The present invention relates generally to an apparatus and method including a motion sensing and an annunciator responding to the sensed motion, and more particularly, to a toy or any other amusing device including a motion sensor and an annunciator.
A ball is a round, generally spherical shaped object, but sometimes ovoid, with various uses. In a ball game, the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Ball can also be used for simpler activities, such as catch, marbles and juggling Simple balls are commonly formed of flexible plastic material, while others use synthetic leather. Various ball games are known for amusement, sport and other recreation activities, are played with a ball or balls, and are subject to rules, such as cricket, baseball, basketball, football, soccer, tennis, rugby, golf, volleyball and others. Examples of balls used in game balls are illustrated in
One example of a prior-art pet toy that comprises a ball that has an opening and an exit and used for treat dispensing, having sound recording and playback is described in U.S. Pat. No. 6,484,671 to Henenbruck titled: “Treat Dispensing Toy”, which is incorporated in its entirety for all purposes as if fully set forth herein. Another prior-art food dispensing treat pet toy is described in U.S. Pat. No. 7,832,362 to DeGhionno titled: “Lightweight, Hollow, Reusable, Food-Dispensing Treat Toy and Combination of Food-Dispensing Treat Toy with an Enclosing Container Designed for Intellectual Stimulation, Enrichment and Amusement of Animals, and Reduction of Boredom or Separation Anxiety That May Lead to Destructive or Undesirable Behavior in Puppies and/or Other Animals”, which is incorporated in its entirety for all purposes as if fully set forth herein. An impact sensitive talking ball including a plunger that operates a test switch when the ball is squeezed in described in U.S. Pat. No. 5,375,839 to Pagani titled: “Impact Sensitive Talking Ball”, which is incorporated in its entirety for all purposes as if fully set forth herein. A game ball with a timer or clock is described in U.S. Pat. No. 6,945,887 to Oister et al. titled: “Game Ball with Clock”, which is incorporated in its entirety for all purposes as if fully set forth herein.
In consideration of the foregoing, it would be an advancement in the art to provide a method and system that is simple, cost-effective, faithful, reliable, has a minimum part count, minimum hardware, or uses existing and available components for providing additional amusement, education, entertainment and a better user experience relating to a device such as a ball game, toy and the like, preferably without departing from the conventional ‘look and feel’ of a common toy or ball. Further, it would be advantageous if such a toy or ball provides added educational value and stimulus for playing, adding to the user experience more curiosity and excitement, as well as added pleasure and amusement and making the toy more versatile and attractive to play with, while being easy to construct and manufacture, robust and consistent in aesthetic appearance and function, and preferably without significantly departing from the conventional ‘look and feel’ of such a toy or a ball.
In one aspect of the invention, a device for signaling in response to a sensed motion is described. The device may be housed in a single enclosure, and may include an accelerometer for sensing the device acceleration, an annunciator for signaling to a person or an animal using visual or audible signaling, and a controller coupled between the accelerometer and the annunciator for activating or controlling the annunciator in response to the sensed device acceleration according to a predetermined logic. A power source is included that may power the electrical components such as the accelerometer, the annunciator, the controller and any other power-consuming components. Each of the annunciator, the power source, the accelerometer, the controller and other of the device components may be mechanically attached to the enclosure.
The power source may include a primary or a rechargeable battery housed in a battery compartment secured in the device enclosure. The battery compartment may be accessed for replacing the battery via an opening in the enclosure, by removing a securely removable cover, which may be having a perforated front surface covering a mating aperture being flush with the surface surrounding the aperture. A power connector on the external surface of the enclosure may be used for connecting to a power source or for charging the battery using a battery charger. The charging may use a DC power from a domestic AC power outlet providing AC powering, using an AC/DC adapter comprising a step-down transformer and an AC/DC converter. In one aspect of the invention, the device is powered from a generator that converts the kinetic energy of the device to an electrical energy, such as by using a coil and a magnetic field, which their relative movement is generated in response to the device motion. The device may be powered or charged contactlessly using induction. In this case, the device further includes an induction coil for wirelessly receiving AC power and charging the rechargeable battery when the device is put in an electromagnetic field.
The accelerometer may be piezoelectric, piezoresistive, capacitive, MEMS or electromechanical switch accelerometer, measuring the magnitude and the direction of the device acceleration in a single-axis, 2-axis or 3-axis (omnidirectional).
The device may include one or more annunciators. Each annunciator may be a visual or an audible signaling component (or both), operated or controlled by the controller. An annunciator may further contain a smoke generator.
The visual signaling component may contain a visible light emitter based on a semiconductor device (e.g. LED—Light Emitting Diode), an incandescent lamp or a fluorescent lamp. The illumination may be blinking or steady, and can further be used to illuminate part of or all of an image. The visible light emitter positioning, appearance, type, color or steadiness may be associated with the device theme or device shape. The visible light emitter may be a numerical or an alphanumerical display, capable of displaying numbers, letters, symbols, words or characters, which may be displayed as scrolling, static, bold or flashing. The visible light emitter may be a video or image display and may be based on LCD (Liquid Crystal Display), TFT (Thin-Film Transistor), FED (Field Emission Display) or CRT (Cathode Ray Tube).
The audible signaling device may be based on electromechanical or piezoelectric means capable of generating single or multiple tones, and can be a buzzer, a chime or a ringer. In one aspect of the invention, the audible signaling device comprises a loudspeaker and a digital to analog converter coupled to the loudspeaker. The volume, type, steadiness, pitch, rhythm, dynamics, timbre or texture of the sound emitted from the audible signaling device may be associated with the device theme or the device shape. Alternatively, the sound emitted from the audible signaling device is a song or a melody, wherein the song or melody name or content relates to the device theme or shape. In one aspect, the sound emitted from the audible signaling device is a human voice talking sounding of a syllable, a word, a phrase, a sentence, a short story or a long story, using speech synthesis or being pre-recorded.
In one aspect of the invention, the annunciator can be in one out of two states, and wherein the annunciator state is in response to an event defined by the sensed acceleration magnitude or direction exceeding a predefined value. An annunciator state may involve activating it by supplying power from the power supply via a switch, while the other state involves deactivating it by disconnecting the power supply. The control logic is operative to shift the annunciator between states until the next event occurs or for a predetermined period in response to an event or in response to a preset number of events. Further, the annunciator may toggle between states in response to an event or to a preset number of events. The annunciator may also continuously toggle between states, wherein the period in each state, the toggling frequency, the toggling period or the duty-cycle is affected as a response to an event or in response to the number of counted events. Alternatively or in addition, the annunciator may be in one out of a multiple states in response to an event. The annunciator may include multiple components, and the annunciator states may be defined as activating or powering a selected one (or more) of its components. In response to an event or multiple events, the annunciator state may shift between states according to a predictable or random order.
In one aspect of the invention, the controller is used to activate (or deactivate) or control the annunciator based on the sensed motion measured by the accelerometer. The control may use controlling the annunciator powering or via a dedicated control port of the annunciator. The controller may be based on a discrete logic or an integrated device, such as a processor, microprocessor or microcomputer, and may include a general-purpose device or may be a special purpose processing device, such as an ASIC, PAL, PLA, PLD, Field Programmable Gate Array (FPGA), Gate Array, or other customized or programmable device, and may includes a memory that may include a static RAM (random Access Memory), dynamic RAM, flash memory, ROM (Read Only Memory), or any other data storage medium. The memory may include data, programs, and/or instructions and any other software or firmware executable by the processor. The control logic can be implemented in hardware or in software, such as a firmware stored in the memory.
In one aspect, the annunciator activation or control use randomness using a random signal generator. The random signal generator may be based on a digital random signal generator having a digital output. Alternatively, the random signal generator may be based on analog random signal generator having an analog output. Analog random signal generator may use a digital random signal generator whose output is converted to analog using analog to digital converter, or can use a repetitive analog signal generator (substantially not synchronized to any other timing in the system) whose output is randomly time sampled by a sample and hold. A random signal generator (having either analog or digital output) can be hardware based, using a physical process such as thermal noise, shot noise, nuclear decaying radiation, photoelectric effect or other quantum phenomena, or can be software based, using a processor executing an algorithm for generating pseudo-random numbers which approximates the properties of random numbers.
The device may be substantially sphere shaped similar to play ball, and may be used as a toy for the amusement of a person or a pet. The ball shape may be similar to cricket, baseball, basketball, football, soccer, tennis, rugby, golf, or volleyball play ball. Alternatively, the device may be shaped as a handheld unit including two disks attached to both ends of a rod.
The activation or control of the annunciator may be as a response to the combination of the direction or the magnitude of the sensed acceleration, or a combination thereof. One or multiple acceleration thresholds may be defined, and the device may be operative to activate or control the annunciator as a response to the magnitude of the sensed acceleration exceeding one or more of the acceleration thresholds. The device may further comprise a counter, such as an electromechanical counter, mechanical counter, hardware counter or software-based counter, for counting events for counting the times that the magnitude of the sensed acceleration exceeds an acceleration threshold, and according to the counter value to activate or control the annunciator. The annunciator may be a numerical display for displaying a representation of the counter value, or a loudspeaker for saying a representation of the counter value. The device may further comprise a peak-detector and a storage for detecting and storing a peak value of the sensed acceleration, and the annunciator may be activated or controlled according to the measured peak value. The annunciator may be a numerical display for displaying a representation of the peak value, or a loudspeaker for saying a representation of the peak value.
In one aspect, the motion sensor detects or measures the tilt angle of the device and the acceleration along the tilt angle, and the annunciator is activated or controlled in response to the sensed tilt angle value and the sensed acceleration magnitude in the tilt axis. The device may further operate the annunciator where one parameter of the annunciator is activated or controlled in response to the sensed tilt angle value, while another parameter of the annunciator is activated or controlled in response to the acceleration magnitude in the tilt axis. The annunciator may include an audible signaling component where either the sensed tilt angle value or the sensed acceleration magnitude in the tilt axis affects one or more of the volume, type, frequency, steadiness, pitch, rhythm, dynamics, timbre or texture of the sound emitted from the audible signaling component. Further, the emitted sound may resemble or accurately be the sound of a musical instrument such as drums, piano, tuba, harp, violin, flute or guitar.
The above summary is not an exhaustive list of all aspects of the present invention. Indeed, the inventor contemplates that his invention includes all systems and methods that can be practiced from all suitable combinations and derivatives of the various aspects summarized above, as well as those disclosed in the detailed description below and particularly pointed out in the claims filed with the application. Such combinations have particular advantages not specifically recited in the above summary.
It is understood that other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description, wherein are shown and described only embodiments of the invention by way of illustration. As will be realized, the invention is capable of other and different embodiments and its several details are capable of modification in various other respects, all without departing from the scope of the present invention as defined by the claims. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
The above and other features and advantages of the present invention will become more fully apparent from the following description, drawings and appended claims, or may be learned by the practice of the invention as set forth hereinafter. It is intended that all such additional apparatus and advantages be included within this description, be within the scope of the present invention, and be protected by the accompanying claims.
The preferred embodiments of the invention presented here are described below in the drawings and the detailed specification. Unless specifically noted, it is intended that the words and phrases in the specification and the claims be given the plain, ordinary and accustomed meaning to those of ordinary skill in the applicable arts. If any other special meaning is intended for any word or phrase, the specification will clearly state and define the special meaning.
The invention is herein described, by way of non-limiting examples only, with reference to the accompanying figures and drawings, wherein like designations denote like elements. Understanding that these drawings only provide information concerning typical embodiments of the invention and are not therefore to be considered limiting in scope:
The principles and operation of an apparatus according to the present invention may be understood with reference to the figures and the accompanying description wherein similar components appearing in different figures are denoted by identical reference numerals. The drawings and descriptions are conceptual only. In actual practice, a single component can implement one or more functions; alternatively, each function can be implemented by a plurality of components and devices. In the figures and descriptions, identical reference numerals indicate those components that are common to different embodiments or configurations. Identical numerical references (even in the case of using a different suffix, such as 5, 5a, 5b and 5c) refer to functions or actual devices that are either identical, substantially similar, or having similar functionality. It will be readily understood that the components of the present invention, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the apparatus, system, and method of the present invention, as represented in the figures herein, is not intended to limit the scope of the invention, as claimed, but is merely representative of embodiments of the invention.
Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions, utilizing terms such as “processing”, “computing”, “calculating”, “determining”, “generating”, “creating” or the like, refer to the action and/or processes of a computer or computing system, or processor or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data, similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.
Embodiments of the present invention may use terms such as processor, computer, apparatus, system, sub-system, module, unit and/or device (in single or plural form) for performing the operations herein. This may be specially constructed for the desired purpose, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium such as, but not limited to, any type of disk including, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), electrically programmable read-only memories (EPROMs), electrically erasable and programmable read only memories (EEPROMs), magnetic or optical cards, or any other type of media suitable for storing electronic instructions, and capable of being coupled to a computer system bus.
The processes/devices (or counterpart terms specified above) and displays presented herein are not inherently related to any particular computer or other apparatus, unless specifically stated otherwise. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct a more specialized apparatus to perform the desired method. The desired structure for a variety of these systems will appear in the description below. In addition, embodiments of the present invention are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the inventions as described herein.
