The present invention relates generally to computing devices, and more specifically, to input devices for computing devices.
Many types of input devices may be used to provide input to computing devices, such as buttons or keys, mice, trackballs, joysticks, touch screens and the like. Touch screens, in particular, are becoming increasingly popular because of their ease and versatility of operation. Typically touch screens can include a touch sensor panel, which may be a clear panel with a touch-sensitive surface, and a display device that can be positioned behind the panel so that the touch-sensitive surface substantially covers the viewable area of the display device. Touch screens allow a user to provide various types of input to the computing device by touching the touch sensor panel using a finger, stylus, or other object at a location dictated by a user interface (UI) being displayed by the display device. In general, touch screens can recognize a touch event and the position of the touch event on the touch sensor panel, and the computing system can then interpret the touch event in accordance with the display appearing at the time of the touch event, and thereafter can perform one or more actions based on the touch event.
Touch sensor panels can be formed from a matrix of row and column traces, with sensors or pixels present where the rows and columns cross over each other while being separated by a dielectric material. Each row can be driven by a stimulation signal, and touch locations can be identified through changes in the stimulation signal. Typically, a touch location is sensed based on an interference of the stimulation signal, such that a touch location may correspond to a location where the stimulation signal is the weakest. Touch sensor panels may generally be configured to detect touches from a user's fingers, which generally have a large surface area that contacts the touch sensor panel to disturb the stimulation signal sufficiently for touch location to be recognized. However, because of this configuration a stylus that includes a tip with a touch surface with a smaller surface area than a user's finger tip, may not sufficiently disturb the stimulation signal in order for the touch sensor panels to detect a touch location.
Furthermore, in some instances it may be desirable for input devices, such as styli, to be able to transfer data, in addition to the touch location data, to the touch screen. However, due to noise sources, and the capacitance coupling arrangement of typical touch screens, data transfer through a touch screen interface may be unreliable.
One example of the present disclosure may take the form of a computing device configured to communicate with an input device. The computing device includes a processor, a touch interface, such as a touch screen, and a receiving unit. The touch interface is configured to detect an input signal corresponding to an object approaching or contacting a surface, such as through capacitive coupling. The receiving unit is configured to receive, through the touch interface, at least one input signal from the input device, and the receiving unit amplifies the at least one input signal creating at least one amplified input signal. Additionally, at least one of the processor or the receiving unit analyzes the at least one amplified input signal and creates at least one output digital signal corresponding to the at least one input signal.
Another example of the disclosure may take the form of a method for transmitting digital data to a computing device through a touch interface. The method includes transmitting an activation signal to at least one drive line of the touch interface; receiving by a receiving unit a digital input signal from an input device through at least one sense line of the touch interface; amplifying by the receiving unit the digital input signal; and creating an output digital signal corresponding to the digital input signal.
In some embodiments herein, a receiving unit for touch interfaces, such as touch screens, for computing devices is disclosed. The receiving unit may be communicatively coupled to either a sensor panel for the touch screen or to an input device for the touch screen. The receiving unit amplifies a data input signal to allow input devices to provide digital data to the computing device through the touch screen interface.
The receiving unit may allow an input device to have a smaller input surface (such as a stylus) to be used to provide input to the touch screen or interface. For example, in one embodiment, a stylus having a ball point tip may provide input to the touch screen. In this instance, the receiving unit may be able to recover a signal (or interference of the stimulation signal) despite a low capacitive coupling between the surface are of the ball point tip and the touch sensor panel. Thus, the touch screen may sense a location of the stylus ball point tip, although the signal interference may be lower than a typical interference for a user's finger when placed on the touch sensor panel.
The receiving unit may also provide a communication mechanism to receive data other than a touch location. For example, the receiving unit may receive digital data from an input device which may be transferred through the touch screen. In one embodiment, the receiving unit may be a band pass, high pass or low pass amplifier, which may amplify the signal from the input device. In some instances the touch screen may be somewhat bandwidth limited due to the high trace resistance of the sensor panel and the parasitic capacitance to ground. Despite this attenuation of the sensor panel, the gain of the receiving unit may outweigh the attenuation, thus the digital data may be transmitted between the input device and the touch screen.
In some embodiments the receiving unit may allow for input devices to communicate digitally with the touch sensor panel. For example, the touch screen may perform a scan for touch events, such as touches on the screen by a user's fingers. Once the touch sensor panel has been scanned for general touch events, the touch sensor panel may send out an excitation signal to the input device, and then switch to a data or stylus mode. As the input device receives the excitation signal, the input device may transmit digital data to the touch screen. The digital data may include information from one or more sensors of the input device (e.g., accelerometers, force or pressure sensors, gyroscopes), as well as other information about the input device (e.g., power level). As a specific example, if the input device is a stylus, the additional data may allow the computing device to display a thicker line depending on how forceful a user presses the stylus to the touch sensor panel, vary a line appearance “drawn” depending on an angle of the stylus, or the like.
In many instances, the input device may transmit the digital data at a frequency that is different from and separated (in frequency) from the frequency used by the touch screen to scan for touch events. This frequency difference allows the touch screen to scan for touch events and digital data (from the input device) substantially simultaneously in time. Additionally or alternatively, the frequency used by the input device can be used as a signature to identify the digital data separately from the touch data.
In instances where the digital data and the touch events are temporally separated, it may be advantageous to configure the frequency of the transmitted digital data to have a higher frequency band than the scanning frequency of the touch panel. This configuration may allow the input device to send digital data over a shorter time period, which may increase the time for the scanning of touch events where the acquisition signal to noise ratio (SNR) is dependent on the amount of time dedicated to it. Further, by decreasing the transmission time for the digital data, and thus increasing the scanning time for touch events, the chances of touch events occurring only while the touch screen is scanning for digital data from the input device may be reduced, therefore reducing the chances that a touch event may be missed by the touch scanning performed by the touch screen. Moreover, a shorter digital data scanning time may also reduce the static power usage during the digital data scan time to support the digital data hardware or receiving unit. That is, the shorter time frame in which the receiver may be required to be activated, the more power the electronic device may save.
In some embodiments, the touch screen or sensor panel may act to transmit digital data to the input device. In other words, the touch screen may function as a digital data transmitter and the input device may include the receiving unit, thus digital data may be transmitted from the touch screen or sensor panel to the input device. In these embodiments, the digital data may include one or more commands or context information that may be used by the input device to modify the duty cycle (or other characteristics) or one more sensors in order to save power, enter specific operating modes specific for the touch screen model (or the software running on the panel), enter specific operating modes specific to the current location on touch screen panel, or the like. As another example, digital data transferred from the touch screen to the input device may be an acknowledgement from the touch screen that the previous data sent by the input device was received without error. In these embodiments, the system may allow the input device and the touch screen to have bi-directional communication, to transfer data back and forth between the two devices. The bi-directional system may be full duplex or half duplex. Alternatively, the system may be a unidirectional system and one device may be selected as the receiving device and one device may be selected as the transmitting device.
Turning now to the figures, a communication system including a computing device and an input device will be discussed in more detail.
The computing device 102 may include the touch screen 106, an enclosure 110, and/or one or more input buttons 108. The enclosure 110 encloses one or more components of the computing device 102, as well as may surround and/or secure a portion of the touch screen 106 to the computing device 102. The one or more input buttons 108 may provide input functions to the computing device 102. For example, the input buttons 108 may adjust a volume for the computing device 102, turn the computing device 102 on or off, or may provide other inputs for the computing device 102. Further, the computing device 100 may also include one or more receiving ports 112. The receiving ports 112 may receive one or more plugs or connectors, such as but not limited to, a universal serial bus (USB) cable, a tip ring sleeve connector, or the like.
The touch screen 106 may include one or more sensors in order to detect one or more input or location signals. Additionally, the touch screen 106 may include a display screen to provide a graphical user interface, and other video and/or image output for the computing device 102. The touch screen 106 and other components of the computing device 102 will be discussed in more detail below.
Turning to
The tip 122 may be a conductive material, or another material laced with a conductive material, in order to may interact with the touch screen 106 and specifically one or more electrode layers (discussed below) to provide input to the computing device 102. Additionally, the tip 122 may be configured to transmit one more signals, such as voltage signals, to the touch screen 106. For example, the tip 122 may be communicatively coupled to a power source 128, which may provide one or more voltages to the tip 122 to transmit to the touch screen 106. The tip 122 may be made of metals such as aluminum, brass or steel, as well as conductive rubber, plastic or other materials doped with conductive particles.
With continued reference to
The input device 104 may also include a processor 130 to control select functions of the input device 104. For example, the processor 130 may control certain functions of the sensors 128. In some embodiments, the processor 130 may determine one or more input signals that may be transmitted through the tip 122 to the touch screen 106 and/or computing device 102.
Optionally, the input device 104 may also include an input/output (I/O) interface 132. The I/O interface 132 may receive and/or transmit one or more signals to and from the input device 104. For example, the I/O interface 132 may receive one or more radio signals (e.g., Bluetooth), or may be configured to receive one or more electrical (digital and/or analog) signals transmitted from the computing device 102. In the latter example, the I/O interface 132 may be used in conjunction with or instead of the tip 122 to transmit and/or receive signals from the touch screen 106. For example, the I/O interface 132 may be configured to receive one or more voltage signals from the touch screen 106 (e.g., through the drive lines, discussed in more detail below). Additionally, the I/O interface 132 may include a voltage source in order transmit (optionally via the tip 122) one or more signals to the touch screen 106 and/or computing device 102.
The touch screen 106 will now be discussed in more detail.
The sensor panel 114 may include an electrode layer 116 operably connected to a sensor glass 118 or other type of support structure. The electrodes 116 may be connected to one or both sides of the sensor glass 118. As one example, the electrodes 116 may be positioned on a first side of the sensor glass 118, and the other side of the glass may be coated to form a ground shield. As another example, the sensor glass 118 may be formed of multiple layers of polyethylene terephthalate (PET), with each layer including electrodes 116 operably connected to one side of the layer, and then each of the layers may be stacked to form rows, columns, and/or shield layers.
With continued reference to
In some embodiments, the sensor glass 118 may act as a ground shield to electronically isolate the electrode layer 116 from the display screen 112 and/or other internal components of the computing device 102 (such a processor, or electronic circuits). Typically it may be desirable for the touch screen 106 to have a relatively low vertical height, so that the height and size of the computing device 102 may be reduced. In these instances, the sensor glass 118 and/or other ground shield may be relatively close to the electrode layer 116, which may cause a large shunt capacitance illustrated as Cshunt, defined between the sensor glass 118 and the electrode layer 116. In some instances, Cshunt may be approximately 100 pF, which, as discussed in more detail below, may act to reduce input signals from input devices to the touch screen 106.
The electrode layer 116 may include one or two layers of electrodes which may be spaced apart across the layer 116. The electrodes, discussed in more detail with respect to
The touch screen 106 may also include a cover sheet 120 disposed over the electrode layer 116. Thus, the electrode layer 116 may be substantially sandwiched between the cover sheet 120 and the sensor glass 118. The cover sheet 120 protects the other layers of the touch screen 106, while also acting to insulate the electrode layer 116 from external elements (such as fingers or input devices that may contact the cover sheet 120). The cover sheet 120 may generally be formed from substantially any suitable clear material, such as glass or plastic. Additionally, typically the cover sheet 120 should be sufficiently thin to allow for sufficient electrode coupling between the electrode layer 118 and any external input objects (e.g., fingers, input devices). For example, the cover sheet 120 may have a thickness ranging between 0.3 to 2 mm.
