 | WO |
WO 0112080 | Feb 2001 | WO |
WO 0112107 | Feb 2001 | WO |
WO0112107 | Feb 2001 | WO |
WO 0121246 | Mar 2001 | WO |
WO 0128464 | Apr 2001 | WO |
WO 0128468 | Apr 2001 | WO |
WO 0139696 | Jun 2001 | WO |
WO0145579 | Jun 2001 | WO |
WO 0152914 | Jul 2001 | WO |
WO 0145577 | Jun 2002 | WO |
WO 02051622 | Jul 2002 | WO |
WO 02058599 | Aug 2002 | WO |
WO 02067824 | Sep 2002 | WO |
WO 03039328 | May 2003 | WO |
WO 03088876 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040260305 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60480276 | Jun 2003 | US |