All directional references used herein (e.g., upper, lower, upwards, downwards, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise, etc.) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention.
While the devices herein are described as connected using wires or conductors, any type of conductive transmission line can be equally used. The terms ‘wire’, ‘conductor’, ‘line’, ‘transmission line’, ‘cable’, ‘wiring’, ‘wire pair’ as used herein should be interpreted to include any type of conductive transmission-line, and specifically a metallic transmission line comprising two or more conductors used to carry electrical signals. Non-limiting examples are coaxial cable, PCB (Printed Circuit Board) connections and twisted pair, the latter including both UTP (Unshielded Twisted-Pair) and STP (shielded twisted-pair), as well as connections within Application Specific Integrated Circuits (ASICs). Similarly, any PAN (Personal Area Network), LAN (Local Area Network), MAN (Metropolitan Area Network) or WAN (Wide Area Network) wiring may be used as the wired medium.
A device 10 according to one aspect of the invention is described in
The motion sensor 11 may be based on a piezoelectric accelerometer that utilizes the piezoelectric effect of certain materials to measure dynamic changes in mechanical variables (e.g., acceleration, vibration, and mechanical shock). Piezoelectric accelerometers commonly rely on piezoceramics (e.g., lead zirconate titanate) or single crystals (e.g., quartz, tourmaline) Piezoelectric quartz accelerometer is disclosed in U.S. Pat. No. 7,716,985 to Zhang et al. entitled: “Piezoelectric Quartz Accelerometer”, U.S. Pat. No. 5,578,755 to Offenberg entitled: “Accelerometer Sensor of Crystalline Material and Method for Manufacturing the Same” and U.S. Pat. No. 5,962,786 to Le Traon et al. entitled: “Monolithic Accelerometric Transducer”, which are all incorporated in their entirety for all purposes as if fully set forth herein. Alternatively or in addition, the motion sensor 11 may be based on the Micro Electro-Mechanical Systems (MEMS, a.k.a. Micro-mechanical electrical systems) technology. A MEMS based motion sensor is disclosed in U.S. Pat. No. 7,617,729 to Axelrod et al. entitled: “Accelerometer”, U.S. Pat. No. 6,670,212 to McNie et al. entitled: “Micro-Machining” and in U.S. Pat. No. 7,892,876 to Mehregany entitled: “Three-axis Accelerometers and Fabrication Methods”, which are all incorporated in their entirety for all purposes as if fully set forth herein. An example of MEMS motion sensor is LIS302DL manufactured by STMicroelectronics NV and described in Data-sheet LIS302DL STMicroelectronics NV, ‘MEMS motion sensor 3-axis—±2 g/±8 g smart digital output “piccolo” accelerometer’, Rev. 4, October 2008, which is incorporated in its entirety for all purposes as if fully set forth herein.
Alternatively or in addition, the motion sensor 11 may be based on an electrical tilt and vibration switch or any other electromechanical switch, such as the sensor described in U.S. Pat. No. 7,326,866 to Whitmore et al. entitled: “Omnidirectional Tilt and vibration sensor”, which is incorporated in its entirety for all purposes as if fully set forth herein. An example of an electromechanical switch is SQ-SEN-200 available from SignalQuest, Inc. of Lebanon, N.H., USA, described in the data-sheet ‘DATASHEET SQ-SEN-200 Omnidirectional Tilt and Vibration Sensor’ Updated 2009 Aug. 3, which is incorporated in its entirety for all purposes as if fully set forth herein. Other types of motion sensors may be equally used, such as devices based on piezoelectric, piezoresistive and capacitive components to convert the mechanical motion into an electrical signal. Using an accelerometer to control is disclosed in U.S. Pat. No. 7,774,155 to Sato et al. entitled: “Accelerometer-Based Controller”, which is incorporated in its entirety for all purposes as if fully set forth herein.
The annunciator 13 may include one or more visual or audible signaling components, or any other devices that indicates a status to the person. In one embodiment according to the invention, the annunciator 13 includes a visual signaling device. In one example, the device illuminates a visible light, such as a Light-Emitting-Diode (LED), or uses a Liquid Crystal Display (LCD) which uses changes in the reflectivity in an applied electric field. The LED may be a multi-color LED, such as LED Part No. 08L5015RGBC available from RSR Electronics, Inc. from NJ, U.S.A., described in Data-sheet Multi Color LED Part No. 08L5015RGBC, which is incorporated in its entirety for all purposes as if fully set forth herein. However, any type of visible electric light emitter such as a flashlight, an incandescent lamp and compact fluorescent lamps can be used. Multiple light emitters may be used, and the illumination may be steady, blinking or flashing, either independently or under the control of the control block 12. Further, the illumination can be directed for lighting a surface, such as a surface including an image or a picture. Further, a single single-state visual indicator may be used to provide multiple indications, for example by using different colors (of the same visual indicator), different intensity levels, variable duty-cycle and so forth. Further, the visual signaling may be associated with the device 10 function, theme or shape. Such conceptual relationship may include, for example, the light emitters' brightness, appearance, location, type, color and steadiness that are influenced by the device 10 theme, providing a surprising and illustrative result. In one example, the annunciator 13 is based on a numerical digital display that provides readings in the form of numbers. For example, the annunciator 13 may use the quadruple digits, seven-segments, LED display Part No.: LTC-3610G available from Lite-On Electronics, Inc., and described in Lite-On Electronics, Inc., Publication BNS-OD-C131/A4 downloaded March 2011, which is incorporated in its entirety for all purposes as if fully set forth herein. Similarly, the annunciator 13 is based on an alphanumerical digital display that provides readings in the form of characters, including numbers, letters or symbols. For example, the annunciator 13 may use the quadruple digits, seven-segments, LED display Part No.: LTM-8647AC available from Lite-On Electronics, Inc., and described in Lite-On Electronics, Inc., Publication BNS-OD-C131/A4 downloaded March 2011, which is incorporated in its entirety for all purposes as if fully set forth herein.
The invention can be similarly used to display word messages in a variety of fashions and formats, such as scrolling, static, bold and flashing. The device 10 can further display visual display material beyond words and characters, such as arrows, symbols, ASCII and non-ASCII characters, still images such as pictures and video. The annunciator 13 may use any electronic display or any other output device used for presentation of visual information. The display may be a digital or analog video display, and may use technologies such as LCD (Liquid Crystal Display), TFT (Thin-Film Transistor), FED (Field Emission Display), CRT (Cathode Ray Tube) or any other electronic screen technology that visually shows information such as graphics or text. In many cases, an adaptor (not shown) is required in order to connect an analog display to the digital data. For example, the adaptor may convert to composite video (PAL, NTSC) or S-Video or HDTV signal. Analog displays are commonly using interfaces such as composite video such as NTSC, PAL or SECAM formats. Similarly, analog RGB, VGA (Video Graphics Array), SVGA (Super Video Graphics Array), SCART, S-video and other standard analog interfaces can be used. Further, personal computer monitors, plasma or flat panel displays, CRT, DLP display or a video projector may be equally used. Standard digital interfaces such as an IEEE1394 interface, also known as FireWire™, may be used. Other digital interfaces that can be used are USB, SDI (Serial Digital Interface), FireWire, HDMI (High-Definition Multimedia Interface), DVI (Digital Visual Interface), UDI (Unified Display Interface), DisplayPort, Digital Component Video and DVB (Digital Video Broadcast).
In one example, the device is used for sound or music generation, such as a music toy instrument. The sensed motion may be associated with a musical tune (or a tone) or any other single sound, which is played upon activation of the music-associated annunciator 13. A timbre sound element may also be used to select the timbre or other tonal characteristics of the output sounds. The sign of the musical tune to be played by the device 10 is printed, engraved or labeled on the device external surface. Further, the sound produced by an annunciator can emulate the sounds of a conventional acoustical music instruments, such as a piano, tuba, harp, violin, flute, guitar and so forth. Further, the device 10 can be shaped as a miniature of the music instrument associated with its sound.
In one embodiment according to the invention, the annunciator includes an audible signaling device, emitting audible sounds that can be heard (having frequency components in the 20-20,000 Hz band). In one example, the device is a buzzer (or beeper), a chime, a whistler or a ringer. Buzzers are known in the art and are either electromechanical or ceramic-based piezoelectric sounders which make a high-pitch noise. The sounder may emit a single or multiple tones, and can be in continuous or intermittent operation. In another example, the sounder simulates the voice of a human being or generates music, typically by using an electronic circuit having a memory for storing the sounds (e.g., click, gong, music, song, voice message, etc.), a digital to analog converter to reconstruct the electrical representation of the sound and driver for driving a loudspeaker, which is an electro-acoustical transducer that converts an electrical signal to sound. An example of a greeting card providing music and mechanical movement is disclosed in U.S. Patent Application 2007/0256337 to Segan entitled: “User Interactive Greeting Card”, which is incorporated in its entirety for all purposes as if fully set forth herein. A ‘Gong’ sound may be generated using SAE 800 from Siemens, described in Data-sheet Programmable Single-/Dual-/Triple-Tone Gong, SAE 800, Siemens semiconductor Group, 02.05, ″, which is incorporated in its entirety for all purposes as if fully set forth herein.
The audible signaling may be associated with the motion sensed by the device 10, as well as its theme or shape. For example, the sounder appearance, as well as the sound volume, type and steadiness may be influenced by the theme, providing a surprising and illustrative result. For example, the shape may include a household appliance associated with a specific sound such as the ringing of a telephone set, the buzzer of the entrance bell or the bell sound or a microwave oven. Other examples are a horn of an automobile, the rattling ‘chik-chuk’ sound of a train and a siren of an emergency vehicle such as a police car, an ambulance or a fire-engine truck. In such a case, the sounder will preferably generate a sound which simulates or is similar to the real sound associated with the theme, such as a telephone ringing for a telephone set and a siren sound for a police car. In another example, the device shape includes an animal, and the sounder produces the characteristic sound of the animal, such as barking for a dog, yowling for a cat and twittering of a bird. Such a system can be used for audio-visual learning for teaching small children by association of an object such as a musical instruments or an animal which produces a distinctive sound with the viewable indicia associated therewith.
In one example the sound generated is music or song. The elements of the music such as pitch (which governs melody and harmony), rhythm (and its associated concepts tempo, meter, and articulation), dynamics, and the sonic qualities of timbre and texture, may be associated with the device 10 shape or theme. For example, if a musical instrument is shown in a picture or by the shape of the device 10, the music generated by that instrument will be played, such as drumming sound of drums and playing of a flute or guitar. In one example according to the invention, a song or a melody of a song is played by the annunciator. Preferably, the song (or its melody) may be associated with the device 10 sensed motions, its shape or its theme.
In one example according to the invention, a human voice talking is played by the annunciator. The sound may be a syllable, a word, a phrase, a sentence, a short story or a long story, and can be based on speech synthesis or pre-recorded. Male or female voice can be used, being young or old. The text sounded is preferably associated with the shape or theme. For example, a name of the theme of the system can be heard, such as ‘dog’, ‘truck’ and ‘mountain’. Further, the story heard may be related to the theme, or can describe the items shown in an image printed on the device 10 enclosure. In another example, general encouraging, thanking or praising phrases can be made such as ‘good work’, ‘excellent’ and ‘congratulations’. Further, a greeting such as ‘Merry Christmas’ can be played for a Christmas related theme.
A tone, voice, melody or song sounder typically contains a memory storing a digital representation of the pre-recorder or synthesized voice or music, a digital to analog (D/A) converter for creating an analog signal, a speaker and a driver for feeding the speaker. An annunciator 13, which includes a sounder, may be based on Holtek HT3834 CMOS VLSI Integrated Circuit (IC) named ‘36 Melody Music Generator’ available from Holtek Semiconductor Inc., headquartered in Hsinchu, Taiwan, and described with application circuits in a data sheet Rev. 1.00 dated Nov. 2, 2006, which is incorporated in their entirety for all purposes as if fully set forth herein. Similarly, the sounder may be based on EPSON 7910 series ‘Multi-Melody IC’ available from Seiko-Epson Corporation, Electronic Devices Marketing Division located in Tokyo, Japan, and described with application circuits in a data sheet PF226-04 dated 1998, which is incorporated in its entirety for all purposes as if fully set forth herein. A human voice synthesizer may be based on Magnevation SpeakJet chip available from Magnevation LLC and described in ‘Natural Speech & Complex Sound Synthesizer’ described in User's Manual Revision 1.0 Jul. 27, 2004, which is incorporated in its entirety for all purposes as if fully set forth herein. A general audio controller may be based on OPTi 82C931 ‘Plug and Play Integrated Audio Controller’ described in Data Book 912-3000-035 Revision: 2.1 published on Aug. 1, 1997, which is incorporated in its entirety for all purposes as if fully set forth herein. Similarly, a music synthesizer may be based on YMF721 OPL4-ML2 FM+Wavetable Synthesizer LSI available from Yamaha Corporation described in YMF721 Catalog No. LSI-4MF721A20, which is incorporated in its entirety for all purposes as if fully set forth herein.