It should be noted that in some embodiments, the touch screen 106 may be substantially any type of touch interface. For example, the touch interface may not be see-through and/or may not correspond to a display screen. In these instances, a particular surface or group of surfaces may be configured to receive touch inputs, that may or may not correspond to a separately displayed user interface, icons, or the like.
Operation of the touch screen 106 will now be discussed in more detail.
In the self capacitance arrangement, the electrode layer 116 may include a single layer of a plurality of electrodes spaced in a grid or other coordinate system (e.g., Polar) where each electrode may form a node 144. The sensing circuit 150 monitors changes in capacitance that may occur at each node 144, which typically occurs at a node 144 when a user places an object (e.g., finger or tip 122 of the input device 104) in close proximity to the electrode.
With continued reference to
A drive controller 146 is connected to each of the drive lines 142. The drive controller 146 provides a stimulation signal (e.g., voltage) to the drive lines 142. The sensing circuit 150 is connected to each of the sense lines 140 and the sensing circuit 150 acts to detect changes in capacitance at the nodes 144. During operation, the stimulation signal is applied to the drive lines 142 and due to the capacitive coupling between the drive lines 142 and sensing rows 140, a current is carried through to the sense lines 140 at each of the nodes 144. The sensing circuit 150 then monitors changes in capacitance at each of the nodes 144. As with the self-capacitance, a change in capacitance at each of the nodes 144 typically occurs when a user places an object such as a finger in close proximity to the node 144 as the object typically steals a charge, affecting the capacitance of the node 144.
In a specific embodiment, each drive line 140 may be driven separately, such that the drive controller 146 may selectively apply the stimulation signal to drive lines 140. Each drive line 140 may be driven sequentially until the entire set of drive lines 140 has been driven. Although the drive lines 140 are driven individually, the sensing circuit 150 may sense changes of capacitance along all of the sense lines 142 in parallel. In this manner, the coordinates of a touch node 144 may be more easily determined. It should also be noted that, in some instances, a stimulation or excitation signal may be applied to the electrode layer 116 by the input device 104, rather than or in addition to the drive controller 146. This will be discussed in more detail below, but briefly, the input device 104 may apply a voltage similar to the stimulation signal in order to induce a current through the sense lines 142, and create a capacitive coupling within the electrode layer 116.
In either the self-capacitance or mutual capacitance arrangements discussed above, the sensing circuit 150 can detect changes in capacitance at each node 144. This may allow the sensing circuit 150 to determine when and where a user has touched various surfaces of the touch screen 106 with one or more objects. The sensing circuit 150 may include one more sensors for each of the sense lines 142 and may then communicate data to a processor 148. In one example, the sensing circuit 150 may convert the analog capacitive signals to digital data and then transmit the digital data to the processor 148. In other examples, the sensing circuit 150 may transmit the analog capacitance signals to the processor 148, which may then convert the data to a digital form. Further, it should be noted that the sensing circuit 150 may include individual sensors for each sensing line 142 or a single sensor for all of the sense lines 142. The sensing circuit 150 may report a location of the node 144, as well as the intensity of the capacitance (or changed thereof) at the node 144.
With reference to
The sensing circuit 150 may also include a converter 156. The converter 156 transforms signals from a first signal to a second signal. For example, the converter 156 may transform analog signals to digital signals. As specific example, the converter 156 may receive voltage signals from the sense lines 142 which may vary based on the amount of capacitive coupling at each of the nodes 144 and may transform those voltage signals into digital signals.
In some instances, the capacitive coupling for the touch screen 106, and specifically the electrode layer 116 may be determined by the physical geometry of the touch screen 106 and the object communicating with the touch screen 106. For example, the larger an object may be the larger change in capacitance may be detected, thus increasing the size of the object may increase the touch screen's ability to detect a touch signal by that object. In some embodiments, it may be desirable for the input device 104, to have a relatively small tip 122 diameter. For example, in some embodiments, the tip 122 may have a diameter ranging between 1-2 mm. In these embodiments, the capacitive coupling with the touch screen 106 may be much lower than a larger object, such as a finger. As such, in instances where the touch screen 106 may be configured to detect finger touches, touch signals input by the input device 104 may be more difficult to detect using the sense lines 142 and sensing circuit 150 alone.
Additionally, with reference to
Returning to
The receiving unit 152 may be combined with or replace the sensing circuit 150 and processor 148 to recover data which may be input by the input device 104 to the touch screen 106. Additionally, as explained in more detail below, the receiving unit 152 may also allow frequency communication above typical touch surface 106 excitation frequencies (approximately 500 kHz). The receiving unit 152 may further minimize any phase differences between nodes 144 across the area of the touch screen 106.
The receiving unit 152 may be communicatively coupled to the sense lines 142, and may be incorporated into the sensing circuit 150 or separate therefrom. For example, as shown in
In some embodiments, the receiving unit 152 may be a high pass amplifier.
The receiving unit 152 may receive a sensing signal Vin or input signal from the sense lines 142 and high pass filter the signal Vin to produce a first output signal Vout1, which may also be considered the amplified input signal. Additionally, in some embodiments, the receiving unit 152 may be in communication with or may include a comparator 162. The comparator 162 may convert Vout1 or the amplified input signal to a digital output signal Vout2 or a reconstructed input signal. For example, the comparator 162 may be a Schmitt trigger or other threshold circuit having a positive feedback with a loop gain that is more than one. However, in other embodiments, other types of converters, comparators, or converter circuits may be used that may reconstruct a digital signal from an analog signal.
With reference to
Operation of the system 100 and the receiving unit 152 will now be discussed in more detail. As shown in
When the touch screen 106 may be in stylus scan mode, discussed in more detail below with respect to
In some embodiments, the location of the input device 104 may be determined during touch mode (or touch scanning), discussed below, and the input device 104 activation signal may be used to transmit digital data other than location to the touch screen 106. In yet other embodiments, the input device 104 may listen to the touch screen to the drive pattern to determine its position along the vertical axis of the touch screen, and then transmit location data to the touch screen in addition to other types of data.
A method for using the input device 104 and the computing device 102 to transmit digital information between the two will now be discussed.
If a touch event is detected in operation 204, the method 200 may proceed to operation 206 and the sensing circuit 150 may capture and/or analyze the touch data. For example, based on the signal strength along the sense lines 142, the sensing circuit 150 may determine a location of the touch event, as well as other data, such as but not limited to, pressure, time of touch, and so on.
After operations 204 or 206, the method 200 may proceed to operation 208 and the touch screen 106, specifically the drive controller 146, may send out an activation signal. The activation signal sent during stylus mode may be a voltage which may be applied across the drive lines 140. In instances where the tip 122 of the input device 104 may be in contact with the touch screen 106, as the drive controller 146 sends the activation signal, the input device 104 may receive the signal. For example, the I/O receiver 132 may include a circuit or component which may be in communication with the touch panel screen 106 so as to receive the activation signal. As one example, the input device may include an electrode (or other sensor) on the tip 122 which may receive the activation signal. Additionally, in some instances, the tip 122 may be in communication with a receiver or amplifier which may receive and/or amplify the activation signal.
The activation signal may allow the touch screen 106 and the input device 104 to be synchronized for transmission of the input data. As will be explained in more detail below, the input data may include digital data which may be encoded within an analog signal, and therefore, in order for the digital data to be received by the receiving unit 152 in a proper order, the input device 104 and the touch screen 106 may need to be synchronized. Thus, in addition to altering the input device 104 to transmit input data, the activation signal may also allow the receiving unit 152 to more accurately receive the digital data transmitted by the input device 104.
Before, after, or as the activation signal is transmitted across the drive lines 140, the method 200 may proceed to operation 210. It should be noted that although as shown in
Once the touch screen 106 is in stylus mode, the method 200 may proceed to operation 211. In operation 211, the touch screen 106 may scan for the input device 104. For example, the touch screen 106 may check for inputs to each of the scan lines to determine if the input device 104 is broadcasting. As will be discussed in more detail below, the touch screen 106 may scan for a beacon or excitation signal that may be emitted from the input device 104 prior to transmitting the digital data.
In operation 212, the touch screen 106, and specifically, the receiving unit 152, may receive input data from the input device 104 (if it is transmitting).
In some embodiments, it may be desirable for the excitation signal to have an increased amplitude as compared to other signals from the input device. This may allow the touch screen to more accurately determine the location of the tip, as the larger the excitation signal the more likely it may be received by multiple sense lines, which can be evaluated to determine the location. On the contrary, (as shown in
After the excitation signal is received, the touch screen may receive digital data transmitted from the input device 104. The input data transmitted by the input device may include data corresponding to sensors 126 within the input device 104, the location of the input device 104, and so on. In some embodiments, the input data from the input device 104 may act as a separate stimulation or drive signal for the drive lines 140 and/or sense lines 142. In this embodiment, the touch screen 106 may not “scan” sequentially across the drive lines 140 as when in touch mode. This is because the stimulation signal may directly applied to select notes by the input device 104 itself and so only the nodes 144 receiving a signal may produce an input; thus, each driving line 140 may not need to be separately activated. Further, in these embodiments, each node 144 may be configured to detect an input signal from the input device 104, as each node may be stimulated by the input device 104 itself, rather than along the rows of the drive lines 140.
Referring again to
As the input device 104 completes transmitting data, the method 200 may proceed to operation 214 and the touch screen 106 may receive a termination signal. The termination signal may be sent from the input device 104 to indicate to the touch screen 106 that it has a completed transmitting input data. In some embodiments, the termination signal may be embedded within the input data, e.g., a series of digital data at the end of the transmission like end-of-data bit, sequence number or etc.
Once the receiving unit 152 receives the termination signal from the input device 104, the method 200 may proceed to operation 216. In operation 216, the receiving unit 152 may amplify the received signal and the receiving unit 152 and/or the processor 148 may recreate the originally transmitted input signal.
Although the amplified input signal 252 may be distorted as compared to the original input signal 250, the digital signal may be reconstructed. In one embodiment, the receiving unit 152 may include the comparator 162, or the comparator 162 may otherwise be included as another portion of the computing device 102. The comparator 162 may analyze the amplified input signal 252 to determine the peaks and valleys, which may then be used to reconstruct and provide a digital output signal 250. For example, with reference to
After or substantially simultaneously with operation 216, the method 200 may proceed to operation 218. In operation 218 the touch screen 106 may switch from the stylus mode to the touch sensing mode. For example, the multiplexer 153 may switch between the receiving unit 152 and the sense circuitry and the drive controller 152 may be activated to provide a drive signal to the drive lines 140.
