The invention relates to vehicles, in particular excavators or loaders, that have a chassis and a rotatable superstructure thereupon. Such vehicles are known in general. The invention relates in particular to an apparatus for displacing the superstructure relative to the chassis and furthermore relates to a vehicle that is equipped with such a superstructure.
Known from prior art EP 187 944 is an earth-working machine with a mobile chassis. Rotatably affixed to the mobile chassis 10 is a turntable 14 with hydraulic drive means 18. Eccentric to the drive means 18, a rotatable carriage 20 with the mechanism for the earth-work is affixed on the turntable 14. The carriage 20 with the earth-working mechanism can rotate about an angular range of 360° independent of the turntable drive 14, 18.
Furthermore known from U.S. Pat. No. 4,693,662 is a compact excavator in which the superstructure is also rotatable relative to the chassis. In addition, the superstructure boom can be pivoted to the left or to the right using a guide. This design is intended to simplify additional movements required of the driver to operate the equipment.
Finally, known from prior art GB 2 092 102 is a rotating part 15 that is rotatably borne on the platform 11 of a chassis and bears a structure 17 that can rotate about a second axis of rotation. When the boom 19 of the structure 17 is caused to move away from the excavation site 18, the shovel of the boom 19 describes a path X that projects laterally in less than a circular shape.
Common to this prior art is that an additional rotating or pivoting motion on the superstructure is possible in addition to the conventional rotating movement of the superstructure relative to the chassis. However, the overall design that permits the additional motion is too complex in all known instances. Furthermore, in this prior art the ratio of dump load to the rear working range of the pivoting superstructure is not taken into account. In addition, the prior art suffers from the problem that in compact excavators, whose superstructures are designed with a limited working range, the driver's cab arranged on the superstructure is quite confined and the parts thereunder are very difficult to access for maintenance.
The object of the invention is therefore to suggest an apparatus for displacing the superstructure, which is rotatably arranged in a known manner relative to the chassis of a vehicle, said apparatus being embodied in such a simple manner that it can be retrofitted as a kit in a vehicle such as for instance an excavator or loader.
This object is inventively achieved by a displacement apparatus in accordance with claim 1. In accordance with claim 2, the displacement apparatus contains an eccentric plate for a circular displacement movement; a linearly-guided displacement plate is provided in accordance with the alternative in claim 3; claim 4 suggests combining the eccentric plate and the displacement plate to obtain a combination of the circular and linear displacement movement. Independent claim 15 provides a vehicle, in particular an excavator or loader, in which such a displacement apparatus is installed. Useful further developments of the invention are found in the dependent claims.
In the invention, the chassis is provided with an eccentric plate or displacement plate that bears the live ring for the superstructure and that also has a displacement bearing or linear guide. This eccentric plate with displacement bearing or this displacement plate with linear guide can be installed with nothing further, e.g. between the chassis and the superstructure of a conventional excavator or loader. The eccentric plate and the displacement plate can also be combined with one another in that the displacement bearing of the eccentric plate is mounted on the displacement plate.
In accordance with the invention, the displaceable superstructure furthermore has the advantage that it can use the displacement space available either for adjustably increasing the permissible dump load or alternatively for decreasing the rear working range of the superstructure when it pivots. The rear working range of the superstructure decreases (i.e., the ability to work in constrained physical spaces improves correspondingly) when the superstructure is displaced relative to its base in the direction of the boom. Conversely, the permissible dump load increases (i.e., the boom can receive a correspondingly larger working load) when the superstructure is displaced relative to its base in a direction opposing the direction of the boom.
These improved working abilities can be attained inventively without building the superstructure too compactly and this being unreasonably confining for the driver or operator in the cab. It is also substantially more maintenance-friendly when the superstructure is less compact than in the prior art.
The present invention is explained in greater detail in the following drawings.