Some examples of prior-art toys that include generation of an audio signal such as music are disclosed in U.S. Pat. No. 4,496,149 to Schwartzberg entitled: “Game Apparatus Utilizing Controllable Audio Signals”, in U.S. Pat. No. 4,516,260 to Breedlove et al. entitled: “Electronic Learning Aid or Game having Synthesized Speech”, in U.S. Pat. No. 7,414,186 to Scarpa et al. entitled: “System and Method for Teaching Musical Notes”, in U.S. Pat. No. 4,968,255 to Lee et al. entitled: “Electronic Instructional Apparatus”, in U.S. Pat. No. 4,248,123 to Bunger et al. entitled: “Electronic Piano” and in U.S. Pat. No. 4,796,891 to Milner entitled: “Musical Puzzle Using Sliding Tiles”, and toys with means for synthesizing human voice are disclosed in U.S. Pat. No. 6,527,611 to Cummings entitled: “Place and Find Toy”, and in U.S. Pat. No. 4,840,602 to Rose entitled: “Talking Doll Responsive to External Signal”, which are all incorporated in their entirety for all purposes as if fully set forth herein. A music toy kit combining music toy instrument with a set of construction toy blocks is disclosed in U.S. Pat. No. 6,132,281 to Klitsner et al. entitled: “Music Toy Kit” and in U.S. Pat. No. 5,349,129 to Wisniewski et al. entitled: “Electronic Sound Generating Toy”, which are incorporated in their entirety for all purposes as if fully set forth herein.
In one example according to the invention, the annunciator includes a smoke generation unit, mimicking the generation of a real life smoking such as a smoke of a real train. Preferably, such implementation may relate to a theme of a train having a smoking locomotive or a fire. Some examples of smoke generation units are disclosed in U.S. Pat. No. 6,280,278 to Wells entitled: “Smoke Generation System for Model Top Applications” and U.S. Pat. No. 7,297,045 to Pierson et al. entitled: “Smart Smoke Unit”, which are all incorporated in their entirety for all purposes as if fully set forth herein.
The device 10 is powered from a power supply 14 connected to electrically power part or all of the power-consuming components of the device 10. The power supply 14 may be a power source which is integrated into the device 10 enclosure, such as a battery, either primary or rechargeable type, which may reside in a battery compartment. Alternatively, the power source may reside external to the device enclosure and is feeding the local power supply 14, such as powering from AC power outlet via common AC/DC adapter containing a step-down transformer and an AC to DC converter (rectifier). A DC/DC converter may be used in order to adapt the power voltage from a source into one or more voltages used by the various electrical circuits.
The battery may be a primary or a rechargeable (secondary) type, may include a single or few batteries, and may use various chemicals for the electro-chemical cells, such as lithium, alkaline and nickel-cadmium. Common batteries are manufactured in defined output voltages (1.5, 3, 4.5, 9 Volts, for example), as well as defined standard mechanical enclosures (usually defined by letters “A”, “AA”, “B”, “C” sizes etc., and ‘coin’ type). In one embodiment the battery (or batteries) is held in a battery holder, and thus can be easily replaced.
As an alternative or as addition to using battery as a power source, the system can be power fed from the AC power supply, and thus may include an AC/DC converter, for converting the AC power (commonly 115 VAC/60 Hz in North America and 220 VAC/50 Hz in Europe) into the required DC voltage or voltages. Such small outlet plug-in step-down transformer shape can be used (also known as wall-wart, “power brick”, “plug pack”, “plug-in adapter”, “adapter block”, “domestic mains adapter”, “power adapter”, or AC adapter) as known in the art and typically involves converting 120 or 240 volt AC supplied by a power utility company to a well-regulated lower voltage DC for electronic devices. The AC adapters commonly include a step down transformer for reducing to non-hazardous potential such as 12V or 9V, connected to a DC rectifier to supply a DC voltage (such as 12 VDC or 9 VDC).
The control block 12 receives the signals representing the magnitude and the direction of the motion sensed by the motion sensor 11, and controls the operation of the annunciator 13 based on a logic embedded in it. The annunciator 13 may be operated based on the magnitude of the sensed motion, such as a threshold mechanism activating the annunciator when the motion sensed exceeds a pre-defined value. In another example, the annunciator is activated in response to the value measured. Similarly, the logic in the control block 12 may also activate the annunciator in response to the direction of the motion sensed by the motion sensor 11. Further, the logic may involve any combination of magnitude and direction of the sensed motion.
The control block 12 embedded logic may also use the timing information relating to the motion, such as the change of the magnitude and/or the direction of the motion over time. For example, a timer may be used for measuring the time between successive hits. Further, a timer may be used in order to activate (or de-activate) an annunciator for a defined period as a response to an event such as sensing an acceleration magnitude exceeding a predefined threshold. Timing information may use timers that may be implemented as a monostable circuit, producing a pulse of set length when triggered. In one example, the timers are based on RC based popular timers such as 555 and 556, such as ICM7555 available from Maxim Integrated Products, Inc. of Sunnyvale, Calif., U.S.A., described in the data sheet “General Purpose Timers” publication number 19-0481 Rev.2 11/92, which is incorporated in its entirety for all purposes as if fully set forth herein. Examples of general timing diagrams as well as monostable circuits are described in Application Note AN170 “NE555 and NE556 Applications” from Philips semiconductors dated 12/1988, which is incorporated in its entirety for all purposes as if fully set forth herein. Alternatively, a passive or active delay line may be used. Further, a processor based delay line can be used, wherein the delay is set by its firmware.
The control block 12 electronic circuits (e.g., integrated circuit (IC) and related devices) may be based on a discrete logic or an integrated device, such as a processor, microprocessor or microcomputer, and may include a general-purpose device or may be a special purpose processing device, such as an Application-Specific Integrated Circuit (ASIC), PAL, Programmable Logic Array (PLA), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), Gate Array, or other customized or programmable device. For example, a timer can be implemented by a counted loop executed in software. In the case of a programmable device as well as in other implementations, a memory is required. The memory may include a static RAM (random Access Memory), dynamic RAM, flash memory, ROM (Read Only Memory), or any other data storage medium. The memory may include data, algorithms, programs, and/or instructions and any other software or firmware executable by the processor. The control logic can be implemented in hardware or in software, such as a firmware stored in the memory. The term “processor” herein is meant to include any integrated circuit or other electronic device (or collection of devices) capable of performing an operation on at least one instruction including, without limitation, reduced instruction set core (RISC) processors, CISC microprocessors, microcontroller units (MCUs), CISC-based central processing units (CPUs), and digital signal processors (DSPs). The hardware of such devices may be integrated onto a single substrate (e.g., silicon “die”), or distributed among two or more substrates. Furthermore, various functional aspects of the processor may be implemented solely as software or firmware associated with the processor. In accordance with various embodiments of the present disclosure, the methods described herein may be implemented by software programs executable by a processor or a computer system. Further, in an exemplary, non-limited embodiment, implementations can include distributed processing, component/object distributed processing, and parallel processing. Alternatively, virtual computer system processing can be constructed to implement one or more of the methods or functionality as described herein.
While the computer-readable medium is shown to be a single medium, the term “computer-readable medium” includes a single medium or multiple media, such as a centralized or distributed database, and/or associated caches and servers that store one or more sets of instructions. The term “computer-readable medium” shall also include any medium that is capable of storing, encoding or carrying a set of instructions for execution by a processor or that cause a computer system to perform any one or more of the methods or operations disclosed herein. In a particular non-limiting, exemplary embodiment, the computer-readable medium can include a solid-state memory such as a memory card or other package that houses one or more non-volatile read-only memories. Further, the computer-readable medium can be a random access memory or other volatile re-writable memory. Additionally, the computer-readable medium can include a magneto-optical or optical medium, such as a disk or tapes or other storage device to capture carrier wave signals such as a signal communicated over a transmission medium. Accordingly, the disclosure is considered to include any one or more of a computer-readable medium or a distribution medium and other equivalents and successor media, in which data or instructions may be stored.
Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other optical medium, punch-cards, paper-tape, any other physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read.
The invention is related to the use of computer/control/logic system 20 for implementing the methods and techniques described herein. According to one embodiment of the invention, those methods and techniques are performed by computer/control/logic system 20 in response to processor 25 executing one or more sequences of one or more instructions contained in main memory 22. Such instructions may be read into main memory 22 from another computer-readable medium, such as storage device 23. Execution of the sequences of instructions contained in main memory 22 causes processor 25 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions to implement the invention. Thus, embodiments of the invention are not limited to any specific combination of hardware circuitry and software.
The control system 20 may communicate with the motion sensor 11 and the annunciator 13 via a digital communication link using Communication Interface 26 coupled to bus 24. In the case of a motion sensor 11 having an analog output, an Analog-to-Digital (A/D) converter 27 which converts continuous signals to discrete digital numbers is used, coupled between the motion sensor 11 and the bus 24. In the case the annunciator 13 is having an analog input, a Digital-to-Analog (D/A) converter 28 which converts a digital (usually binary) code to an analog signal (current, voltage or electric charge) coupled between the annunciator 13 and the bus 24. Other signal conditioning may also be applied in order to improve the handling of the motion sensor output or to adapt to control or activate the annunciator, such as attenuation, delay, filtering, amplifying, digitizing and any other signal manipulation.
The term ‘random’ in these specifications and claims is intended to cover not only pure random, non-deterministically and non-predicted generated signals, but also pseudo-random, deterministic signals such as the output of a shift-register arrangement provided with a feedback circuit as used to generate pseudo-random binary signals or as scramblers, and chaotic signals. In one aspect of the invention, a randomness factor is included in the device. The stochastic operation may add amusement and recreation to the system or device operation since the operation will be surprising, non-repetitive and cannot be predicted.
In one aspect of the invention randomness may be used. Randomness is commonly implemented by using random numbers, defined as a sequence of numbers or symbols that lack any pattern and thus appear random, are often generated by a random number generator. A random number generator (having either analog or digital output) can be hardware based, using a physical process such as thermal noise, shot noise, nuclear decaying radiation, photoelectric effect or other quantum phenomena. Alternatively, or in addition, the generation of the random numbers can be software based, using a processor executing an algorithm for generating pseudo-random numbers which approximates the properties of random numbers.
A digital random signal generator (known as random number generator) wherein numbers in binary form replaces the analog voltage value output may be used. One approach to random number generation is based on using linear feedback shift registers. An example of random number generators is disclosed in U.S. Pat. No. 7,124,157 to Ikake entitled: “Random Number Generator”, in U.S. Pat. No. 4,905,176 to Schulz entitled: “Random Number Generator Circuit”, in U.S. Pat. No. 4,853,884 to Brown et al. entitled: “Random Number Generator with Digital Feedback” and in U.S. Pat. No. 7,145,933 to Szajnowski entitled: “Method and Apparatus for generating Random signals”, which are incorporated in its entirety for all purposes as if fully set forth herein.
A digital random signal generator can be based on ‘True Random Number Generation IC RPG100/RPG100B’ available from FDK Corporation and described in the data sheet ‘Physical Random number generator RPG100.RPG100B’ REV. 08 publication number HM-RAE106-0812, which is incorporated in its entirety for all purposes as if fully set forth herein. The digital random signal generator can be hardware based, generating random numbers from a natural physical process or phenomenon, such as the thermal noise of semiconductor which has no periodicity. Typically, such hardware random number generators are based on microscopic phenomena such as thermal noise, shot noise, nuclear decaying radiation, photoelectric effect or other quantum phenomena, and typically contain a transducer to convert some aspect of the physical phenomenon to an electrical signal, an amplifier and other electronic to bring the output into a signal that can be converted into a digital representation by an analog to digital converter. In the case where digitized serial random number signals are generated, the output is converted to parallel, such as 8 bits data, with 256 values of random numbers (values from 0 to 255). Alternatively, the digital random signal generator can be software (or firmware) based, such as pseudo-random number generators. Such generators include a processor for executing software that includes an algorithm for generating numbers, which approximates the properties of random numbers.
The random signal generator (either analog or digital) may output a signal having uniform distribution, in which there is a substantially or purely equal probability of a signal falling between two defined limits, having no appearance outside these limits. However, Gaussian and other distribution may be equally used.
The annunciator 13 may be powered from the same power supply 14 as the one powering the associated device, or may be powered from a dedicated or separated power source. In one example, the annunciator 13 activation may include its powering by the power supply 14 by a switch connected between a power supply 14 and the annunciator 13, where the switch is activated based on the activation signal. Such a scheme is exampled in a device 30 shown in
The control block 12 uses control port 32 for selectively energizing and de-energizing the annunciator 13 via the switch 31. For a non-limiting example, in the case wherein the annunciator 13 is a LED (or any other illuminating device), the control block 12 logic may turn the light on or off via the control port 32. Similarly, a flashing light can be obtained by periodically providing the power to the LED by the control block 12. Similarly, in the case wherein annunciator 13 is a buzzer, the continuity, duty-cycle and time of operation can be controlled by the control block 12. In some cases controlling the annunciator 13 is not made via switching its power but rather by a control port, preferably digital, provided in the annunciator 13. Examples of control blocks, annunciators and means and methods for controlling or activating payloads such as an annunciator are described in U.S. Patent Application Publication 2011/0012661 to Binder titled: “Sequentially Operated Modules” and in U.S. Patent Application Publication 2011/0031689 to Binder titled: “Puzzle with Conductive Path”, both are incorporated in their entirety for all purposes as if fully set forth herein.