It should be noted that in some embodiments, to provide increased robustness against noise form the system, digital communication techniques, such as forward error correction (FEC), cyclic redundancy check (CRC), or parity bit check, may be used to provide error detection and/or correction. Other digital communication techniques also may be used. Furthermore, in some embodiments, the noise or interference of the system 100 may be deterministic and controlled by the computing device 102, such as noise caused by the stimulation signal applied to the drive lines 140. In these embodiments, receiving the input data from the input device 104 may be interleaved with the noise or interference source, or may otherwise be scheduled to reduce the noise or interference which may be able to reduce the effect of the noise or interference on the input data.
Also, although the method 200 in
Also, it should be noted that the digital data transmission operation 212 may also include an operation of transmitting digital data from the touch screen to the input device 104. In other words, the digital data transmission between the input device and the touch screen may be bidirectional or unidirectional. Accordingly, although a separate operation is not illustrated, in some embodiments, the touch screen may not only receive data from the input device, but as discussed in more detail below, may also act to transmit data to the input device. In embodiments where the data transmission is bidirectional, the transmission may be half duplex or full duplex.
In some embodiments, the input device 104 may transfer digital data to the touch screen 106 through the sensing circuit 150. In these instances, the receiving unit 152 may be omitted. For example, input data from the input device 104 may be an analog signal encoded with digital data, such as a waveform voltage signal. The data may be sent from the tip 122 to the electrode layer 116 of the touch screen 106. For example, the tip 122 may transfer a voltage waveform such as a sine wave, which may include digital data embedded in changes within the amplitude, frequency, phase, e.g., amplitude modulation, frequency modulation, or phase modulation. With reference to
For amplitude modulation, the digital data may be represented by two different amplitudes of the carrier wave.
As another example, the input data from the input device 104 may be encoded by frequency modulation.
As yet another example, the input data from the input device 104 may be encoded by phase shifting.
Furthermore, it should be noted that in some embodiments, the input data from the input device 104 may include two forms of digital data encoding, e.g., the amplitude may be used to carry a first set of data and a phase of the carrier wave may be altered to carry a second set of data. With reference to
In some embodiments, the system 100 may include a second input device 304. The second input device 304 may be substantially similar to the input device 104.
A method for using two or more input devices 104, 304 to provide input to the computing device 102 may be substantially the same as illustrated in
Once the input devices 104, 304 receive the activation signal, the method 310 may proceed to operation 314 and each of the input devices 104, 304 may wait before transmitting input data. In some embodiments, each input device 104, 304 may wait a random amount of time, such that the first input device 104 may wait 0.5 ms and the second input device 304 may be wait 1 ms. In other embodiments, the two input devices 104, 304 may wait a predetermined time, as long the time period for each input device 104, 304 is different from the other input device 104, 304.
After the input devices 104, 304 each wait, the method 310 may proceed to operation 316 and the input devices 104, 304 may each listen to determine if the other input device 104, 304 is transmitting to the touch screen 106. For example, the input devices 104, 304 may each detect signals transmitted by the first input device through the touch sense capacitive coupling networked formed of the sense and drive lines.
If a respective one of the input devices 104, 304 hears the other input device 104, 304 transmitting data to the touch screen 106, the method 310 may proceed to operation 318 and the input device 104, 304 may wait another time period. In this instance, the time period may be predetermined (e.g., it may correspond to an estimate d data transmission time) or may be random. After the input device 140, 30 waits, the method 310 may return to operation 316.
In some embodiments, if a respective one of the input devices 104, 304 hears the other input device 104, 304 transmitting data to the touch screen 106, the method 310 may proceed back to operation 312. In other words, rather than waiting, the other, non-transmitting input device 104, 304 may give up transmitting and wait to receive the next activation signal from the touch screen.
In operation 316, if the input device 104, 304 does not hear the other input device 104, 304 transmitting, the method 310 may proceed to operation 320. In operation 320, the input device 104, 304 may then transmit input data to the touch screen 106. For example, the input device 104, 304 may provide a digital signal to the drive lines 140 and/or the sense lines 142 which may correspond to the data from the one or more sensors 126. After the respective input device 104, 304 has transmitted input data to the touch screen 106, the method 310 may proceed to operation 322 and the input device 104, 304 may transmit a termination signal to the touch screen 106. The termination signal may have a larger amplitude than the data signal in order to indicate to the touch screen 106 that the particular input device 104, 304 is done transmitting data. After operation 322, the method 310 may proceed to an end state 324.
With the method 310 of
In other embodiments, the receiving unit 152 may be included within the input device 104. With reference again to
In instances where the receiving unit 152 may be included within the input device 104, the input device 104 may need to distinguish the data signal of the touch screen 106 from the excitation or stimulation signal. For example, if the digital signal and the touch screen 106 excitation signal at interleaved with time, with the digital signal being transferred from the touch screen 106 to the input device 104 at a 2 MHz symbol rate, and if the excitation signal is at 500 k Hz with a 50% duty cycle, the input device 104 will need to distinguish between the two. This is necessary because at the particular values above, a 500 KHz 50% duty cycle square wave could appear to the input device 104 as groups of digital 1's and 0's arranged in groups of four. As the digital data signal from the touch screen 106 may be transferred at a high frequency than the excitation signal, a coding mechanism which may use fast transitions which may not be able to be produced by the excitation signal may be used to allow the input device 104 to distinguish between the excitation signal and the data signal. For example, the data signal may include a header such as “010101” may transferred at the example 2 MHz symbol rate, which would identify the start of the digital communication. In the example above, the 500 kHz signal could not transition as quickly, and could not replicate the header.
The foregoing description has broad application. For example, while examples disclosed herein may focus on input devices, it should be appreciated that the concepts disclosed herein may equally apply to substantially any other type of communication between electronic devices. Similarly, although the input device and receiving unit may be discussed with touch screens, the devices and techniques disclosed herein are equally applicable to other types of capacitive coupling systems. Accordingly, the discussion of any embodiment is meant only to be exemplary and is not intended to suggest that the scope of the disclosure, including the claims, is limited to these examples.
Number | Name | Date | Kind |
---|---|---|---|
3462692 | Bartlett | Aug 1969 | A |
3970846 | Schofield et al. | Jul 1976 | A |
4220815 | Gibson et al. | Sep 1980 | A |
4281407 | Tosima | Jul 1981 | A |
4289927 | Rodgers | Sep 1981 | A |
4320292 | Oikawa et al. | Mar 1982 | A |
4334219 | Paülus et al. | Jun 1982 | A |
4345248 | Togashi et al. | Aug 1982 | A |
4405921 | Mukaiyama | Sep 1983 | A |
4439855 | Dholakia | Mar 1984 | A |
4476463 | Ng et al. | Oct 1984 | A |
4481510 | Hareng et al. | Nov 1984 | A |
4484179 | Kasday | Nov 1984 | A |
4490607 | Pease et al. | Dec 1984 | A |
4496981 | Ota | Jan 1985 | A |
4520357 | Castleberry et al. | May 1985 | A |
4542375 | Alles et al. | Sep 1985 | A |
4602321 | Bornhorst | Jul 1986 | A |
4603356 | Bates | Jul 1986 | A |