The inventive displacement apparatus 10 is employed in a vehicle, illustrated in any of
For instance, the excavator 1 with the inventive displacement apparatus 10 can be used at sites that are constrained by obstacles or walls 31 that will not permit the use of conventional excavators. Depending on the relative positioning of the excavator 1 to the walls 31, the displacement apparatus 10 can be used to move the superstructure 3 relative to the chassis 2 resting on the ground such that a rear pivot circle 32 described by the rear part 8 of the superstructure 3 does not intersect the obstacles or walls 31. This is attained using the displacement apparatus 10, which is illustrated in greater detail in
Installation of the inventive displacement apparatus 10 in the vehicle, especially in the excavator 1 or loader, furthermore also ensures its advantageous employment on an inclined surface, as is illustrated in
a through 1e illustrate various views of the inventive displacement apparatus 10 in accordance with a first exemplary embodiment. The displacement apparatus 10 has an eccentric plate 11 and an eccentric rotary duct 12. The eccentric plate 11 can be reinforced with ribs 17.
An apparatus for receiving a bearing-type live ring 16 is provided on the top side of the eccentric plate 11. The displacement apparatus 10 furthermore has a rotary drive 15 that drives the live ring 16. The live ring 16 is connected to the superstructure 3 when the excavator 1 is assembled. The superstructure 3 can thus rotate about a live ring center axis 18 relative to the eccentric plate 11 using the rotary drive 15.
An apparatus for receiving a displacement bearing 13 is provided on the bottom side of the eccentric plate 11. When the vehicle 1 is assembled or when the displacement apparatus 10 is installed in a series excavator 1, the displacement bearing 13 is connected to the chassis 2 of the vehicle 1 such that the eccentric plate 11 is rotatable about a displacement bearing center axis 19 relative to the chassis 2 of the vehicle 1.
Since the live ring center axis 18 and the displacement bearing center axis 19 are arranged eccentrically to one another, the advantageous displacement movement of the superstructure 3 relative to the chassis 2 mentioned in the foregoing is ensured. In order to ensure the displacement of the eccentric plate 11 relative to the chassis 2, a locking apparatus 14 is provided on the bottom side of the eccentric plate 11. The locking apparatus can be embodied as depicted in
In normal excavator operations, the displacement plate is secured by a lock 25. For displacing the superstructure 3, the lock 25 is released, the boom 5 is lowered for fixing the superstructure 3 in the front direction of the excavator 1 onto the ground, and the rotary drive 26 is actuated such that the live ring 23 is displaced with the displacement plate 21 in the guides 22. After displacement, the displacement plate 21 is re-secured by means of the lock 25. The lock 25 can be effected by hydraulic cylinders that act on a tappet or by any other known mechanical locking mechanism. For instance, a disk brake can be employed in the first cited exemplary embodiment in accordance with
In the exemplary embodiment in accordance with
In the exemplary embodiment in accordance with
Likewise, the displacement plate 21 from the second exemplary embodiment in accordance with
The components of the displacement apparatus 70 can also be used without the live ring 73 and the rotary drive 76 in the exemplary embodiment in accordance with
In contrast to the displacement apparatus in accordance with
Number | Date | Country | Kind |
---|---|---|---|
01116779 | Jul 2001 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/07966 | 7/17/2002 | WO | 00 | 1/20/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/012215 | 2/13/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
287631 | Cook | Oct 1883 | A |
3664528 | Gauchet | May 1972 | A |
4433495 | Kishi | Feb 1984 | A |
4661040 | Cigna | Apr 1987 | A |
4693662 | Haringer | Sep 1987 | A |
4746264 | Kishi et al. | May 1988 | A |
5135348 | Kishi et al. | Aug 1992 | A |
6250423 | Bartsch | Jun 2001 | B1 |
Number | Date | Country |
---|---|---|
0 187 944 | Jul 1986 | EP |
2 734 294 | Nov 1996 | FR |
2 092 102 | Aug 1982 | GB |
51 067602 | Jun 1976 | JP |
59 170335 | Sep 1984 | JP |
Number | Date | Country | |
---|---|---|---|
20040217628 A1 | Nov 2004 | US |