In one example, a bit′ of the device 10 is detected by sensing any acceleration above a pre-defined magnitude. For example, the threshold value is determined such as to sense throwing, kicking or catching of the ball 10. In such a case, the logic 12 (or the motion sensor 11) is set to detect any acceleration in any direction which is above 2 g. The annunciator 13 is responsive to such sensed bit′. In one case, the annunciator has two states, activated (‘ON’) and deactivated (‘OFF″), such as a lamp having ‘lit’ and blank states or a buzzer having ‘silent’ and ‘buzz’ states. In such a case, the annunciator 13 may be activated for a pre-defined time (e.g. 2 seconds) any time a ‘hit’ is detected. Alternatively, the annunciator 13 changes states between ‘ON’ and ‘OFF’ each time a hit is sensed, such that it is activated only after odd number of hits, and stays deactivated after even numbers of hits. In another example, the annunciator 13 is responsive to the number of hits detected, for example during a defined period or counted as long as pre-set period between hits has not expired. In such example, the annunciator 13 is activated only after pre-set number of hits. For example, the annunciator 13 enters ‘ON’ state only after 10 hits were detected in a 15 seconds period. Alternatively, the annunciator 13 enters ‘ON’ state after 10 hits, wherein the measured time between successive hits is less than 4 seconds.
The annunciator 13 may annunciate by cycling between ‘ON’ and ‘OFF’ states (such as lamp flashing), where the annunciator 13 is activated intermittently few times for a short duration each time, where either the activating rate or the number of ‘ON’ periods are based on the sensed motion. Preferably, during such activation the period of time of the ‘ON’ state is equal to the period of the ‘OFF’ state. For example, the annunciator 13 may flash according to the number of sensed hits in a pre-defined period, or as long as hits are being sensed, or the number of sensed hits is accumulated and stored, and shown as the numbers of short activations after a pre-set rest period (when no hits are sensed during that period). Similarly, the annunciator 13 is activated in response to the magnitude of a sensed hit. For example, a strong hit, such as sensed by high magnitude of acceleration, will affect the number of the cycles, where a hit of 10 g may result in 10 activation cycles, and a hit of 5 g will create a response of 5 cycles. In such a case, the logic block 12 may include few thresholds at different acceleration magnitude levels, where crossing higher threshold will result in more number of blinks. Alternatively or in addition, the hits count or the hit magnitude may be used to change the rate of the annunciator 13 cycling, where higher hits count or stronger hit will affect higher frequency or duty-cycle.
While the operation of the annunciator 13 has been described above as having two states, non-activated (‘OFF’ state) and activated (‘ON’ state), the annunciator 13 activation or control may also be continuous level control such as changing the illumination intensity in a lamp, where changing of the light energy or power emitted, or the sounding volume of a buzzer or any other sounder. In such configuration, the annunciator 13 level control is based on the motion sensed by the motion sensor 11. For example, the level may be increased at each hit sensed or based on the number of hits sensed in a defined period. Similarly, the annunciator 13 level may reflect the strength of the hit sensed by measuring the peak of the acceleration magnitude. The changing level may be combined with the number of cycles, the duty cycle or any other activation scheme of the annunciator 13.
In one example, the annunciator 13 can be in one out of multiple states as controlled by the logic block 12. For example, the annunciator 13 may be a multi-color LED, where one of the colors is illuminating under a control. Similarly, the annunciator 13 may be a sounder that can be controlled to emit one out of different tones, say one word out of many, and play a selected music out of a list of songs and the like. In such a case, one of the states may be activated as a response for a single hit, the number of hits sensed or as a response to the hit magnitude, one of states of the annunciator 13 is activated. For example, the annunciator 13 state may be changing (e.g., according to a pre-set states changing scheme) after each hit sensed. In another example, the number of hits is reflected in the annunciator 13 state. Similarly, multiple annunciators may be used, where the annunciation is based on activating one of the annunciators, or based on the activation of a combination of the annunciators.
In one example, randomness is added to the logic that activates or controls the annunciator 13 in response to the acceleration sensed by the motion sensor 46. For example, the random activation of the annunciator 13 in response to a sensed hit may be implemented. In the case where 55% is the pre-set probability embedded in the ball 40 logic, only 55% of the hits results in any activation of the annunciator 13, or any other change in its state. Similarly, any other type of the annunciator 13 activation such as duty-cycle, cycling, state changing may be random-based, adding to the amusement of playing with it.
The logic block 12 may include a counter for calculating and storing the number of times a particular event or process has occurred. For example, a counter may be used to count the number of times sensed acceleration was above a pre-determined threshold (‘hit’). The annunciator 13 may display the counter value, or alternatively the annunciator 13 may be activated or controlled based on the event count. Further, the annunciator 13 may be activated or controlled based on an event when the counted number exceeds a pre-determined value. For example, an annunciator may activate a lamp when the number of sensed hits exceeds the number five. The annunciator 13 may be a numerical display for visually indicating the number of hits or any other value based on the counter value. The counter may be implemented in software (or firmware), where a register content is used to store consecutive integers representing the events count. Further, a counter may be mechanical or electromechanical, as known in the art. Alternatively or in addition, a counter may be electronically implemented by a digital hardware using flip-flops. Example of electronic counters having a numerical display that may be used are electronic pulse counter model Codix 130 and LCD module 192 available from Fritz Kübler GmbH and respectively described in Fritz Kübler GmbH catalog Pulse Counters, electronic chapter, describing LCD Module 192 in page 77 and Codix 130 in pages 56-57, which are incorporated in their entirety for all purposes as if fully set forth herein.
Ball.
In one aspect of the invention, the device 10 is shaped as a ball or any other toy-like structure. Such a ball can be used in any ball game, such as dribbling, kicking, catching and other, wither for a single player or where two persons are throwing the ball from one to the other, where annunciator 13 responds to the playing activities, based on a logic in the logic block 12. Preferably, the components of the device are mounted centrally in the ball structure so that the ball is not untowardly unevenly balanced due to any significant off-center weighting. Further, the ball may be filled with plastic foam.
Additional possible shapes include interior cavity shapes equivalent to sphere, multi-sphere, egg, football, ovoid and multi-ovoid shapes; unlimited exterior shapes including but not limited to those of the interior shapes plus irregular spheres in the approximate size and with the approximate texture of a scoop of ice cream, animal figures, geometric shapes, spikes, vegetable and fruit shapes, other food product shapes such as a roast chicken, beef knuckle bone, irregular shapes, novelty shapes and the like that would additionally allow for pleasant grabbing texture and surface variety for a pet or a person. Preferably the shape allows for regular or irregular rolling patterns.
In one example, the device 10 is enclosed in a soccer-shaped ball 40 used as a toy shown in
The ball 40 is can be used in any ball game, such as dribbling, kicking, catching and other, wither for a single player or where two persons are throwing the ball from one to the other, where visual indication by the LED 42 responds to the playing activities. The cover 41 may alternatively be secured to ball 40 housing opening using bayonets. Further, the ball 40 housing may be comprised of two half spheres that may mate together along a substantially circular edge, where one half sphere includes a plurality of sockets positioned to circumference for mating with a plurality of corresponding pins in the second half sphere, as described for example in U.S. Pat. No. 6,484,671. Alternatively or in addition, the ball components may be housed in a cylindrical plastic housing that is housed in the ball which is formed with peripheral formations and aperture to house the cylinder, as described for example in U.S. Pat. No. 5,375,839.
In one example, a ‘hit’ of the play ball 40 is detected by sensing any acceleration above a pre-defined magnitude. The threshold value is determined such as to sense the throwing, kicking or catching of the ball 40. For example, the logic 12 will be set to detect any acceleration in any direction which is above 2 g. The LED 42 is responsive to such sensed bounce or ‘hit’. In one example, the LED 42 lit for a pre-defined time (e.g. 2 seconds) any time a ‘hit’ is detected. Alternatively, the LED 42 changes states between blanking to lighting each time a hit is sensed, such that it will illuminate only after an odd number of hits, and stays blank after even numbers of hits. In another example, the LED 42 is responsive to the number of hits detected, for example during a defined period or counted as long as pre-set period between hits has not expired. In such example, the LED 42 lit only after pre-set number of hits. For example, the LED 42 lit only after 10 hits were detected in a 15 seconds period. Alternatively, the LED 42 lit after 10 hits, wherein the measured time between successive hits is less than 4 seconds.
The LED 42 may annunciate by flashing or blinking, where the LED 42 is gleaming or glowing intermittently few times for a short duration each time, where either the blinking rate or the number of lit periods are based on the sensed motion. Preferably, during flashing the period of time of illumination is equal to the period of non-illumination. For example, the LED 42 may flash according to the number of sensed hits in a pre-defined period, or as long as hits are being sensed, or the number of sensed hits is accumulated and stored, and shown as the numbers of blinks after a pre-set rest period (when no hits are sensed during that period). Similarly, the LED 42 is activated in response to the magnitude of a sensed hit. For example, a strong hit, such as sensed by high magnitude of acceleration, will affect the number of blinks, where a hit of 10 g may result in 10 blinks, and a hit of 5 g will create a response of 5 blinks. In such a case, the logic block 12 may include few thresholds at different acceleration magnitude levels, where crossing higher threshold will result in more number of blinks. Alternatively or in addition, the hit count or the hit magnitude may be used to change the blinking rate of the LED 42, where higher hits count or stronger hit will affect higher flashing rate or duty-cycle.
While the operation of the LED 42 has been described above as having two states, blank (‘OFF’ state) and lit (‘ON’ state), the LED 42 activation or control may also be continuous such as changing the illumination intensity, or any other changing of the light energy or power emitted. In such configuration, the LED 42 illumination intensity is based on the motion sensed by the motion sensor 46. For example, the illumination intensity may be increased at each hit sensed or based on the number of hits sensed in a defined period. Similarly, the LED 42 illumination intensity may reflect the strength of the hit sensed by measuring the peak of the acceleration magnitude. The changing intensity may be combined with the number of flashes, the duty cycle or any other activation scheme of the LED 42.
In one example, the LED 42 is a multi-color LED, and one of the colors is illuminated as a response for a single hit, the number of hits sensed or as a response to the hit magnitude. For example, the LED 42 color is changing (e.g., according to a pre-set color changing scheme) after each hit sensed. In another example, the number of hits is reflected in the LED 42 emitted color. Further, the color is darker (or lighter) or otherwise affected by the measured magnitude of the acceleration. Similarly, multiple single-color LEDs may be used, where the annunciation is based on the LED that illuminates, or based on the combination of the illuminating LEDs.
In one example, randomness is added to the logic that activates or controls the LED 42 in response to the acceleration sensed by the motion sensor 46. For example, the random activation of the LED 42 in response to a sensed hit may be implemented. In the case where 55% is the pre-set probability embedded in the ball 40 logic, only 55% of the hits results in any activation of the LED 42, or any other change in its state. Similarly, any other type of the LED 42 activation such as duty-cycle, flashing, color changing (in the case of multi-color LED) may be random-based, adding to the amusement of playing with it.
While the soccer-shaped ball 40 described above included a LED 42 as a visual indicator implementing the annunciator 13, the invention equally applies to the case of a ball 60 including an audible annunciator (as an alternative or addition to the LED 42) as shown in
In one example, a ‘hit’ of the play ball 40 is detected by sensing any acceleration above a pre-defined magnitude. The threshold value is determined such as to sense the throwing, kicking or catching of the ball 40. For example, the logic 12 will be set to detect any acceleration in any direction which is above 2 g. The LED 42 is responsive to such sensed ‘hit’. In one example, the LED 42 lit for a pre-defined time (e.g. 2 seconds) any time a ‘hit’ is detected. Alternatively, the LED 42 changes states between blanking to lighting each time a hit is sensed, such that it will illuminate only after an odd number of hits, and stays blank after even numbers of hits. In another example, the LED 42 is responsive to the number of hits detected, for example during a defined period or counted as long as pre-set period between hits has not expired. In such example, the LED 42 lit only after pre-set number of hits. For example, the LED 42 lit only after 10 hits were detected in a 15 second period. Alternatively, the LED 42 lit after 10 hits, wherein the measured time between successive hits is less than 4 seconds.