4642459 | Caswell et al. | Feb 1987 | A |
4644338 | Aoki et al. | Feb 1987 | A |
4655552 | Togashi et al. | Apr 1987 | A |
4662718 | Masubuchi | May 1987 | A |
4671671 | Suetaka | Jun 1987 | A |
4677428 | Bartholow | Jun 1987 | A |
4679909 | Hamada et al. | Jul 1987 | A |
4684939 | Streit | Aug 1987 | A |
4698460 | Krein et al. | Oct 1987 | A |
4705942 | Budrikis et al. | Nov 1987 | A |
4720869 | Wadia | Jan 1988 | A |
4736203 | Sidlauskas | Apr 1988 | A |
4740782 | Aoki et al. | Apr 1988 | A |
4749879 | Peterson et al. | Jun 1988 | A |
4759610 | Yanagisawa | Jul 1988 | A |
4767192 | Chang et al. | Aug 1988 | A |
4772101 | Liu | Sep 1988 | A |
4782327 | Kley et al. | Nov 1988 | A |
4782328 | Denlinger | Nov 1988 | A |
4785564 | Gurtler | Nov 1988 | A |
4794634 | Torihata et al. | Dec 1988 | A |
4814760 | Johnston et al. | Mar 1989 | A |
4823178 | Suda | Apr 1989 | A |
4838655 | Hunahata et al. | Jun 1989 | A |
4846559 | Kniffler | Jul 1989 | A |
4877697 | Vollmann et al. | Oct 1989 | A |
4893120 | Doering et al. | Jan 1990 | A |
4904056 | Castleberry | Feb 1990 | A |
4917474 | Yamazaki et al. | Apr 1990 | A |
4940901 | Henry et al. | Jul 1990 | A |
5003356 | Wakai et al. | Mar 1991 | A |
5037119 | Takehara et al. | Aug 1991 | A |
5039206 | Wiltshire | Aug 1991 | A |
5051570 | Tsujikawa et al. | Sep 1991 | A |
5063379 | Fabry et al. | Nov 1991 | A |
5083175 | Hack et al. | Jan 1992 | A |
5105186 | May | Apr 1992 | A |
5113041 | Blonder et al. | May 1992 | A |
5117071 | Greanias et al. | May 1992 | A |
5140153 | Heikkinen et al. | Aug 1992 | A |
5151688 | Tanaka et al. | Sep 1992 | A |
5153420 | Hack et al. | Oct 1992 | A |
5172104 | Tanigaki et al. | Dec 1992 | A |
5182661 | Ikeda et al. | Jan 1993 | A |
5204661 | Hack et al. | Apr 1993 | A |
5236850 | Zhang | Aug 1993 | A |
5237314 | Knapp | Aug 1993 | A |
5239152 | Caldwell et al. | Aug 1993 | A |
5243332 | Jacobson | Sep 1993 | A |
5276538 | Monji et al. | Jan 1994 | A |
5301048 | Huisman | Apr 1994 | A |
5308964 | Kwon | May 1994 | A |
5339090 | Crossland et al. | Aug 1994 | A |
5339091 | Yamazaki et al. | Aug 1994 | A |
5341133 | Savoy et al. | Aug 1994 | A |
5349174 | Van Berkel et al. | Sep 1994 | A |
5360426 | Muller et al. | Nov 1994 | A |
5365461 | Stein et al. | Nov 1994 | A |
5369262 | Dvorkis et al. | Nov 1994 | A |
5376948 | Roberts | Dec 1994 | A |
5381251 | Nonomura et al. | Jan 1995 | A |
5386543 | Bird | Jan 1995 | A |
5387445 | Horiuchi et al. | Feb 1995 | A |
5414283 | den Boer et al. | May 1995 | A |
5422693 | Vogeley et al. | Jun 1995 | A |
5430462 | Katagiri et al. | Jul 1995 | A |
5445871 | Murase et al. | Aug 1995 | A |
5446564 | Mawatari et al. | Aug 1995 | A |
5461400 | Ishii et al. | Oct 1995 | A |
5475398 | Yamazaki et al. | Dec 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5483263 | Bird et al. | Jan 1996 | A |
5485177 | Shannon et al. | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5502514 | Vogeley et al. | Mar 1996 | A |
5510916 | Takahashi | Apr 1996 | A |
5515186 | Fergason et al. | May 1996 | A |
5525813 | Miyake et al. | Jun 1996 | A |
5532743 | Komobuchi | Jul 1996 | A |
5559471 | Black | Sep 1996 | A |
5568292 | Kim | Oct 1996 | A |
5581378 | Kulick et al. | Dec 1996 | A |
5585817 | Itoh et al. | Dec 1996 | A |
5589961 | Shigeta et al. | Dec 1996 | A |
5598004 | Powell et al. | Jan 1997 | A |
5608390 | Gasparik | Mar 1997 | A |
5610629 | Baur | Mar 1997 | A |
5635982 | Zhang et al. | Jun 1997 | A |
5637187 | Takasu et al. | Jun 1997 | A |
5652600 | Khormaei et al. | Jul 1997 | A |
5659332 | Ishii et al. | Aug 1997 | A |
5677744 | Yoneda et al. | Oct 1997 | A |
5709118 | Ohkubo | Jan 1998 | A |
5712528 | Barrow et al. | Jan 1998 | A |
5734491 | Debesis | Mar 1998 | A |
5736980 | Iguchi et al. | Apr 1998 | A |
5751453 | Baur | May 1998 | A |
5757522 | Kulick et al. | May 1998 | A |
5767623 | Friedman et al. | Jun 1998 | A |
5777713 | Kimura | Jul 1998 | A |
5778108 | Coleman, Jr. | Jul 1998 | A |
5790106 | Hirano et al. | Aug 1998 | A |
5793342 | Rhoads | Aug 1998 | A |
5796121 | Gates | Aug 1998 | A |
5796473 | Murata et al. | Aug 1998 | A |
5812109 | Kaifu et al. | Sep 1998 | A |
5818037 | Redford et al. | Oct 1998 | A |
5818553 | Koenck et al. | Oct 1998 | A |
5818956 | Tuli | Oct 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5831693 | McCartney, Jr. et al. | Nov 1998 | A |
5834765 | Ashdown | Nov 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5838290 | Kuijk | Nov 1998 | A |
5838308 | Knapp et al. | Nov 1998 | A |
5852487 | Fujimori et al. | Dec 1998 | A |
5854448 | Nozaki et al. | Dec 1998 | A |
5854881 | Yoshida et al. | Dec 1998 | A |
5877735 | King et al. | Mar 1999 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5883715 | Steinlechner et al. | Mar 1999 | A |
5890799 | Yiu et al. | Apr 1999 | A |
5917464 | Stearns | Jun 1999 | A |
5920309 | Bisset et al. | Jul 1999 | A |
5920360 | Coleman, Jr. | Jul 1999 | A |
5923320 | Murakami et al. | Jul 1999 | A |
5926238 | Inoue et al. | Jul 1999 | A |
5930591 | Huang | Jul 1999 | A |
5940049 | Hinman et al. | Aug 1999 | A |
5942761 | Tuli | Aug 1999 | A |
5956020 | D'Amico et al. | Sep 1999 | A |
5959617 | Bird et al. | Sep 1999 | A |
5959697 | Coleman, Jr. | Sep 1999 | A |
5962856 | Zhao et al. | Oct 1999 | A |
5966108 | Ditzik | Oct 1999 | A |
5973312 | Curling et al. | Oct 1999 | A |
5990980 | Golin | Nov 1999 | A |
5990988 | Hanihara et al. | Nov 1999 | A |
5995172 | Ikeda et al. | Nov 1999 | A |
6002387 | Ronkka et al. | Dec 1999 | A |
6020590 | Aggas et al. | Feb 2000 | A |
6020945 | Sawai et al. | Feb 2000 | A |
6023307 | Park | Feb 2000 | A |
6028581 | Umeya | Feb 2000 | A |
6049428 | Khan et al. | Apr 2000 | A |
6061177 | Fujimoto | May 2000 | A |
6064374 | Fukuzaki | May 2000 | A |
6067062 | Takasu et al. | May 2000 | A |
6067140 | Woo et al. | May 2000 | A |
6069393 | Hatanaka et al. | May 2000 | A |
6078378 | Lu et al. | Jun 2000 | A |
6087599 | Knowles | Jul 2000 | A |
6091030 | Tagawa et al. | Jul 2000 | A |
6100538 | Ogawa | Aug 2000 | A |
6118435 | Fujita et al. | Sep 2000 | A |
6133906 | Geaghan | Oct 2000 | A |
6163313 | Aroyan et al. | Dec 2000 | A |
6177302 | Yamazaki et al. | Jan 2001 | B1 |
6181394 | Sanelle et al. | Jan 2001 | B1 |
6182892 | Angelo et al. | Feb 2001 | B1 |
6184863 | Sibert et al. | Feb 2001 | B1 |
6184873 | Ward | Feb 2001 | B1 |
6188391 | Seely et al. | Feb 2001 | B1 |
6188781 | Brownlee | Feb 2001 | B1 |
6232607 | Huang | May 2001 | B1 |
6236053 | Shariv | May 2001 | B1 |
6236063 | Yamazaki et al. | May 2001 | B1 |
6239788 | Nohno et al. | May 2001 | B1 |
6242729 | Izumi et al. | Jun 2001 | B1 |
6262408 | Izumi et al. | Jul 2001 | B1 |
6265792 | Granchukoff | Jul 2001 | B1 |
6271813 | Palalau | Aug 2001 | B1 |
6278423 | Wald et al. | Aug 2001 | B1 |
6278444 | Wilson et al. | Aug 2001 | B1 |
6284558 | Sakamoto | Sep 2001 | B1 |
6295113 | Yang | Sep 2001 | B1 |
6300977 | Waechter | Oct 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6316790 | Kodaira et al. | Nov 2001 | B1 |
6320617 | Gee et al. | Nov 2001 | B1 |
6323490 | Ikeda et al. | Nov 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6326956 | Jaeger et al. | Dec 2001 | B1 |
6327376 | Harkin | Dec 2001 | B1 |
6333544 | Toyoda et al. | Dec 2001 | B1 |
6351076 | Yoshida et al. | Feb 2002 | B1 |
6351260 | Graham et al. | Feb 2002 | B1 |
6357939 | Baron | Mar 2002 | B1 |
6364829 | Fulghum | Apr 2002 | B1 |
6377249 | Mumford | Apr 2002 | B1 |
6380995 | Kim | Apr 2002 | B1 |
6392254 | Liu et al. | May 2002 | B1 |
6399166 | Khan et al. | Jun 2002 | B1 |
6400359 | Katabami | Jun 2002 | B1 |
6441362 | Ogawa | Aug 2002 | B1 |
6453008 | Sakaguchi et al. | Sep 2002 | B1 |
6462328 | Toyoda | Oct 2002 | B2 |
6465824 | Kwasnick et al. | Oct 2002 | B1 |
6476447 | Yamazaki et al. | Nov 2002 | B1 |
6489631 | Young et al. | Dec 2002 | B2 |
6495387 | French | Dec 2002 | B2 |
6504530 | Wilson et al. | Jan 2003 | B1 |
6518561 | Miura | Feb 2003 | B1 |
6521109 | Bartic et al. | Feb 2003 | B1 |
6529189 | Colgan et al. | Mar 2003 | B1 |
6552745 | Perner | Apr 2003 | B1 |
6597348 | Yamazaki et al. | Jul 2003 | B1 |
6603867 | Sugino et al. | Aug 2003 | B1 |
6646636 | Popovich et al. | Nov 2003 | B1 |
6667740 | Ely et al. | Dec 2003 | B2 |
6679702 | Rau | Jan 2004 | B1 |
6681034 | Russo | Jan 2004 | B1 |
6690156 | Weiner et al. | Feb 2004 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6700144 | Shimazaki et al. | Mar 2004 | B2 |
6720594 | Rahn et al. | Apr 2004 | B2 |
6738031 | Young et al. | May 2004 | B2 |
6738050 | Comiskey et al. | May 2004 | B2 |
6741655 | Chang et al. | May 2004 | B1 |
6754472 | Williams et al. | Jun 2004 | B1 |
6762741 | Weindorf | Jul 2004 | B2 |
6762752 | Perski et al. | Jul 2004 | B2 |
6803906 | Morrison et al. | Oct 2004 | B1 |
6815716 | Sanson et al. | Nov 2004 | B2 |