The speaker 64 may annunciate by sounding tone, ring, voice, melody or song, as well as text-based message such as syllable, word, phrase or sentence, under the control of the embedded logic. The speaker 64 may provide the sound continuously or intermittently, such as few cycles of a short duration on each time, where either the sounding repetition rate or the number of sounding periods are based on the sensed motion. Preferably, during cycling the period of time of sounding is equal to the period of silencing. For example, the speaker 64 may ring or emit sounding periods according to the number of sensed hits in a pre-defined period, or as long as hits are being sensed, or the number of sensed hits is accumulated and stored, and shown as the numbers of sounding cycles after a pre-set rest period (when no hits are sensed during that period). Similarly, the speaker 64 may be activated in response to the magnitude of a sensed hit. For example, a strong hit, such as sensed by high magnitude of acceleration, will affect the number of the sounding cycles, where a hit of 10 g may result in 10 cycles, and a hit of 5 g will create a response of 5 sounding cycles. In such a case, the logic block 12 may include few thresholds at different acceleration magnitude levels, where crossing higher threshold will result in more number of cycles. Alternatively or in addition, the hits count or the hit magnitude may be used to change the sounding rate of the speaker 64, where higher hits count or stronger hit will affect higher sounding rate or duty-cycle.
While the operation of the speaker 64 has been described above as having two states, silence (‘OFF’ state) and sounding (‘ON’ state), the speaker 64 activation or control may also be continuous such as changing the tone frequency or the sound volume, or any other changing of the emitted acoustic signal. In such configuration, the volume emitted by the speaker 64 (or its frequency or both) is based on the motion sensed by the motion sensor 46. For example, the volume may be increased at each hit sensed or based on the number of hits sensed in a defined period. Similarly, the speaker 64 illumination intensity may reflect the strength of the hit sensed by measuring the peak of the acceleration magnitude. The changing volume may be combined with the number or types of the emitted sounds, the duty cycle or any other activation scheme of the speaker 64.
In one example, the ball 60 is capable of emitting multiple sounds, such as various tones, melodies, words, phrases and the like. Commonly one of the possible sounds is announced as a response for a single hit, the number of hits sensed or as a response to the hit magnitude. For example, the speaker 64 may announce a different word such as ‘good work’, ‘excellent’ and ‘congratulations’ (e.g., according to a pre-set announcing scheme) after each hit sensed. In another example, the number of hits is reflected in the ball 60 emitted voices. In one example, the ball 60 announce the counting of hits sensed, such that the word ‘one’ will be announced after the first hit, the number ‘two’ will be announced after the second hit and so forth. Similarly, the ball 60 may announce the strength of the sensed hit, such as based on the peak level of the acceleration sensed. For example, in case of peak acceleration in the range of 4.5-5.5 g the ball 60 will announce ‘five g’, and for the range of 8.9-9.5 g the phrase ‘nine g’ will be announced.
In one example, randomness is added to the logic that activates or controls the sounds emitted by the speaker 64 in response to the acceleration sensed by the motion sensor 46. For example, random sounding in response to a sensed hit may be implemented, where some of the hits will be responses by a sound and in some the ball remains silent. In the case where 55% is the pre-set probability embedded in the ball 60 logic, only 55% of the hits results in any activation of the speaker 64, or any other change in its state. Similarly, any other type of the speaker 64 activation such as selecting a one, word, music, word, phrase and others may be random-based selected, adding to the amusement of playing with it.
In another example, a ball 90 having a numeric display 92 is shown in
Power.
The ball 40 was described above in
A block diagram 50a of a rechargeable battery 36 based device according to one aspect of the invention is shown in
An example of a ball 51 comprising cover 53 and including a rechargeable battery 45 is shown in
In another example, the device is locally energized. Such a device 80 is shown in
While the invention was exampled in
An example of a ball 79 capable of contactless inductive charging and a charging station 72 is shown in
Handheld Device.
In an aspect of the invention, a handheld device 100 is used, as described in
In one example, the direction of device 100 such as its tilt is used to activate or control the annunciator 13, such as the amount of the inclination or bending from a vertical position as sensed by the motion sensor 11, which can be a tilt detector.
Further, the acceleration magnitude sensed may also be used in combination to the sensed tilt angle to control the annunciator 13. For example, the handheld device 100 may be used as a musical instrument. In this case, the tilt angle may correspond to the type of sound heard, and the acceleration sensed in that direction may correspond to the sound volume. In an example, the tilt angle corresponds with a musical note, where the tilt angle range +50 degrees to +40 degrees will affect the musical note ‘DO’, the tilt angle range +40 degrees to +30 degrees will affect the musical note ‘RE’, the tilt angle range +30 degrees to +20 degrees will affect the musical note ‘MI’ and so forth. A hit (such as sensed acceleration magnitude passing a threshold) will result in the playing of the note associated with that tilt angle, while the sounding volume may also be controlled by acceleration magnitude. The sound produced by such devices can emulate the sounds of any conventional acoustical music instruments, such as a piano, tuba, harp, violin, flute, guitar and so forth. In one example, the device can further be shaped as a miniature of the music instrument associated with its emitted sound.
While the invention has been exampled above with regarding to a ball-shaped device such as ball 60 in
The manner of play using the device according to the invention may be for diversified ages; diversified abilities; diversified approaches; specified age; specified ability; specified approach; creative; artistic; music-oriented; puzzle; recreational; educational; therapeutic; stage-oriented; level-oriented; family-oriented; age-appropriate; selective; thematic; turn indicated; timing indicated; scoring indicated; hierarchical; sequential; matching; choice; according to players, direction, playing order, number of players, teams; procedure indicated; having emission; introductory; junior; standard; intermediate; advanced; professional; numerical; alphabetical; identifying; positioning; pre-determined; improvisational; exchangeable; sharing; rotating; variable; same, different, switch, story, and customize-able.
While the invention has been exampled above with regard to a payload including an annunciator providing visual or audible signaling, it will be appreciated that the invention equally applies to a payload adapted to perform other functions, such as physical movement or other motive functions (e.g., pop-up figure). For example, the payload may include motors, winches, fans, reciprocating elements, extending or retracting, and energy conversion elements. In addition, heaters or coolers may be used. Each of the actuator or movement appearance, location, color, type, shape and functionality may be conceptually related to the device theme (such as image or shape). Further, the payload may include an indicator for indicating free-form, shape, form, amorphous, abstract, conceptual, representational, organic, biomorphic, partially geometric, conventional, unconventional, multi-sided, natural, figurative, recognizable concept, geometric, amorphous, abstract, organic, virtual, irregular, regular, biomorphic, conventional, unconventional, symmetric, asymmetric, man-made, composite, geometric, letter, number, code, and symbol. Furthermore, the payload may be indicating associated information such as indicia, indicator, theme indicator, turn indicator, timing indicator, game piece indicator, emission indicator, emission device, playing area indicator, scoring indicator, and procedure indicator. Further, the device may include sensors that will be part of the formed electrical circuit, such as photocells, voltage or current detectors, pressure detectors or motion detector and manually or automatically operated switches. Each of the sensor appearance, location, color, type, shape and functionality may be conceptually related to the device theme (such as image or shape).
The term “processor” is meant to include any integrated circuit or other electronic device (or collection of devices) capable of performing an operation on at least one instruction including, without limitation, Reduced Instruction Set Core (RISC) processors, CISC microprocessors, Microcontroller Units (MCUs), CISC-based Central Processing Units (CPUs), and Digital Signal Processors (DSPs). The hardware of such devices may be integrated onto a single substrate (e.g., silicon “die”), or distributed among two or more substrates. Furthermore, various functional aspects of the processor may be implemented solely as software or firmware associated with the processor.
As used herein, the terms “program”, “programmable”, “software”, “firmware” and “computer program” are meant to include any sequence or human or machine cognizable steps which perform a function. Such program may be rendered in virtually any programming language or environment including, for example, C/C++, Fortran, COBOL, PASCAL, assembly language, markup languages (e.g., HTML, SGML, XML, VoXML), and the like, as well as object-oriented environments such as the Common Object Request Broker Architecture (CORBA), Java™ (including J2ME, Java Beans, etc.) and the like, as well as in firmware or other implementations. Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
All publications, standards, patents, and patent applications cited in this specification are herein incorporated by reference as if each individual publication, patent, or patent application were specifically and individually indicated to be incorporated by reference and set forth in its entirety herein.
Throughout the description and claims of this specification, any mechanical attachment between any two or more physical components may use means such as elastic straps, hook and loop fastener straps or patches, screws, bolts, adhesives, clips, clamps, carabineers, or any combination thereof.
Throughout the description and claims of this specification, the word “comprise′ and variations of that word such as “comprises” and “comprising”, is not intended to exclude other additives, components, integers or steps. Throughout the description and claims of this specification, the word “couple′ and variations of that word such as “coupling”, “coupled” and “couplable” refers to an electrical connection (such as a copper wire or soldered connection), a logical connection (such as through logical devices of a semiconductor device), a virtual connection (such as through randomly assigned memory locations of a memory device) or any other suitable direct or indirect connections, for example allowing for the transfer of power, signal or data.
Discussions herein utilizing terms such as, for example, “processing,” “computing,” “calculating,” “determining,” “establishing”, “analyzing”, “checking”, or the like, may refer to operation(s) and/or process(es) of a computer, a computing platform, a computing system, or other electronic computing device, that manipulate and/or transform data represented as physical (e.g., electronic) quantities within the computer's registers and/or memories into other data similarly represented as physical quantities within the computer's registers and/or memories or other information storage medium that may store instructions to perform operations and/or processes.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the root terms “include” and/or “have”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The terms “plurality” and “a plurality” as used herein includes, for example, “multiple” or “two or more”. For example, “a plurality of items” includes two or more items. The term “software integration” or integration of two programs or processes herein refers to software components (e.g. programs, modules, functions, processes etc.) that are (directly or via another component) combined, working or functioning together or form a whole, commonly for sharing a common purpose or set of objectives. Such software integration can take the form of sharing the same program code, exchanging data, being managed by the same manager program, executed by the same processor, stored on the same medium, sharing the same GUI or another user interface, sharing peripheral hardware (such as a monitor, printer, keyboard and memory), sharing data or a database, or being part of a single package. The term “hardware integration” or integration of hardware components herein refers to hardware components that are (directly or via another component) combined, working or functioning together or form a whole, commonly for sharing a common purpose or set of objectives. Such hardware integration can take the form of sharing the same power source (or power supply) or sharing other resources, exchanging data or control (e.g. by communicating), being managed by the same manager, physically connected or attached, sharing peripheral hardware connection (such as a monitor, printer, keyboard and memory), being part of a single package or mounted in a single enclosure (or any other physical collocating), sharing a communication port, or used or controlled with the same software or hardware. The term “integration” herein refers (as applicable) to a software integration, a hardware integration or a combination.
The term “computer-readable medium” as used herein refers to any medium that participates in providing instructions to processor 25 for execution. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 23. Volatile media includes dynamic memory, such as main memory 22. Transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 24. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications. A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electromagnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Hash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Various forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to processor 25 for execution. For example, the instructions may initially be carried on a magnetic disk of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 20 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 24. Bus 24 carries the data to main memory 22, from which processor 25 retrieves and executes the instructions. The instructions received by main memory 22 may optionally be stored on storage device 23 either before or after execution by processor 25.
Some portions of the preceding detailed descriptions have been presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the ways used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the above discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Embodiments of the present invention also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), Erasable Programmable ROMs (EPROMs), Electrically Erasable Programmable ROMs (EEPROMs), magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method operations. The required structure for a variety of these systems will appear from the description below. In addition, embodiments of the present invention are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of embodiments of the invention as described herein.
A machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes read only memory (“ROM”); random access memory (“RAM”); magnetic disk storage media; optical storage media; flash memory devices; electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.).
In the foregoing specification, embodiments of the invention have been described with reference to specific exemplary embodiments thereof. It will be evident that various modifications may be made thereto without departing from the broader spirit and scope of the invention as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.
Those of skill in the art will understand that the various illustrative logical blocks, modules and circuits described in connection with the embodiments disclosed herein may be implemented in any number of ways including electronic hardware, computer software, or combinations of both. The various illustrative components, blocks, modules and circuits have been described generally in terms of their functionality. Whether the functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans recognize the interchangeability of hardware and software under these circumstances, and how best to implement the described functionality for each particular application. As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Aspects of the present invention are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks. The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
Although exemplary embodiments of the present invention have been described, this should not be construed to limit the scope of the appended claims Those skilled in the art will understand that modifications may be made to the described embodiments. Moreover, to those skilled in the various arts, the invention itself herein will suggest solutions to other tasks and adaptations for other applications. It is therefore desired that the present embodiments be considered in all respects as illustrative and not restrictive, reference being made to the appended claims rather than the foregoing description to indicate the scope of the invention.
As will be appreciated by those of skill in the art, the methods described above generally reside on one or more general purpose computing devices which operate under the control of computer executable instructions. The general purpose computing device need not be limited to computers and servers but may include hand-held devices, multiprocessor systems, microprocessor-based or programmable customer electronics, minicomputers, mainframe computers, and the like. Furthermore, the computer executable instructions may include routines, programs, objects, components, and/or data structures that perform particular tasks. Within the network, the computer executable instructions may reside on a single general purpose computing device or the tasks performed by the computer executable instructions may be distributed among a plurality of the general purpose computing devices.
In addition, in this disclosure, certain process steps are set forth in a particular order, and alphabetic and alphanumeric labels are used to identify certain steps. Unless specifically stated in the disclosure, embodiments of the invention are not limited to any particular order of carrying out such steps. In particular, the labels are used merely for convenient identification of steps, and are not intended to imply, specify or require a particular order of carrying out such steps. Furthermore, other embodiments may use more or less steps than those discussed herein.
As used herein, the term “integrated circuit” shall include any type of integrated device of any function, whether single or multiple die, or small or large scale of integration, and irrespective of process or base materials (including, without limitation Si, SiGe, CMOS and GAs) including without limitation applications specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), digital processors (e.g., DSPs, CISC microprocessors, or RISC processors), so-called “system-on-a-chip” (SoC) devices, memory (e.g., DRAM, SRAM, flash memory, ROM), mixed-signal devices, and analog ICs.
It will be appreciated that the aforementioned features and advantages are presented solely by way of example. Accordingly, the foregoing should not be construed or interpreted to constitute, in any way, an exhaustive enumeration of features and advantages of embodiments of the present invention.
The corresponding structures, materials, acts, and equivalents of all means plus function elements in the claims below are intended to include any structure, or material, for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
2020484 | Turner | Dec 1935 | A |
3229976 | Allen, Jr. | Jan 1966 | A |
3304651 | Deyerl | Feb 1967 | A |
3580575 | Speeth | May 1971 | A |
3586870 | Cwiak | Jun 1971 | A |
3599745 | Hughes | Aug 1971 | A |
3683216 | Post | Aug 1972 | A |
3938018 | Dahl | Feb 1976 | A |
4031449 | Trombly | Jun 1977 | A |
4214125 | Mozer | Jul 1980 | A |
4248010 | Fox | Feb 1981 | A |
4248123 | Bunger et al. | Feb 1981 | A |
4374354 | Petrovic et al. | Feb 1983 | A |
4408151 | Justice | Oct 1983 | A |
RE31548 | Watanabe | Mar 1984 | E |
4463951 | Kumasaka et al. | Aug 1984 | A |
4470205 | Olivieri | Nov 1984 | A |
4496149 | Schwartzberg | Jan 1985 | A |
4516260 | Breedlove et al. | May 1985 | A |
4542902 | Massino | Sep 1985 | A |
4561661 | Walker et al. | Dec 1985 | A |
4563160 | Lee | Jan 1986 | A |
4568303 | Brown | Feb 1986 | A |
4577865 | Shishido | Mar 1986 | A |
4586456 | Forward | May 1986 | A |
4595200 | Shishido | Jun 1986 | A |
4653758 | Solheim | Mar 1987 | A |
4658386 | Morris | Apr 1987 | A |
4660831 | Kralik | Apr 1987 | A |
4775948 | Dial et al. | Oct 1988 | A |
4776589 | Yang | Oct 1988 | A |
4796891 | Milner | Jan 1989 | A |
4801141 | Rumsey | Jan 1989 | A |
4853884 | Brown et al. | Jan 1989 | A |
4806440 | Hahs, Jr. et al. | Feb 1989 | A |
4839972 | Pack et al. | Jun 1989 | A |
4840602 | Brown et al. | Jun 1989 | A |
4873677 | Sakamoto et al. | Oct 1989 | A |
4905176 | Schulz | Feb 1990 | A |
4927401 | Sonesson | May 1990 | A |
4968255 | Lee et al. | Jun 1990 | A |
4942352 | Sano | Jul 1990 | A |
4940236 | Allen | Oct 1990 | A |
4996468 | Field et al. | Feb 1991 | A |
5008839 | Goodwin et al. | Apr 1991 | A |
5054785 | Gobush et al. | Oct 1991 | A |
5066011 | Dykstra et al. | Nov 1991 | A |
5066012 | Stark | Nov 1991 | A |
5102131 | Remington | Jul 1992 | A |
5150895 | Berger | Sep 1992 | A |
5159256 | Mattinger et al. | Oct 1992 | A |
5228686 | Maleyko | Jul 1993 | A |
5228705 | Merle-Smith | Jul 1993 | A |
5229703 | Harris | Jul 1993 | A |
5236383 | Connelly | Aug 1993 | A |
5257793 | Fortin | Nov 1993 | A |
5277428 | Goodwin | Jan 1994 | A |
5277993 | Landers | Jan 1994 | A |
5297981 | Maxim et al. | Mar 1994 | A |
5329274 | Donig et al. | Jul 1994 | A |
5349129 | Wisniewski et al. | Sep 1994 | A |
5367242 | Hulman | Nov 1994 | A |
5369796 | Kung | Nov 1994 | A |
5375839 | Pagani | Dec 1994 | A |
5377996 | Shure | Jan 1995 | A |
5389009 | Van Schenck, III | Feb 1995 | A |
5396538 | Hong | Mar 1995 | A |
5423549 | Englmeier | Jun 1995 | A |
5435579 | Pozzobon | Jul 1995 | A |
5439408 | Wilkinson | Aug 1995 | A |
5443259 | Segan et al. | Aug 1995 | A |
5447314 | Yamazaki et al. | Sep 1995 | A |
5480144 | Downing | Feb 1996 | A |
5490047 | O'Rourke et al. | Feb 1996 | A |
5492329 | Kronin | Feb 1996 | A |
5505467 | Hill et al. | Apr 1996 | A |
5536979 | McEachern et al. | Jul 1996 | A |
5550452 | Shirai et al. | Aug 1996 | A |
5533920 | Arad | Sep 1996 | A |
5563574 | Hoover | Oct 1996 | A |
5564702 | Meffert | Oct 1996 | A |
5566934 | Black | Oct 1996 | A |
5568036 | Hulsey et al. | Oct 1996 | A |
5578755 | Offenberg | Nov 1996 | A |
5578877 | Tiemann | Nov 1996 | A |
5582550 | Foley | Dec 1996 | A |
5600225 | Goto | Apr 1997 | A |
5618023 | Eichholz et al. | Apr 1997 | A |
5649758 | Dion | Jul 1997 | A |
5690344 | Chen | Nov 1997 | A |
5694054 | Ovshinsky | Dec 1997 | A |
5701058 | Roth | Dec 1997 | A |
5704620 | Oliemans et al. | Jan 1998 | A |
5722046 | Serfaty et al. | Feb 1998 | A |
5761096 | Zakutin | Feb 1998 | A |
5741195 | Sullivan et al. | Apr 1998 | A |
5743815 | Helderman | Apr 1998 | A |
5755634 | Huang | May 1998 | A |
5764134 | Carr et al. | Jun 1998 | A |
5766098 | Molitor et al. | Jun 1998 | A |
5767778 | Stone et al. | Jun 1998 | A |
5779574 | Allman et al. | Jul 1998 | A |
5779575 | Hsieh | Jul 1998 | A |
5779576 | Smith, III et al. | Jul 1998 | A |
5807197 | Grafton | Sep 1998 | A |
5810685 | Willner et al. | Sep 1998 | A |
5725445 | Kennedy et al. | Oct 1998 | A |
5842706 | Chang | Dec 1998 | A |
5924942 | Gentile | Jul 1999 | A |
5934784 | Dion | Aug 1999 | A |
5934968 | Lin | Aug 1999 | A |
5951027 | Oyen et al. | Sep 1999 | A |
5954603 | Chursinoff | Sep 1999 | A |
5957470 | Powell | Sep 1999 | A |
5962786 | Le Traon et al. | Oct 1999 | A |
5976038 | Orenstein et al. | Nov 1999 | A |
6012995 | Martin | Jan 2000 | A |
6042487 | Schrimmer et al. | Mar 2000 | A |
6082744 | Allinger et al. | Apr 2000 | A |
6113504 | Kuesters | Sep 2000 | A |
6117030 | Green, Sr. | Sep 2000 | A |
6132281 | Klitsner et al. | Oct 2000 | A |
6135850 | Reed | Oct 2000 | A |
6142894 | Lee | Nov 2000 | A |
6149490 | Hampton | Nov 2000 | A |
6172722 | Sharp et al. | Jan 2001 | B1 |
6196932 | Marsh et al. | Mar 2001 | B1 |
6208115 | Binder | Mar 2001 | B1 |
6228056 | Bucher | May 2001 | B1 |
6231487 | Nurnberg et al. | May 2001 | B1 |
6246927 | Dratman | Jun 2001 | B1 |
6251035 | Fa | Jun 2001 | B1 |
6257995 | Schrimmer et al. | Jul 2001 | B1 |
6227933 | Michaud et al. | Aug 2001 | B1 |
6280278 | Wells | Aug 2001 | B1 |
6287225 | Touhey et al. | Sep 2001 | B1 |
6299553 | Petuchowski et al. | Oct 2001 | B1 |
6306041 | Mendes, Jr. | Oct 2001 | B1 |
6340740 | Holzer et al. | Jan 2002 | B1 |
6375580 | Schmidt et al. | Apr 2002 | B1 |
6379271 | Arnke | Apr 2002 | B1 |
6404409 | Solomon | Jun 2002 | B1 |
6409618 | Touhey et al. | Jun 2002 | B1 |
6422960 | Touhey et al. | Jul 2002 | B1 |
6450906 | Touhey et al. | Sep 2002 | B1 |
6458008 | Hyneman | Oct 2002 | B1 |
6459955 | Bartsch et al. | Oct 2002 | B1 |
6484671 | Herrenbruck | Nov 2002 | B2 |
6527611 | Cummings | Mar 2003 | B2 |
6537125 | Motosko, III | Mar 2003 | B1 |
6540560 | Crowley et al. | Apr 2003 | B1 |
6572492 | Tinsman | Jun 2003 | B2 |
6573883 | Bartlett | Jun 2003 | B1 |
6582330 | Rehkemper et al. | Jun 2003 | B1 |
6592509 | Hunter, Jr. | Jul 2003 | B1 |
6598882 | Stubberfield | Jul 2003 | B2 |
6615109 | Matsuoka et al. | Sep 2003 | B1 |
6666782 | Wu | Dec 2003 | B1 |
6670212 | McNie et al. | Dec 2003 | B2 |
6683438 | Park et al. | Jan 2004 | B2 |
6712487 | Liou | Mar 2004 | B2 |
6764373 | Osawa et al. | Jul 2004 | B1 |
6785590 | Kasuga et al. | Aug 2004 | B2 |
6786795 | Mullaney et al. | Sep 2004 | B1 |
6884180 | Corzilius et al. | Apr 2005 | B2 |
6906495 | Cheng et al. | Jun 2005 | B2 |
6917182 | Burton et al. | Jul 2005 | B2 |
6945843 | Motosko | Sep 2005 | B1 |
6945887 | Oister et al. | Sep 2005 | B2 |
6980956 | Takagi et al. | Dec 2005 | B1 |
7014581 | Ng | Mar 2006 | B2 |
7069113 | Matsuoka et al. | Jun 2006 | B2 |
7082578 | Fishkin et al. | Jul 2006 | B1 |
7091863 | Ravet | Aug 2006 | B2 |
7124157 | Ikake | Oct 2006 | B2 |
7130741 | Bodin et al. | Oct 2006 | B2 |
7133528 | Stilwell | Nov 2006 | B2 |
7145933 | Szajnowski | Dec 2006 | B1 |
7163313 | Rosenberg | Jan 2007 | B2 |
7170047 | Pal | Jan 2007 | B2 |
7173604 | Marvit et al. | Feb 2007 | B2 |
7179181 | Ko | Feb 2007 | B2 |
7215788 | Hooley | May 2007 | B2 |
7219033 | Kolen | May 2007 | B2 |
7258591 | Xu et al. | Aug 2007 | B2 |
7261432 | Habitz | Aug 2007 | B1 |
7297045 | Pierson et al. | Nov 2007 | B2 |
7326866 | Kelley, Jr. et al. | Feb 2008 | B2 |
7340072 | Schaub | Mar 2008 | B2 |
7340077 | Gokturk et al. | Mar 2008 | B2 |
7344430 | Hasty et al. | Mar 2008 | B2 |
7365647 | Nativ | Apr 2008 | B2 |
7367232 | Vaganov et al. | May 2008 | B2 |
7375492 | Calhoon et al. | May 2008 | B2 |
7378817 | Calhoon et al. | May 2008 | B2 |
7388350 | Wright | Jun 2008 | B1 |