6831710 | den Boer | Dec 2004 | B2 |
6862022 | Slupe | Mar 2005 | B2 |
6864882 | Newton | Mar 2005 | B2 |
6879344 | Nakamura et al. | Apr 2005 | B1 |
6879710 | Hinoue et al. | Apr 2005 | B1 |
6888528 | Rai et al. | May 2005 | B2 |
6947017 | Gettemy | Sep 2005 | B1 |
6947102 | den Boer et al. | Sep 2005 | B2 |
6956564 | Williams | Oct 2005 | B1 |
6972753 | Kimura et al. | Dec 2005 | B1 |
6995743 | den Boer et al. | Feb 2006 | B2 |
7006080 | Gettemy | Feb 2006 | B2 |
7009663 | Abileah et al. | Mar 2006 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7023503 | den Boer | Apr 2006 | B2 |
7053967 | Abileah et al. | May 2006 | B2 |
7068254 | Yamazaki et al. | Jun 2006 | B2 |
7075521 | Yamamoto et al. | Jul 2006 | B2 |
7098894 | Yang et al. | Aug 2006 | B2 |
7109465 | Kok et al. | Sep 2006 | B2 |
7157649 | Hill | Jan 2007 | B2 |
7164164 | Nakamura et al. | Jan 2007 | B2 |
7176905 | Baharav et al. | Feb 2007 | B2 |
7177026 | Perlin | Feb 2007 | B2 |
7184009 | Bergquist | Feb 2007 | B2 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7190461 | Han et al. | Mar 2007 | B2 |
7205988 | Nakamura et al. | Apr 2007 | B2 |
7208102 | Aoki et al. | Apr 2007 | B2 |
7242049 | Forbes et al. | Jul 2007 | B2 |
7250596 | Reime | Jul 2007 | B2 |
7292229 | Morag et al. | Nov 2007 | B2 |
7298367 | Geaghan et al. | Nov 2007 | B2 |
7348946 | Booth, Jr. et al. | Mar 2008 | B2 |
7372455 | Perski et al. | May 2008 | B2 |
7408598 | den Boer et al. | Aug 2008 | B2 |
7418117 | Kim et al. | Aug 2008 | B2 |
7450105 | Nakamura et al. | Nov 2008 | B2 |
7456812 | Smith et al. | Nov 2008 | B2 |
7463297 | Yoshida et al. | Dec 2008 | B2 |
7483005 | Nakamura et al. | Jan 2009 | B2 |
7522149 | Nakamura et al. | Apr 2009 | B2 |
7535468 | Uy | May 2009 | B2 |
7536557 | Murakami et al. | May 2009 | B2 |
7545371 | Nakamura et al. | Jun 2009 | B2 |
7598949 | Han | Oct 2009 | B2 |
7609862 | Black | Oct 2009 | B2 |
7612767 | Griffin et al. | Nov 2009 | B1 |
7629945 | Baudisch | Dec 2009 | B2 |
7649524 | Haim et al. | Jan 2010 | B2 |
7649527 | Cho et al. | Jan 2010 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7719515 | Fujiwara et al. | May 2010 | B2 |
7786978 | Lapstun et al. | Aug 2010 | B2 |
7843439 | Perski et al. | Nov 2010 | B2 |
7848825 | Wilson et al. | Dec 2010 | B2 |
7859519 | Tulbert | Dec 2010 | B2 |
7868873 | Palay et al. | Jan 2011 | B2 |
7902840 | Zachut et al. | Mar 2011 | B2 |
7924272 | den Boer et al. | Apr 2011 | B2 |
8031094 | Hotelling et al. | Oct 2011 | B2 |
8059102 | Rimon et al. | Nov 2011 | B2 |
8094128 | Vu et al. | Jan 2012 | B2 |
8169421 | Wright et al. | May 2012 | B2 |
8174273 | Geaghan | May 2012 | B2 |
8228311 | Perski et al. | Jul 2012 | B2 |
8232977 | Zachut et al. | Jul 2012 | B2 |
8269511 | Jordan | Sep 2012 | B2 |
8278571 | Orsley | Oct 2012 | B2 |
8373677 | Perski et al. | Feb 2013 | B2 |
8390588 | Vu et al. | Mar 2013 | B2 |
8400427 | Perski et al. | Mar 2013 | B2 |
8479122 | Hotelling et al. | Jul 2013 | B2 |
8481872 | Zachut | Jul 2013 | B2 |
8493331 | Krah et al. | Jul 2013 | B2 |
8536471 | Stern et al. | Sep 2013 | B2 |
8537126 | Yousefpor et al. | Sep 2013 | B2 |
8552986 | Wong et al. | Oct 2013 | B2 |
8581870 | Bokma et al. | Nov 2013 | B2 |
8605045 | Mamba et al. | Dec 2013 | B2 |
8659556 | Wilson | Feb 2014 | B2 |
8698769 | Coulson et al. | Apr 2014 | B2 |
8723825 | Wright et al. | May 2014 | B2 |
8816985 | Tate et al. | Aug 2014 | B1 |
8847899 | Washburn et al. | Sep 2014 | B2 |
8928635 | Harley et al. | Jan 2015 | B2 |
8933899 | Shahparnia et al. | Jan 2015 | B2 |
9013429 | Krekhovetskyy et al. | Apr 2015 | B1 |
9092086 | Krah et al. | Jul 2015 | B2 |
9146414 | Chang et al. | Sep 2015 | B2 |
9170681 | Huang et al. | Oct 2015 | B2 |
9310923 | Krah et al. | Apr 2016 | B2 |
9329703 | Falkenburg et al. | May 2016 | B2 |
9519361 | Harley et al. | Dec 2016 | B2 |
9557845 | Shahparnia | Jan 2017 | B2 |
20010000026 | Skoog | Mar 2001 | A1 |
20010000676 | Zhang et al. | May 2001 | A1 |
20010003711 | Coyer | Jun 2001 | A1 |
20010044858 | Rekimoto et al. | Nov 2001 | A1 |
20010046013 | Noritake et al. | Nov 2001 | A1 |
20010052597 | Young et al. | Dec 2001 | A1 |
20010055008 | Young et al. | Dec 2001 | A1 |
20020027164 | Mault et al. | Mar 2002 | A1 |
20020030581 | Janiak et al. | Mar 2002 | A1 |
20020030768 | Wu | Mar 2002 | A1 |
20020052192 | Yamazaki et al. | May 2002 | A1 |
20020063518 | Okamoto et al. | May 2002 | A1 |
20020067845 | Griffis | Jun 2002 | A1 |
20020071074 | Noritake et al. | Jun 2002 | A1 |
20020074171 | Nakano et al. | Jun 2002 | A1 |
20020074549 | Park et al. | Jun 2002 | A1 |
20020080123 | Kennedy et al. | Jun 2002 | A1 |
20020080263 | Krymski | Jun 2002 | A1 |
20020126240 | Seiki et al. | Sep 2002 | A1 |
20020149571 | Roberts | Oct 2002 | A1 |
20020175903 | Fahraeus et al. | Nov 2002 | A1 |
20030020083 | Hsiung et al. | Jan 2003 | A1 |
20030038778 | Noguera | Feb 2003 | A1 |
20030103030 | Wu | Jun 2003 | A1 |
20030117369 | Spitzer et al. | Jun 2003 | A1 |
20030127672 | Rahn et al. | Jul 2003 | A1 |
20030137494 | Tulbert | Jul 2003 | A1 |
20030151569 | Lee et al. | Aug 2003 | A1 |
20030156087 | den Boer et al. | Aug 2003 | A1 |
20030156100 | Gettemy | Aug 2003 | A1 |
20030156230 | den Boer et al. | Aug 2003 | A1 |
20030174256 | Kim et al. | Sep 2003 | A1 |
20030174870 | Kim et al. | Sep 2003 | A1 |
20030179323 | Abileah et al. | Sep 2003 | A1 |
20030183019 | Chae | Oct 2003 | A1 |
20030197691 | Fujiwara et al. | Oct 2003 | A1 |
20030205662 | den Boer et al. | Nov 2003 | A1 |
20030218116 | den Boer et al. | Nov 2003 | A1 |
20030231277 | Zhang | Dec 2003 | A1 |
20030234759 | Bergquist | Dec 2003 | A1 |
20040008189 | Clapper et al. | Jan 2004 | A1 |
20040046900 | den Boer et al. | Mar 2004 | A1 |
20040081205 | Coulson | Apr 2004 | A1 |
20040095333 | Morag et al. | May 2004 | A1 |
20040113877 | Abileah et al. | Jun 2004 | A1 |
20040125430 | Kasajima et al. | Jul 2004 | A1 |
20040140962 | Wang et al. | Jul 2004 | A1 |
20040189587 | Jung et al. | Sep 2004 | A1 |
20040191976 | Udupa et al. | Sep 2004 | A1 |
20040252867 | Lan et al. | Dec 2004 | A1 |
20050040393 | Hong | Feb 2005 | A1 |
20050091297 | Sato et al. | Apr 2005 | A1 |
20050110777 | Geaghan et al. | May 2005 | A1 |
20050117079 | Pak et al. | Jun 2005 | A1 |
20050134749 | Abileah | Jun 2005 | A1 |
20050146517 | Robrecht et al. | Jul 2005 | A1 |
20050173703 | Lebrun | Aug 2005 | A1 |
20050179706 | Childers | Aug 2005 | A1 |
20050200603 | Casebolt et al. | Sep 2005 | A1 |
20050206764 | Kobayashi et al. | Sep 2005 | A1 |
20050231656 | den Boer et al. | Oct 2005 | A1 |
20050270590 | Izumi et al. | Dec 2005 | A1 |
20050275616 | Park et al. | Dec 2005 | A1 |
20050285985 | den Boer et al. | Dec 2005 | A1 |
20060007224 | Hayashi et al. | Jan 2006 | A1 |
20060007336 | Yamaguchi | Jan 2006 | A1 |
20060010658 | Bigley | Jan 2006 | A1 |
20060012580 | Perski et al. | Jan 2006 | A1 |
20060034492 | Siegel et al. | Feb 2006 | A1 |
20060120013 | Diorio et al. | Jun 2006 | A1 |
20060125971 | Abileah et al. | Jun 2006 | A1 |
20060159478 | Kikuchi | Jul 2006 | A1 |
20060170658 | Nakamura et al. | Aug 2006 | A1 |
20060176288 | Pittel et al. | Aug 2006 | A1 |
20060187367 | Abileah et al. | Aug 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060202975 | Chiang | Sep 2006 | A1 |
20060217064 | Glass et al. | Sep 2006 | A1 |
20060249763 | Mochizuki et al. | Nov 2006 | A1 |
20060250381 | Geaghan | Nov 2006 | A1 |
20060279690 | Yu et al. | Dec 2006 | A1 |
20070030258 | Pittel et al. | Feb 2007 | A1 |
20070062852 | Zachut et al. | Mar 2007 | A1 |
20070109239 | den Boer et al. | May 2007 | A1 |
20070109286 | Nakamura et al. | May 2007 | A1 |
20070131991 | Sugawa | Jun 2007 | A1 |
20070146349 | Errico et al. | Jun 2007 | A1 |
20070216905 | Han et al. | Sep 2007 | A1 |
20070279346 | den Boer et al. | Dec 2007 | A1 |
20070285405 | Rehm | Dec 2007 | A1 |
20070291012 | Chang | Dec 2007 | A1 |
20080012835 | Rimon et al. | Jan 2008 | A1 |
20080012838 | Rimon | Jan 2008 | A1 |
20080029691 | Han | Feb 2008 | A1 |
20080046425 | Perski | Feb 2008 | A1 |
20080048995 | Abileah et al. | Feb 2008 | A1 |
20080049153 | Abileah et al. | Feb 2008 | A1 |
20080049154 | Abileah et al. | Feb 2008 | A1 |
20080055295 | den Boer et al. | Mar 2008 | A1 |
20080055496 | Abileah et al. | Mar 2008 | A1 |
20080055497 | Abileah et al. | Mar 2008 | A1 |
20080055498 | Abileah et al. | Mar 2008 | A1 |
20080055499 | den Boer et al. | Mar 2008 | A1 |
20080055507 | den Boer et al. | Mar 2008 | A1 |
20080062156 | Abileah et al. | Mar 2008 | A1 |
20080062157 | Abileah et al. | Mar 2008 | A1 |
20080062343 | den Boer et al. | Mar 2008 | A1 |
20080066972 | Abileah et al. | Mar 2008 | A1 |
20080084374 | Abileah et al. | Apr 2008 | A1 |
20080111780 | Abileah et al. | May 2008 | A1 |
20080128180 | Perski et al. | Jun 2008 | A1 |
20080129909 | den Boer et al. | Jun 2008 | A1 |
20080129913 | den Boer et al. | Jun 2008 | A1 |
20080129914 | de Boer et al. | Jun 2008 | A1 |
20080142280 | Yamamoto et al. | Jun 2008 | A1 |
20080158165 | Geaghan et al. | Jul 2008 | A1 |
20080158167 | Hotelling et al. | Jul 2008 | A1 |
20080158172 | Hotelling et al. | Jul 2008 | A1 |
20080158180 | Krah et al. | Jul 2008 | A1 |
20080162997 | Vu et al. | Jul 2008 | A1 |
20080165311 | Abileah et al. | Jul 2008 | A1 |
20080170046 | Rimon et al. | Jul 2008 | A1 |
20080238885 | Zachut et al. | Oct 2008 | A1 |
20080242346 | Rofougaran et al. | Oct 2008 | A1 |
20080278443 | Schelling et al. | Nov 2008 | A1 |
20080284925 | Han | Nov 2008 | A1 |
20080297487 | Hotelling et al. | Dec 2008 | A1 |
20080309625 | Krah et al. | Dec 2008 | A1 |
20080309628 | Krah et al. | Dec 2008 | A1 |
20080309631 | Westerman et al. | Dec 2008 | A1 |
20090009483 | Hotelling et al. | Jan 2009 | A1 |
20090027354 | Perski et al. | Jan 2009 | A1 |
20090065269 | Katsurahira | Mar 2009 | A1 |
20090066665 | Lee | Mar 2009 | A1 |
20090078476 | Rimon et al. | Mar 2009 | A1 |
20090095540 | Zachut et al. | Apr 2009 | A1 |
20090128529 | Izumi et al. | May 2009 | A1 |
20090135492 | Kusuda et al. | May 2009 | A1 |
20090140986 | Karkkainen et al. | Jun 2009 | A1 |
20090153152 | Maharyta et al. | Jun 2009 | A1 |
20090153525 | Chang | Jun 2009 | A1 |
20090167713 | Edwards | Jul 2009 | A1 |
20090167728 | Geaghan et al. | Jul 2009 | A1 |
20090184939 | Wohlstadter et al. | Jul 2009 | A1 |
20090189867 | Krah et al. | Jul 2009 | A1 |
20090225210 | Sugawa | Sep 2009 | A1 |
20090251434 | Rimon et al. | Oct 2009 | A1 |
20090262637 | Badaye et al. | Oct 2009 | A1 |
20090273579 | Zachut et al. | Nov 2009 | A1 |
20090322685 | Lee | Dec 2009 | A1 |
20090322696 | Yaakoby et al. | Dec 2009 | A1 |
20100001978 | Lynch et al. | Jan 2010 | A1 |
20100006350 | Elias | Jan 2010 | A1 |
20100013793 | Abileah et al. | Jan 2010 | A1 |
20100013794 | Abileah et al. | Jan 2010 | A1 |
20100013796 | Abileah et al. | Jan 2010 | A1 |
20100020037 | Narita et al. | Jan 2010 | A1 |
20100020044 | Abileah et al. | Jan 2010 | A1 |
20100033766 | Marggraff | Feb 2010 | A1 |
20100045904 | Katoh et al. | Feb 2010 | A1 |
20100051356 | Stern et al. | Mar 2010 | A1 |
20100053113 | Wu et al. | Mar 2010 | A1 |
20100059296 | Abileah et al. | Mar 2010 | A9 |
20100060590 | Wilson et al. | Mar 2010 | A1 |
20100066692 | Noguchi et al. | Mar 2010 | A1 |
20100066693 | Sato et al. | Mar 2010 | A1 |
20100073323 | Geaghan | Mar 2010 | A1 |
20100085325 | King-Smith et al. | Apr 2010 | A1 |
20100118237 | Katoh et al. | May 2010 | A1 |
20100155153 | Zachut | Jun 2010 | A1 |
20100160041 | Grant et al. | Jun 2010 | A1 |
20100194692 | Orr et al. | Aug 2010 | A1 |
20100252335 | Orsley | Oct 2010 | A1 |
20100271332 | Wu et al. | Oct 2010 | A1 |
20100289754 | Sleeman et al. | Nov 2010 | A1 |
20100302419 | den Boer et al. | Dec 2010 | A1 |
20100309171 | Hsieh et al. | Dec 2010 | A1 |
20100315384 | Hargreaves et al. | Dec 2010 | A1 |
20100315394 | Katoh et al. | Dec 2010 | A1 |
20100321320 | Hung et al. | Dec 2010 | A1 |
20100327882 | Shahparnia et al. | Dec 2010 | A1 |
20100328249 | Ningrat | Dec 2010 | A1 |
20110001708 | Sleeman | Jan 2011 | A1 |
20110007029 | Ben-David | Jan 2011 | A1 |
20110043489 | Yoshimoto | Feb 2011 | A1 |
20110063993 | Wilson et al. | Mar 2011 | A1 |
20110084857 | Marino et al. | Apr 2011 | A1 |
20110084937 | Chang et al. | Apr 2011 | A1 |
20110090146 | Katsurahira | Apr 2011 | A1 |
20110090181 | Maridakis | Apr 2011 | A1 |
20110118030 | Walley et al. | May 2011 | A1 |
20110155479 | Oda et al. | Jun 2011 | A1 |
20110157068 | Parker et al. | Jun 2011 | A1 |
20110169771 | Fujioka et al. | Jul 2011 | A1 |
20110175834 | Han et al. | Jul 2011 | A1 |
20110216016 | Rosener | Sep 2011 | A1 |
20110216032 | Oda et al. | Sep 2011 | A1 |
20110254807 | Perski et al. | Oct 2011 | A1 |
20110273398 | Ho et al. | Nov 2011 | A1 |
20110304577 | Brown et al. | Dec 2011 | A1 |
20110304583 | Kruglick | Dec 2011 | A1 |
20110304592 | Booth et al. | Dec 2011 | A1 |
20120013555 | Maeda et al. | Jan 2012 | A1 |
20120019488 | McCarthy | Jan 2012 | A1 |
20120050207 | Westhues et al. | Mar 2012 | A1 |
20120050216 | Kremin et al. | Mar 2012 | A1 |
20120056822 | Wilson et al. | Mar 2012 | A1 |
20120062497 | Rebeschi et al. | Mar 2012 | A1 |
20120062500 | Miller et al. | Mar 2012 | A1 |
20120068964 | Wright et al. | Mar 2012 | A1 |
20120086664 | Leto | Apr 2012 | A1 |
20120105357 | Li et al. | May 2012 | A1 |
20120105361 | Kremin et al. | May 2012 | A1 |
20120105362 | Kremin et al. | May 2012 | A1 |
20120139865 | Krah | Jun 2012 | A1 |
20120146958 | Oda et al. | Jun 2012 | A1 |
20120154295 | Hinckley et al. | Jun 2012 | A1 |
20120154340 | Vuppu et al. | Jun 2012 | A1 |
20120182259 | Han | Jul 2012 | A1 |
20120212421 | Honji | Aug 2012 | A1 |
20120242603 | Engelhardt et al. | Sep 2012 | A1 |
20120274580 | Sobel et al. | Nov 2012 | A1 |
20120293464 | Adhikari | Nov 2012 | A1 |
20120320000 | Takatsuka | Dec 2012 | A1 |
20120327040 | Simon | Dec 2012 | A1 |
20120327041 | Harley | Dec 2012 | A1 |
20120331546 | Falkenburg | Dec 2012 | A1 |
20130027361 | Perski et al. | Jan 2013 | A1 |
20130069905 | Krah et al. | Mar 2013 | A1 |
20130088465 | Geller et al. | Apr 2013 | A1 |
20130106722 | Shahparnia et al. | May 2013 | A1 |
20130113707 | Perski et al. | May 2013 | A1 |
20130127757 | Mann et al. | May 2013 | A1 |
20130141342 | Bokma et al. | Jun 2013 | A1 |
20130176273 | Li et al. | Jul 2013 | A1 |
20130176274 | Sobel et al. | Jul 2013 | A1 |
20130207938 | Ryshtun et al. | Aug 2013 | A1 |
20130215049 | Lee | Aug 2013 | A1 |
20130257793 | Zeliff et al. | Oct 2013 | A1 |
20140028576 | Shahparnia | Jan 2014 | A1 |
20140028577 | Krah | Jan 2014 | A1 |
20140028607 | Tan | Jan 2014 | A1 |
20140077827 | Seguine | Mar 2014 | A1 |
20140132556 | Huang et al. | May 2014 | A1 |
20140146009 | Huang | May 2014 | A1 |
20140168142 | Sasselli et al. | Jun 2014 | A1 |
20140168143 | Hotelling et al. | Jun 2014 | A1 |
20140267075 | Shahparnia et al. | Sep 2014 | A1 |
20140375612 | Hotelling et al. | Dec 2014 | A1 |
20150022485 | Chen et al. | Jan 2015 | A1 |
20150035768 | Shahparnia et al. | Feb 2015 | A1 |
20150035769 | Shahparnia | Feb 2015 | A1 |
20150035797 | Shahparnia | Feb 2015 | A1 |
20150103049 | Harley et al. | Apr 2015 | A1 |
20150338950 | Ningrat et al. | Nov 2015 | A1 |
20160162011 | Verma | Jun 2016 | A1 |
20160162101 | Pant et al. | Jun 2016 | A1 |
20160162102 | Shahparnia et al. | Jun 2016 | A1 |
20160179281 | Krah et al. | Jun 2016 | A1 |
20160357343 | Falkenburg et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
1243282 | Feb 2000 | CN |
1278348 | Dec 2000 | CN |
1518723 | Aug 2004 | CN |
201329722 | Oct 2009 | CN |
101393488 | Oct 2010 | CN |
201837984 | May 2011 | CN |
036 02 796 | Aug 1987 | DE |
197 20 925 | Dec 1997 | DE |
0 306 596 | Mar 1989 | EP |
0 366 913 | May 1990 | EP |
0 384 509 | Aug 1990 | EP |
0 426 362 | May 1991 | EP |
0 426 469 | May 1991 | EP |
0 464 908 | Jan 1992 | EP |
0 488 455 | Jun 1992 | EP |
0 490 683 | Jun 1992 | EP |
0 491 436 | Jun 1992 | EP |
0 509 589 | Oct 1992 | EP |
0 545 709 | Jun 1993 | EP |
0 572 009 | Dec 1993 | EP |
0 572 182 | Dec 1993 | EP |
0 587 236 | Mar 1994 | EP |
0 601 837 | Jun 1994 | EP |
0 618 527 | Oct 1994 | EP |
0 633 542 | Jan 1995 | EP |
0 762 319 | Mar 1997 | EP |
0 762 319 | Mar 1997 | EP |
0 770 971 | May 1997 | EP |
0 962 881 | Dec 1999 | EP |
1 022 675 | Jul 2000 | EP |
1 128 170 | Aug 2001 | EP |
1 884 863 | Feb 2008 | EP |
2 040 149 | Mar 2009 | EP |
2 172 834 | Apr 2010 | EP |
2 221 659 | Aug 2010 | EP |
2 660 689 | Nov 2013 | EP |
55-074635 | Jun 1980 | JP |
57-203129 | Dec 1982 | JP |
60-179823 | Sep 1985 | JP |
64-006927 | Jan 1989 | JP |
64-040004 | Feb 1989 | JP |
1-196620 | Aug 1989 | JP |
2-182581 | Jul 1990 | JP |
2-211421 | Aug 1990 | JP |
5-019233 | Jan 1993 | JP |
5-173707 | Jul 1993 | JP |
05-243547 | Sep 1993 | JP |
8-166849 | Jun 1996 | JP |
9-001279 | Jan 1997 | JP |
9-185457 | Jul 1997 | JP |
9-231002 | Sep 1997 | JP |
9-274537 | Oct 1997 | JP |
10-027068 | Jan 1998 | JP |
10-040004 | Feb 1998 | JP |
10-133817 | May 1998 | JP |
10-133819 | May 1998 | JP |
10-186136 | Jul 1998 | JP |
10-198515 | Jul 1998 | JP |
11-110110 | Apr 1999 | JP |
11-242562 | Sep 1999 | JP |
2000-020241 | Jan 2000 | JP |
2000-163031 | Jun 2000 | JP |
2002-342033 | Nov 2002 | JP |
2005-129948 | May 2005 | JP |
2005-352490 | Dec 2005 | JP |
2009-054141 | Mar 2009 | JP |
10-2013-0109207 | Oct 2013 | KR |
200743986 | Dec 2007 | TW |
200925944 | Jun 2009 | TW |
201115414 | May 2011 | TW |
201118682 | Jun 2011 | TW |
201324242 | Jun 2013 | TW |
201419103 | May 2014 | TW |
201504874 | Feb 2015 | TW |
WO-9740488 | Oct 1997 | WO |
WO-9921160 | Apr 1999 | WO |
WO-9922338 | May 1999 | WO |
WO-0145283 | Jun 2001 | WO |
WO-2006104214 | Oct 2006 | WO |