7405351 | Maeng | Jul 2008 | B2 |
7413494 | Huang | Aug 2008 | B2 |
7414186 | Scarpa et al. | Aug 2008 | B2 |
7414380 | Tang et al. | Aug 2008 | B2 |
7432718 | Ishihara et al. | Oct 2008 | B2 |
7507498 | Yoon et al. | Mar 2009 | B2 |
7525283 | Cheng et al. | Apr 2009 | B2 |
7526362 | Kim et al. | Apr 2009 | B2 |
7586289 | Andruk et al. | Aug 2009 | B2 |
7614959 | Gentile | Nov 2009 | B1 |
7617729 | Axelrod et al. | Nov 2009 | B2 |
7679524 | Hofer et al. | Mar 2010 | B2 |
7688036 | Yarger et al. | Mar 2010 | B2 |
7692320 | Lemieux | Apr 2010 | B2 |
7714537 | Cheng et al. | May 2010 | B2 |
7714880 | Johnson | May 2010 | B2 |
7716985 | Zhang et al. | May 2010 | B2 |
7723958 | Darilek | May 2010 | B2 |
7727097 | Siegel et al. | Jun 2010 | B2 |
7740551 | Nurnberg et al. | Jun 2010 | B2 |
7755605 | Daniel et al. | Jul 2010 | B2 |
7774155 | Sato et al. | Aug 2010 | B2 |
7780535 | Hagood | Aug 2010 | B2 |
7786696 | Kim et al. | Aug 2010 | B2 |
7789727 | Chernick et al. | Sep 2010 | B2 |
7822507 | Ishihara et al. | Oct 2010 | B2 |
7832362 | DeGhionno | Nov 2010 | B2 |
7847421 | Gardner et al. | Dec 2010 | B2 |
7847504 | Hollis | Dec 2010 | B2 |
7850535 | Noble et al. | Dec 2010 | B2 |
7853357 | Sawada et al. | Dec 2010 | B2 |
7853645 | Brown et al. | Dec 2010 | B2 |
7854669 | Marty et al. | Dec 2010 | B2 |
7863859 | Soar | Jan 2011 | B2 |
7863861 | Cheng et al. | Jan 2011 | B2 |
7867113 | Petersen | Jan 2011 | B2 |
7872445 | Hui | Jan 2011 | B2 |
7876067 | Greenfeld et al. | Jan 2011 | B2 |
7891666 | Kuenzler et al. | Feb 2011 | B2 |
7892876 | Mehregany | Feb 2011 | B2 |
7906936 | Azancot et al. | Mar 2011 | B2 |
7927253 | Vincent et al. | Apr 2011 | B2 |
7948208 | Partovi et al. | May 2011 | B2 |
7952322 | Partovi et al. | May 2011 | B2 |
7952324 | Cheng et al. | May 2011 | B2 |
7979162 | Niemela et al. | Jul 2011 | B2 |
8022775 | Julstrom et al. | Sep 2011 | B2 |
8025551 | Torres et al. | Sep 2011 | B2 |
8038504 | Wong | Oct 2011 | B1 |
8055310 | Beart et al. | Nov 2011 | B2 |
8062037 | Chapa, Jr. et al. | Nov 2011 | B1 |
8093864 | Wright | Jan 2012 | B2 |
8099189 | Kaznov et al. | Jan 2012 | B2 |
8108177 | Alexander | Jan 2012 | B2 |
8111041 | Onishi et al. | Feb 2012 | B2 |
8126675 | Vock et al. | Feb 2012 | B2 |
8127155 | Baarman et al. | Feb 2012 | B2 |
8128450 | Imai | Mar 2012 | B2 |
8128500 | Borst et al. | Mar 2012 | B1 |
8142287 | Podoloff | Mar 2012 | B2 |
8169185 | Partovi et al. | May 2012 | B2 |
8172722 | Molyneux et al. | May 2012 | B2 |
8174233 | Julstrom et al. | May 2012 | B2 |
8174234 | Julstrom et al. | May 2012 | B2 |
8180436 | Boyden et al. | May 2012 | B2 |
8181233 | Wyld | May 2012 | B2 |
8187126 | Martino | May 2012 | B2 |
8188706 | Yang | May 2012 | B2 |
8196550 | Levin et al. | Jun 2012 | B2 |
8197298 | Willett | Jun 2012 | B2 |
8221290 | Vincent et al. | Jul 2012 | B2 |
8237402 | Julstrom et al. | Jul 2012 | B2 |
8239146 | Vock et al. | Aug 2012 | B2 |
8257189 | Koudele | Sep 2012 | B2 |
8257203 | Rasmussen | Sep 2012 | B2 |
8258917 | Cai et al. | Sep 2012 | B2 |
8274406 | Karlsson et al. | Sep 2012 | B2 |
8275544 | Wells et al. | Sep 2012 | B1 |
8217788 | Vock et al. | Oct 2012 | B2 |
8280453 | Beart et al. | Oct 2012 | B2 |
8280681 | Vock et al. | Oct 2012 | B2 |
8292764 | Steidle | Oct 2012 | B2 |
8310201 | Wright | Nov 2012 | B1 |
8326469 | Phillips et al. | Dec 2012 | B2 |
8330639 | Wong et al. | Dec 2012 | B2 |
8332544 | Ralls et al. | Dec 2012 | B1 |
8352211 | Vock et al. | Jan 2013 | B2 |
8352643 | Birnbaum et al. | Jan 2013 | B2 |
8355297 | Wilbur et al. | Jan 2013 | B2 |
8355818 | Nielsen et al. | Jan 2013 | B2 |
8360904 | Oleson et al. | Jan 2013 | B2 |
8364136 | Hoffberg et al. | Jan 2013 | B2 |
8367235 | Huang | Feb 2013 | B2 |
8371971 | Bevier | Feb 2013 | B2 |
8392065 | Tolstedt et al. | Mar 2013 | B2 |
8395348 | Saatchi | Mar 2013 | B1 |
8396611 | Phillips et al. | Mar 2013 | B2 |
8396687 | Vock et al. | Mar 2013 | B2 |
8417384 | Togawa et al. | Apr 2013 | B2 |
8428904 | Vock et al. | Apr 2013 | B2 |
8456298 | Valtonen | Jun 2013 | B2 |
8436576 | Toya et al. | Jul 2013 | B2 |
8506430 | Von Der Gruen et al. | Aug 2013 | B2 |
8517870 | Crowley et al. | Aug 2013 | B2 |
8483758 | Huang | Sep 2013 | B2 |
8540560 | Crowley et al. | Sep 2013 | B2 |
8531153 | Baarman et al. | Oct 2013 | B2 |
8560024 | Beart et al. | Oct 2013 | B2 |
8571781 | Bernstein et al. | Oct 2013 | B2 |
8460816 | Julstrom et al. | Nov 2013 | B2 |
8577595 | Zhao et al. | Nov 2013 | B2 |
8579632 | Crowley | Nov 2013 | B2 |
8597095 | Crowley et al. | Dec 2013 | B2 |
8610400 | Stevens et al. | Dec 2013 | B2 |
8620600 | Vock et al. | Dec 2013 | B2 |
8629652 | Partovi et al. | Jan 2014 | B2 |
8629654 | Partovi et al. | Jan 2014 | B2 |
8638062 | Baarman et al. | Jan 2014 | B2 |
8660814 | Vock et al. | Feb 2014 | B2 |
8668602 | Kieffaber | Mar 2014 | B1 |
8670889 | Kaznov | Mar 2014 | B2 |
8672782 | Homsi et al. | Mar 2014 | B2 |
8690711 | Ko et al. | Apr 2014 | B2 |
8702430 | Dibenedetto et al. | Apr 2014 | B2 |
8758172 | Creguer | Jun 2014 | B2 |
8777785 | Martino | Jul 2014 | B2 |
8693293 | Wilbur et al. | Aug 2014 | B2 |
8845466 | Bevier | Sep 2014 | B2 |
8864609 | Kodama et al. | Oct 2014 | B2 |
8890470 | Partovi | Nov 2014 | B2 |
8896264 | Partovi | Nov 2014 | B2 |
8901881 | Partovi | Dec 2014 | B2 |
8920267 | Gable | Dec 2014 | B2 |
8928190 | Karren et al. | Jan 2015 | B2 |
8947047 | Partovi et al. | Feb 2015 | B2 |
8951106 | Crowley et al. | Feb 2015 | B2 |
8951151 | Glowinski | Feb 2015 | B2 |
8954117 | Huang | Feb 2015 | B2 |
8970166 | Hoffman et al. | Mar 2015 | B2 |
8971039 | Huang et al. | Mar 2015 | B2 |
8989420 | Hamer | Mar 2015 | B1 |
8992353 | Kortegast | Mar 2015 | B1 |
9026187 | Huang | May 2015 | B2 |
9077013 | Huang et al. | Jul 2015 | B2 |
9087159 | Oleson et al. | Jul 2015 | B2 |
9088028 | Huang et al. | Jul 2015 | B2 |
9088029 | Huang et al. | Jul 2015 | B2 |
9106083 | Partovi | Aug 2015 | B2 |
9123935 | Huang | Sep 2015 | B2 |
9137309 | Ananny et al. | Sep 2015 | B2 |
9143003 | Baarman et al. | Sep 2015 | B2 |
9153985 | Gjovik et al. | Oct 2015 | B1 |
9154554 | Ananny et al. | Oct 2015 | B2 |
9112362 | Partovi | Nov 2015 | B2 |
9112363 | Partovi | Nov 2015 | B2 |
9112364 | Partovi | Nov 2015 | B2 |
9112957 | Beart et al. | Nov 2015 | B2 |
9545542 | Binder | Jan 2017 | B2 |
9555292 | Binder | Jan 2017 | B2 |
9630062 | Binder | Apr 2017 | B2 |
9878214 | Binder | Jan 2018 | B2 |
9900669 | Touma | Feb 2018 | B2 |
9924708 | Grace | Mar 2018 | B2 |
10075788 | Cox | Sep 2018 | B2 |
10716971 | Oberc | Jul 2020 | B1 |
10926140 | Binder | Feb 2021 | B2 |
11305160 | Binder | Apr 2022 | B2 |
20010034279 | Veilleux et al. | Oct 2001 | A1 |
20020034991 | Sasaki et al. | Mar 2002 | A1 |
20020064094 | Gaspari | May 2002 | A1 |
20020116147 | Vock | Aug 2002 | A1 |
20020187866 | Touhey et al. | Dec 2002 | A1 |
20030032507 | Lacroix et al. | Feb 2003 | A1 |
20030054905 | King, Jr. | Mar 2003 | A1 |
20030073518 | Marty et al. | Apr 2003 | A1 |
20030093182 | Yokoyama | May 2003 | A1 |
20030100391 | Kessler | May 2003 | A1 |
20030109339 | Oister | Jun 2003 | A1 |
20030125135 | Iwami et al. | Jul 2003 | A1 |
20030163287 | Vock | Aug 2003 | A1 |
20030199343 | Tlcisin et al. | Oct 2003 | A1 |
20030224885 | Leal et al. | Dec 2003 | A1 |
20040002284 | Leal | Jan 2004 | A1 |
20040002843 | Robarts et al. | Jan 2004 | A1 |
20040048686 | Thirkettle | Mar 2004 | A1 |
20040067411 | Lisanke | Apr 2004 | A1 |
20040105540 | Sayed | Jun 2004 | A1 |
20040162170 | Ng | Aug 2004 | A1 |
20040182614 | Wakui | Sep 2004 | A1 |
20040186623 | Dooley | Sep 2004 | A1 |
20040192163 | Siegel | Sep 2004 | A1 |
20040219499 | Cesa | Nov 2004 | A1 |
20050003885 | Rhoten | Jan 2005 | A1 |
20050004723 | Duggan et al. | Jan 2005 | A1 |
20050017677 | Burton et al. | Jan 2005 | A1 |
20050064966 | Menow | Mar 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050156560 | Shimaoka et al. | Jul 2005 | A1 |
20050186884 | Evans | Aug 2005 | A1 |
20050032457 | Gick | Oct 2005 | A1 |
20050223799 | Murphy | Oct 2005 | A1 |
20050226192 | Red et al. | Oct 2005 | A1 |
20050232083 | Borsina | Oct 2005 | A1 |
20050233815 | McCreary et al. | Oct 2005 | A1 |
20050259002 | Erario et al. | Nov 2005 | A1 |
20050264472 | Rast | Dec 2005 | A1 |
20050288133 | Rudell | Dec 2005 | A1 |
20060025254 | Myers | Feb 2006 | A1 |
20060046879 | Kelly et al. | Mar 2006 | A1 |
20060061325 | Tang et al. | Mar 2006 | A1 |
20060095158 | Lee et al. | May 2006 | A1 |
20060101465 | Kato et al. | May 2006 | A1 |
20060105857 | Stark | May 2006 | A1 |
20060108974 | Castillo | May 2006 | A1 |
20060135297 | Cruciani | Jun 2006 | A1 |
20060148594 | Saintoyant et al. | Jul 2006 | A1 |
20060167623 | Alexander | Jul 2006 | A1 |
20060167649 | Alexander | Jul 2006 | A1 |
20060183576 | Lindsey | Aug 2006 | A1 |
20060189386 | Rosenberg | Aug 2006 | A1 |
20060205381 | Beart et al. | Sep 2006 | A1 |
20060229040 | Hofer et al. | Oct 2006 | A1 |
20060241812 | Jung | Oct 2006 | A1 |
20060246345 | Yoon et al. | Nov 2006 | A1 |
20060267286 | Hickey | Nov 2006 | A1 |
20060271251 | Hopkins | Nov 2006 | A1 |
20070021244 | Ko | Jan 2007 | A1 |