WO-2007145346 | Dec 2007 | WO |
WO-2007145347 | Dec 2007 | WO |
WO-2008018201 | Feb 2008 | WO |
WO-2008044368 | Apr 2008 | WO |
WO-2008044369 | Apr 2008 | WO |
WO-2008044370 | Apr 2008 | WO |
WO-2008044371 | Apr 2008 | WO |
WO-2008047677 | Apr 2008 | WO |
WO-2009081810 | Jul 2009 | WO |
WO-2009105115 | Aug 2009 | WO |
WO-2011008533 | Jan 2011 | WO |
WO-2012177567 | Dec 2012 | WO |
WO-2012177571 | Dec 2012 | WO |
WO-2012177573 | Dec 2012 | WO |
WO-2012177569 | Mar 2013 | WO |
WO-2012177569 | Mar 2013 | WO |
WO-2014018233 | Jan 2014 | WO |
WO-2014143430 | Sep 2014 | WO |
WO-2015017196 | Feb 2015 | WO |
Entry |
---|
Abileah, A. et al. (2004). “59.3: Integrated Optical Touch Panel in a 14.1′ AMLCD,” SID '04 Digest (Seattle) pp. 1544-1547. |
Abileah, A. et al. (2006). “9.3: Optical Sensors Embedded within AMLCD Panel: Design and Applications,” ADEAC '06, SID (Atlanta) pp. 102-105. |
Abileah, A. et al. (2007). “Optical Sensors Embedded within AMLCD Panel: Design and Applications,” Siggraph-07, San Diego, 5 pages. |
Anonymous. (2002). “Biometric Smart Pen Project,” located at http://www.biometricsmartpen.de/. . . , last visited Apr. 19, 2011, one page. |
Bobrov, Y. et al. (2002). “5.2 Manufacturing of a Thin-Film LCD,” Optiva, Inc., San Francisco, CA. 4 pages. |
Brown, C. et al. (2007). “7.2: A 2.6 inch VGA LCD with Optical Input Function using a 1-Transistor Active-Pixel Sensor,” ISSCC 2007 pp. 132-133, 592. |
Den Boer, W. et al. (2003). “56.3: Active Matrix LCD with Integrated Optical Touch Screen,” SID'03 Digest (Baltimore) pp. 1-4. |
Echtler, F. et al. (Jan. 2010). “An LED-based Multitouch Sensor for LCD Screens,” Cambridge, MA ACM 4 pages. |
Final Office Action mailed Mar. 4, 2004, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, 17 pages. |
Final Office Action mailed Jan. 21, 2005, for U.S. Appl. No. 10/329,217, filed Dec. 23, 2002, 13 pages. |
Final Office Action mailed Aug. 9, 2005, for U.S. Appl. No. 10/442,433, filed May 20, 2003, six pages. |
Final Office Action mailed Aug. 23, 2005, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, 10 pages. |
Final Office Action mailed Dec. 13, 2005, for U.S. Appl. No. 10/371,413, filed Feb. 20, 2003, six pages. |
Final Office Action mailed May 23, 2007, for U.S. Appl. No. 11/137,753, filed May 25, 2005, 11 pages. |
Final Office Action mailed Oct. 18, 2007, for U.S. Appl. No. 11/351,098, filed Feb. 8, 2006, six pages. |
Final Office Action mailed Oct. 31, 2007, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, nine pages. |
Final Office Action mailed Mar. 24, 2009, for U.S. Appl. No. 11/351,098, filed Feb. 8, 2006, 10 pages. |
Final Office Action mailed Feb. 10, 2011, for U.S. Appl. No. 11/901,649, filed Sep. 18, 2007, 20 pages. |
Final Office Action mailed May 18, 2011, for U.S. Appl. No. 11/978,031, filed Oct. 25, 2007, 17 pages. |
Final Office Action mailed Jun. 15, 2011, for U.S. Appl. No. 11/595,071, filed Nov. 8, 2006, 9 pages. |
Final Office Action mailed Jun. 24, 2011, for U.S. Appl. No. 11/978,006, filed Oct. 25, 2007, 12 pages. |
Final Office Action mailed Jul. 5, 2011, for U.S. Appl. No. 11/977,279, filed Oct. 24, 2007, 12 pages. |
Final Office Action mailed Sep. 29, 2011, for U.S. Appl. No. 11/977,911, filed Oct. 26, 2007, 22 pages. |
Final Office Action mailed Oct. 11, 2012, for U.S. Appl. No. 12/566,455, filed Sep. 24, 2009, 8 pages. |
Final Office Action mailed Oct. 25, 2012, for U.S. Appl. No. 12/568,302, filed Spetember 28, 2009, 13 pages. |
Final Office Action mailed Oct. 25, 2012, for U.S. Appl. No. 12/568,316, filed Sep. 28, 2009, 15 pages. |
Final Office Action mailed Jul. 26, 2013, for U.S. Appl. No. 13/166,726, filed Jun. 22, 2011, ten pages. |
Final Office Action mailed Oct. 31, 2013, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 13 pages. |
Hong, S.J. et al. (2005). “Smart LCD Using a-Si Photo Sensor,” IMID'05 Digest pp. 280-283. |
International Preliminary Report on Patentability and Written Opinion mailed Oct. 8, 2004, for PCT Application No. PCT/US03/05300, filed Feb. 20, 2003, 15 pages. |
International Preliminary Report on Patentability and Written Opinion mailed Dec. 30, 2004, for PCT Application No. PCT/US02/25573, filed Aug. 12, 2002, 16 pages. |
International Preliminary Report on Patentability and Written Opinion mailed May 14, 2008, for PCT Application No. PCT/US06/43741, filed Nov. 10, 2006, four pages. |
International Search Report mailed Apr. 14, 2003, for PCT Application No. PCT/US02/25573, filed Aug. 12, 2002 two pages. |
International Search Report mailed Jun. 16, 2003, for PCT Application No. PCT/US03/05300, filed Feb. 20, 2003, two pages. |
International Search Report mailed Nov. 11, 2003, for PCT Application No. PCT/US03/03277, filed Feb. 4, 2003, three pages. |
International Search Report mailed Sep. 21, 2007, for PCT Application No. PCT/US06/43741, filed Nov. 10, 2006, one page. |
International Search Report mailed Oct. 17, 2012, for PCT Application No. PCT/US2012/043019, filed Jun. 18, 2012, five pages. |
International Search Report mailed Oct. 17, 2012, for PCT Application No. PCT/US2012/043023, filed Jun. 18, 2012, six pages. |
International Search Report mailed Jan. 16, 2013, for PCT Application No. PCT/US2012/043021, filed Jun. 18, 2012, six pages. |
International Search Report mailed Sep. 12, 2013, for PCT Application No. PCT/US2013/048977, filed Jul. 1, 2013, six pages. |
Kim, J.H. et al. (May 14, 2000). “24.1: Fingerprint Scanner Using a-Si: H TFT-Array,” SID '00 Digest pp. 353-355. |
Kis, A. (2006). “Tactile Sensing and Analogic Algorithms,” Ph.D. Dissertation, Péter Pázmány Catholic University, Budapest, Hungary 122 pages. |
Non-Final Office Action mailed Jun. 4, 2003, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, 16 pages. |
Non-Final Office Action mailed May 21, 2004, for U.S. Appl. No. 10/329,217, filed Dec. 23, 2002, 13 pages. |
Non-Final Office Action mailed Sep. 21, 2004, for U.S. Appl. No. 10/442,433, filed May 20, 2003, six pages. |
Non-Final Office Action mailed Nov. 26, 2004, for U.S. Appl. No. 10/307,106, filed Nov. 27, 2002, eight pages. |
Non-Final Office Action mailed Dec. 10, 2004, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, nine pages. |
Non-Final Office Action mailed Jan. 21, 2005, for U.S. Appl. No. 10/347,149, filed Jan. 17, 2003, nine pages. |
Non-Final Office Action mailed Apr. 15, 2005, for U.S. Appl. No. 10/371,413, filed Feb. 20, 2003, four pages. |
Non-Final Office Action mailed Jun. 22, 2005, for U.S. Appl. No. 10/739,455, filed Dec. 17, 2003, 10 pages. |
Non-Final Office Action mailed Jul. 12, 2005, for U.S. Appl. No. 10/347,149, filed Jan. 17, 2003, four pages. |
Non-Final Office Action mailed Jan. 13, 2006, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, nine pages. |
Non-Final Office Action mailed May 12, 2006, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, seven pages. |
Non-Final Office Action mailed Aug. 28, 2006, for U.S. Appl. No. 10/371,413, filed Feb. 20, 2003, six pages. |
Non-Final Office Action mailed Jun. 28, 2007, for U.S. Appl. No. 11/351,098, filed Feb. 8, 2006, 12 pages. |
Non-Final Office Action mailed Jun. 29, 2007, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, 10 pages. |
Non-Final Office Action mailed Feb. 25, 2008, for U.S. Appl. No. 11/137,753, filed May 25, 2005, 15 pages. |
Non-Final Office Action mailed Jun. 24, 2008, for U.S. Appl. No. 11/351,098, filed Feb. 8, 2006, 11 pages. |
Non-Final Office Action mailed Jun. 25, 2009, for U.S. Appl. No. 11/980,029, filed Oct. 29, 2007, 9 pages. |
Non-Final Office Action mailed Nov. 23, 2009, for U.S. Appl. No. 11/407,545, filed Apr. 19, 2006, five pages. |
Non-Final Office Action mailed Jul. 29, 2010, for U.S. Appl. No. 11/901,649, filed Sep. 18, 2007, 20 pages. |
Non-Final Office Action mailed Oct. 13, 2010, for U.S. Appl. No. 11/978,006, filed Oct. 25, 2007, eight pages. |
Non-Final Office Action mailed Oct. 14, 2010, for U.S. Appl. No. 11/595,071, filed Nov. 8, 2006, seven pages. |
Non-Final Office Action mailed Nov. 26, 2010, for U.S. Appl. No. 11/977,279, filed Oct. 24, 2007, nine pages. |
Non-Final Office Action mailed Nov. 26, 2010, for U.S. Appl. No. 11/977,830, filed Oct. 26, 2007, seven pages. |
Non-Final Office Action mailed Dec. 13, 2010, for U.S. Appl. No. 11/977,339, filed Oct. 24, 2007, eight pages. |
Non-Final Office Action mailed Feb. 1, 2011, for U.S. Appl. No. 11/978,031, filed Oct. 25, 2007, 18 pages. |
Non-Final Office Action mailed Apr. 29, 2011, for U.S. Appl. No. 11/977,911, filed Oct. 26, 2007, 19 pages. |
Non-Final Office Action mailed Jun. 21, 2011, for U.S. Appl. No. 11/977,339, filed Oct. 24, 2007, 10 pages. |
Non-Final Office Action mailed Jun. 28, 2011, for U.S. Appl. No. 12/852,883, filed Aug. 8, 2010, 16 pages. |
Non-Final Office Action mailed Nov. 2, 2011, for U.S. Appl. No. 12/568,316, filed Sep. 28, 2009, 31 pages. |
Non-Final Office Action mailed Nov. 4, 2011, for U.S. Appl. No. 12/568,302, filed Sep. 28, 2009, 29 pages. |
Non-Final Office Action mailed Nov. 17, 2011, for U.S. Appl. No. 11/977,339, filed Oct. 24, 2007, nine pages. |
Non-Final Office Action mailed Jan. 10, 2012, for U.S. Appl. No. 11/977,864, filed Oct. 26, 2007, six pages. |
Non-Final Office Action mailed Jan. 31, 2012, for U.S. Appl. No. 12/566,477, filed Sep. 24, 2009, 11 pages. |
Non-Final Office Action mailed Feb. 29, 2012, for U.S. Appl. No. 11/978,031, filed Oct. 25, 2007, 20 pages. |
Non-Final Office Action mailed Apr. 20, 2012, for U.S. Appl. No. 12/566,455, filed Sep. 24, 2009, eight pages. |
Non-Final Office Action mailed Jun. 5, 2012, for U.S. Appl. No. 11/595,071, filed Nov. 8, 2006, 14 pages. |
Non-Final Office Action mailed Jun. 19, 2012, for U.S. Appl. No. 11/977,864, filed Oct. 26, 2007, seven pages. |
Non-Final Office Action mailed Nov. 15, 2012, for U.S. Appl. No. 12/566,477, filed Sep. 24, 2009, 11 pages. |
Non-Final Office Action mailed Mar. 5, 2013, for U.S. Appl. No. 13/166,726, filed Jun. 22, 2011, 14 pages. |
Non-Final Office Action mailed Mar. 29, 2013, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 12 pages. |
Non-Final Office Action mailed Jun. 17, 2013, for U.S. Appl. No. 13/166,711, filed Jun. 22, 2011, 8 pages. |
Notification of Reasons for Rejection mailed Dec. 19, 2011, for JP Patent Application No. 2008-540205, with English Translation, six pages. |
Pye, A. (Mar. 2001). “Top Touch-Screen Options,” located at http://www.web.archive.org/web/20010627162135.http://www.industrialtechnology.co.uk/2001/mar/touch.html, last visited Apr. 29, 2004, two pages. |
Rossiter, J. et al. (2005). “A Novel Tactile Sensor Using a Matrix of LEDs Operating in Both Photoemitter and Photodetector Modes,” IEEE pp. 994-997. |
U.S. Appl. No. 60/359,263, filed Feb. 20, 2002, by den Boer et al. |
U.S. Appl. No. 60/383,040, filed May 23, 2002, by Abileah et al. |
U.S. Appl. No. 60/736,708, filed Nov. 14, 2005, by den Boer et al. |
U.S. Appl. No. 60/821,325, filed Aug. 3, 2006, by Abileah et al. |
Yamaguchi, M. et al. (Jan. 1993). “Two-Dimensional Contact-Type Image Sensor Using Amorphous Silicon Photo-Transistor,” Jpn. J. Appl. Phys. 32(Part 1, No. 1B):458-461. |
Haines, L. (Mar. 23, 2005). “Japanese Enable Human Area Network,” The Register located at http:/www.theregister.co.uk/2005/03/23/human—area—network/print.html>, last visited Jun. 30, 2009, two pages. |
Lee, S.K. et al. (Apr. 1985). “A Multi-Touch Three Dimensional Touch-Sensitive Tablet,” Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, pp. 21-25. |
Non-Final Office Action mailed Feb. 7, 2013, for U.S. Appl. No. 12/960,068, filed Dec. 3, 2010, 24 pages. |
Rubine, D.H. (Dec. 1991). “The Automatic Recognition of Gestures,” CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, 285 pages. |
Rubine, D.H. (May 1992). “Combining Gestures and Direct Manipulation,” CHI '92, pp. 659-660. |
Westerman, W. (Spring 1999). “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface,” A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 364 pages. |
Final Office Action mailed Jan. 13, 2014, for U.S. Appl. No. 12/568,316, filed Sep. 28, 2009, 15 pages. |
Non-Final Office Action mailed Sep. 18, 2013, for U.S. Appl. No. 13/652,007, filed Oct. 15, 2012, 16 pages. |
Non-Final Office Action mailed Dec. 16, 2013, for U.S. Appl. No. 13/166,711, filed Jun. 22, 2011, 12 pages. |
Non-Final Office Action mailed Feb. 27, 2014, for U.S. Appl. No. 11/977,279, filed Oct. 24, 2007, 11 pages. |
Non-Final Office Action mailed Mar. 14, 2014, for U.S. Appl. No. 11/977,339, filed Oct. 24, 2007, 10 pages. |
Notice of Allowance mailed Feb. 3, 2014, for U.S. Appl. No. 13/166,726, filed Jun. 22, 2011, nine pages. |
Final Office Action mailed Apr. 28, 2014, for U.S. Appl. No. 13/652,007, filed Oct. 15, 2012, 16 pages. |
Final Office Action mailed Jul. 14, 2014, for U.S. Appl. No. 13/166,711, filed Jun. 22, 2011, 12 pages. |
Non-Final Office Action mailed Jun. 27, 2014, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 13 pages. |
Search Report dated Jun. 12, 2014, for ROC (Taiwan) Patent Application No. 101122110, one page. |
TW Search Report dated Jul. 7, 2014, for TW Patent Application No. 1011221079, filed Jun. 20, 2012, one page. |
TW Search Report dated Jul. 8, 2014, for TW Patent Application No. 101122107, filed Jun. 20, 2012, one page. |
International Search Report mailed Apr. 23, 2014, for PCT Application No. PCT/US2014/013927, filed Jan. 30, 2014, four pages. |
Non-Final Office Action mailed Apr. 24, 2014, for U.S. Appl. No. 13/560,958, filed Jul. 27, 2012, nine pages. |
Non-Final Office Action mailed May 8, 2014, for U.S. Appl. No. 13/560,973, filed Jul. 27, 2012, six pages. |
Notice of Allowance mailed May 12, 2014, for U.S. Appl. No. 13/166,726, filed Jun. 22, 2011, nine pages. |
Notice of Allowance mailed Sep. 4, 2014, for U.S. Appl. No. 13/166,726, filed Jun. 22, 2011, nine pages. |
International Search Report mailed Oct. 30, 2014, for PCT Application No. PCT/US2014/047658, filed Jul. 22, 2014, four pages. |
Final Office Action mailed Dec. 16, 2014, for U.S. Appl. No. 13/560,958, filed Jul. 27, 2012, 12 pages. |
Final Office Action mailed Jan. 12, 2015, for U.S. Appl. No. 13/560,973, filed Jul. 27, 2012, six pages. |
Non-Final Office Action mailed Jan. 30, 2015, for U.S. Appl. No. 13/166,711, filed Jun. 22, 2011, 12 pages. |
Chinese Search Report dated Oct. 23, 2015, for CN Application No. CN 201280030351.6, with English translation, four pages. |
TW Search Report dated Nov. 20, 2015, for TW Patent Application No. 103126285, one page. |
Chinese Search Report dated Sep. 6, 2015, for CN Application No. CN 201280030349.9, with English translation, six pages. |
Final Office Action mailed Aug. 20, 2015, for U.S. Appl. No. 13/166,711, filed Jun. 22, 2011, six pages. |
Non-Final Office Action mailed May 22, 2015, for U.S. Appl. No. 13/831,318, filed Mar. 14, 2013, eight pages. |
Non-Final Office Action mailed Aug. 28, 2015, for U.S. Appl. No. 13/560,958, filed Jul. 27, 2012, 11 pages. |
Non-Final Office Action mailed Sep. 24, 2015, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 14 pages. |
Final Office Action mailed May 4, 2015, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 17 pages. |
European Search Report dated May 2, 2016, for EP Application No. 15196245.3, filed Nov. 25, 2015, twelve pages. |
Final Office Action mailed Feb. 3, 2016, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 15 pages. |
Final Office Action mailed Mar. 9, 2016, for U.S. Appl. No. 13/831,318, filed Mar. 14, 2013, nine pages. |
Final Office Action mailed Jun. 3, 2016, for U.S. Appl. No. 14/333,461, filed Jul. 16, 2014, eight pages. |
Non-Final Office Action mailed Feb. 11, 2016, for U.S. Appl. No. 14/578,051, filed Dec. 19, 2014, nine pages. |
Non-Final Office Action mailed May 13, 2016, for U.S. Appl. No. 15/057,035, filed Feb. 29, 2016, six pages. |
Non-Final Office Action mailed May 17, 2016, for U.S. Appl. No. 14/333,382, filed Jul. 16, 2014, sixteen pages. |
Notice of Allowance mailed May 24, 2016, for U.S. Appl. No. 13/560,958, filed Jul. 27, 2012, ten pages. |
Non-Final Office Action mailed Dec. 4, 2015, for U.S. Appl. No. 14/333,461, filed Jul. 16, 2014, 15 pages. |
Notice of Allowance mailed Dec. 15, 2015, for U.S. Appl. No. 13/560,973, filed Jul. 27, 2012, nine pages. |
Notice of Allowance mailed Jan. 14, 2016, for U.S. Appl. No. 13/166,711, filed Jun. 22, 2011, five pages. |
Non-Final Office Action mailed Jul. 1, 2016, for U.S. Appl. No. 14/333,457, filed Jul. 16, 2014, 27 pages. |
Non-Final Office Action mailed Sep. 27, 2016, for U.S. Appl. No. 15/144,615, filed May 2, 2016, five pages. |
Non-Final Office Action mailed Oct. 20, 2016, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 16 pages. |
Non-Final Office Action mailed Nov. 25, 2016, for U.S. Appl. No. 13/831,318, filed Mar. 14, 2013, eight pages. |
Notice of Allowance mailed Aug. 10, 2016, for U.S. Appl. No. 14/578,051, filed Dec. 19, 2014, seven pages. |
Notice of Allowance mailed Sep. 9, 2016, for U.S. Appl. No. 13/560,958, filed Jul. 27, 2012, eight pages. |
Notice of Allowance mailed Oct. 31, 2016, for U.S. Appl. No. 15/057,035, filed Feb. 29, 2016, ten pages. |
TW Search Report dated Jun. 23, 2016, for TW Patent Application No. 104135140, with English Translation, two pages. |
Non-Final Office Action mailed Jan. 11, 2017, for U.S. Appl. No. 14/869,982, filed Sep. 29, 2015, nine pages. |
Non-Final Office Action mailed Jan. 12, 2017, for U.S. Appl. No. 14/869,980, filed Sep. 29, 2015, ten pages. |
Non-Final Office Action mailed Jan. 23, 2017, for U.S. Appl. No. 14/333,382, filed Jul. 16, 2014, sixteen pages. |
Number | Date | Country | |
---|---|---|---|
20140028607 A1 | Jan 2014 | US |