20070026975 | Marty et al. | Feb 2007 | A1 |
20070034734 | Yoeli | Feb 2007 | A1 |
20070035093 | Fuchs | Feb 2007 | A1 |
20070037641 | Wong | Feb 2007 | A1 |
20070059675 | Kuenzler | Mar 2007 | A1 |
20070060425 | Kuenzler | Mar 2007 | A1 |
20070085706 | Feyereisen et al. | Apr 2007 | A1 |
20070087861 | Liao | Apr 2007 | A1 |
20070112462 | Kim | May 2007 | A1 |
20070135243 | LaRue et al. | Jun 2007 | A1 |
20070156369 | Alexander et al. | Jul 2007 | A1 |
20070167266 | Devall | Jul 2007 | A1 |
20070178967 | Rosenberg | Aug 2007 | A1 |
20070182367 | Partovi | Aug 2007 | A1 |
20070191083 | Kuenzler | Aug 2007 | A1 |
20070210580 | Roberts et al. | Sep 2007 | A1 |
20070236183 | Darilek | Oct 2007 | A1 |
20070241924 | Dorflinger | Oct 2007 | A1 |
20070249422 | Podoloff | Oct 2007 | A1 |
20070256337 | Segan | Nov 2007 | A1 |
20070259592 | Imai et al. | Nov 2007 | A1 |
20070273333 | Andruk et al. | Nov 2007 | A1 |
20070157497 | Huang | Dec 2007 | A1 |
20070279002 | Partovi | Dec 2007 | A1 |
20070281811 | Wang | Dec 2007 | A1 |
20070282484 | Chung et al. | Dec 2007 | A1 |
20080009965 | Bruemmer et al. | Jan 2008 | A1 |
20080015058 | Noble et al. | Jan 2008 | A1 |
20080015061 | Klein | Jan 2008 | A1 |
20080015064 | Nelson et al. | Jan 2008 | A1 |
20080033641 | Medalia | Feb 2008 | A1 |
20080039246 | Martino | Feb 2008 | A1 |
20080039250 | Martino | Feb 2008 | A1 |
20080049372 | Loke | Feb 2008 | A1 |
20080054842 | Kim et al. | Mar 2008 | A1 |
20080077284 | Swope | Mar 2008 | A1 |
20080088303 | Englert | Apr 2008 | A1 |
20080121097 | Rudakevych et al. | May 2008 | A1 |
20080132363 | Harada | Jun 2008 | A1 |
20080153594 | Zheng | Jun 2008 | A1 |
20080159079 | Dir | Jul 2008 | A1 |
20080174281 | Shau | Jul 2008 | A1 |
20080174448 | Hudson | Jul 2008 | A1 |
20080234077 | Glowinski | Sep 2008 | A1 |
20080240507 | Niwa et al. | Oct 2008 | A1 |
20080263628 | Norman et al. | Oct 2008 | A1 |
20080267450 | Sugimoto | Oct 2008 | A1 |
20080269949 | Norman et al. | Oct 2008 | A1 |
20080274844 | Ward | Nov 2008 | A1 |
20080300055 | Lutnick | Dec 2008 | A1 |
20090004945 | Delassus | Jan 2009 | A1 |
20090029808 | Fore | Jan 2009 | A1 |
20090033623 | Lin | Feb 2009 | A1 |
20090042677 | Siegel et al. | Feb 2009 | A1 |
20090047645 | Dibenedetto et al. | Feb 2009 | A1 |
20090048039 | Holthouse et al. | Feb 2009 | A1 |
20090048044 | Oleson et al. | Feb 2009 | A1 |
20090055019 | Stiehl et al. | Feb 2009 | A1 |
20090057238 | Garti | Mar 2009 | A1 |
20090068924 | Chernick et al. | Mar 2009 | A1 |
20090073034 | Lin | Mar 2009 | A1 |
20090081923 | Dooley et al. | Mar 2009 | A1 |
20090062033 | Harada | May 2009 | A1 |
20090171516 | Reich | Jul 2009 | A1 |
20090176544 | Mertens | Jul 2009 | A1 |
20090191990 | Smith | Jul 2009 | A1 |
20090198371 | Emanuel et al. | Aug 2009 | A1 |
20090204261 | Strand et al. | Aug 2009 | A1 |
20090210078 | Crowley | Aug 2009 | A1 |
20090222148 | Knotts et al. | Sep 2009 | A1 |
20090226035 | Tihoshi et al. | Sep 2009 | A1 |
20090253526 | Koudele | Oct 2009 | A1 |
20090256822 | Amireh et al. | Oct 2009 | A1 |
20090262074 | Nasiri et al. | Oct 2009 | A1 |
20090265671 | Sachs et al. | Oct 2009 | A1 |
20090278932 | Yi | Nov 2009 | A1 |
20090284553 | Seydoux | Nov 2009 | A1 |
20090325739 | Gold | Dec 2009 | A1 |
20100004798 | Bodin et al. | Jan 2010 | A1 |
20100010669 | Lee et al. | Jan 2010 | A1 |
20100031424 | Sharpe et al. | Feb 2010 | A1 |
20100032224 | Liu | Feb 2010 | A1 |
20100063652 | Anderson | Mar 2010 | A1 |
20100066676 | Kramer et al. | Mar 2010 | A1 |
20100069181 | Lin | Mar 2010 | A1 |
20100084513 | Gariepy et al. | Apr 2010 | A1 |
20100106344 | Edwards et al. | Apr 2010 | A1 |
20100130314 | Von Der Gruen et al. | May 2010 | A1 |
20100130315 | Steidle | May 2010 | A1 |
20100145236 | Greenberg et al. | Jun 2010 | A1 |
20100169098 | Patch | Jul 2010 | A1 |
20100172287 | Krieter | Jul 2010 | A1 |
20100183195 | Sharma | Jul 2010 | A1 |
20100207879 | Fadell | Aug 2010 | A1 |
20100234993 | Seelinger et al. | Sep 2010 | A1 |
20100241289 | Sandberg | Sep 2010 | A1 |
20100261526 | Anderson et al. | Oct 2010 | A1 |
20100261562 | Bevier | Oct 2010 | A1 |
20100285909 | Voelker et al. | Nov 2010 | A1 |
20100305778 | Dorneich et al. | Dec 2010 | A1 |
20100305781 | Felix | Dec 2010 | A1 |
20100312917 | Allport | Dec 2010 | A1 |
20100313334 | Moy | Dec 2010 | A1 |
20100324753 | Okumatsu | Dec 2010 | A1 |
20110003640 | Ehrman | Jan 2011 | A9 |
20110012661 | Binder | Jan 2011 | A1 |
20110018731 | Linsky et al. | Jan 2011 | A1 |
20110018794 | Linsky et al. | Jan 2011 | A1 |
20110022196 | Linsky et al. | Jan 2011 | A1 |
20110031689 | Binder | Feb 2011 | A1 |
20110035054 | Gal et al. | Feb 2011 | A1 |
20110045812 | Kim | Feb 2011 | A1 |
20110050940 | Lanz et al. | Mar 2011 | A1 |
20110060492 | Kaznov | Mar 2011 | A1 |
20110065488 | Okamura et al. | Mar 2011 | A1 |
20110071652 | Brown et al. | Mar 2011 | A1 |
20110071702 | Wang et al. | Mar 2011 | A1 |
20110077112 | Erario et al. | Mar 2011 | A1 |
20110082566 | Herr et al. | Apr 2011 | A1 |
20110087371 | Sandberg et al. | Apr 2011 | A1 |
20110118062 | Krysiak | May 2011 | A1 |
20110118065 | Krysiak et al. | May 2011 | A1 |
20110119022 | Kuenzler et al. | May 2011 | A1 |
20110136596 | Rasmussen | Jun 2011 | A1 |
20110136603 | Lin et al. | Jun 2011 | A1 |
20110136604 | Hsu | Jun 2011 | A1 |
20110146775 | Kim et al. | Jun 2011 | A1 |
20110153885 | Mak et al. | Jun 2011 | A1 |
20110184590 | Duggan et al. | Jul 2011 | A1 |
20110205722 | Chen et al. | Aug 2011 | A1 |
20110213278 | Horak et al. | Sep 2011 | A1 |
20110214616 | Levin et al. | Sep 2011 | A1 |
20110234488 | Ge et al. | Sep 2011 | A1 |
20110237367 | Kodama | Sep 2011 | A1 |
20110241617 | Hoffman et al. | Oct 2011 | A1 |
20110244981 | Schrimmer | Oct 2011 | A1 |
20110250967 | Kulas | Oct 2011 | A1 |
20110263330 | Weston | Oct 2011 | A1 |
20110285214 | Stevens et al. | Nov 2011 | A1 |
20110287878 | Englert | Nov 2011 | A1 |
20110291926 | Gokturk et al. | Dec 2011 | A1 |
20110294397 | Tsai | Dec 2011 | A1 |
20110313568 | Blackwell | Dec 2011 | A1 |
20110316529 | Stancil et al. | Dec 2011 | A1 |
20110320830 | Ito | Dec 2011 | A1 |
20120008464 | Barley | Jan 2012 | A1 |
20120009845 | Schmelzer | Jan 2012 | A1 |
20120035799 | Ehrmann | Feb 2012 | A1 |
20120058845 | Crowley et al. | Mar 2012 | A1 |
20120063592 | Spalka | Mar 2012 | A1 |
20120065747 | Brown et al. | Mar 2012 | A1 |
20120083945 | Oakley et al. | Apr 2012 | A1 |
20120083962 | Sato et al. | Apr 2012 | A1 |
20120106783 | Chang et al. | May 2012 | A1 |
20120146775 | Kudo et al. | Jun 2012 | A1 |
20120149359 | Huang | Jun 2012 | A1 |
20120152790 | Houvener et al. | Jun 2012 | A1 |
20120157246 | Glover et al. | Jun 2012 | A1 |
20120167014 | Joo et al. | Jun 2012 | A1 |
20120168240 | Wilson et al. | Jul 2012 | A1 |
20120173018 | Allen et al. | Jul 2012 | A1 |
20120173047 | Bernstein et al. | Jul 2012 | A1 |
20120173049 | Bernstein et al. | Jul 2012 | A1 |
20120173050 | Bernstein et al. | Jul 2012 | A1 |
20120181981 | Wechlin et al. | Jul 2012 | A1 |
20120185115 | Dean | Jul 2012 | A1 |
20120193154 | Wellborn et al. | Aug 2012 | A1 |
20120197439 | Wang et al. | Aug 2012 | A1 |
20120215355 | Bewley et al. | Aug 2012 | A1 |
20120231906 | Barry et al. | Sep 2012 | A1 |
20120244969 | Binder | Sep 2012 | A1 |
20120295740 | Creguer | Nov 2012 | A1 |
20120298049 | Cook et al. | Nov 2012 | A1 |
20120298430 | Schroll et al. | Nov 2012 | A1 |
20120306850 | Balan et al. | Dec 2012 | A1 |
20120307001 | Osako et al. | Dec 2012 | A1 |
20120309261 | Boman et al. | Dec 2012 | A1 |
20120311810 | Gilbert, Jr. et al. | Dec 2012 | A1 |
20130023365 | Idoni-Matthews et al. | Jan 2013 | A1 |
20130050069 | Ota | Feb 2013 | A1 |
20130065482 | Trickett | Mar 2013 | A1 |
20130095959 | Marty et al. | Apr 2013 | A1 |
20130109272 | Rindlisbacher | May 2013 | A1 |
20130109511 | Galyuk | May 2013 | A1 |
20130115847 | Gable | May 2013 | A1 |
20130130843 | Burroughs et al. | May 2013 | A1 |
20130130848 | Homsi et al. | May 2013 | A1 |
20130143482 | Regler | Jun 2013 | A1 |
20130167290 | Ben Ezra | Jul 2013 | A1 |
20130265225 | Nasiri et al. | Oct 2013 | A1 |
20130274040 | Coza et al. | Oct 2013 | A1 |
20130315108 | Lindner | Nov 2013 | A1 |
20140171226 | Costain et al. | Jun 2014 | A1 |
20140309059 | Minch | Oct 2014 | A1 |
20140328488 | Caballero | Nov 2014 | A1 |
20140371954 | Lee et al. | Dec 2014 | A1 |
20150237847 | Madl | Aug 2015 | A1 |
20150289074 | Kauppila | Oct 2015 | A1 |
20160066560 | Grace | Mar 2016 | A1 |
20170016612 | Boyd | Jan 2017 | A1 |
20170282039 | Meredith | Oct 2017 | A1 |
20170348561 | Papadourakis | Dec 2017 | A1 |
20180001138 | Sinha | Jan 2018 | A1 |
20180154222 | Thurman | Jun 2018 | A1 |
20180188850 | Heath | Jul 2018 | A1 |
20200129818 | Binder | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
2213069 | Sep 1989 | GB |
1999030783 | Jun 1999 | WO |
1999059684 | Nov 1999 | WO |
2003096512 | Nov 2003 | WO |
2005002327 | Jun 2004 | WO |
2005002327 | Jun 2004 | WO |
2008015465 | Jul 2008 | WO |
2014060647 | Apr 2014 | WO |
Entry |
---|
Data-sheet Dual Character with I. C. Driver LED alphanumeric display Part No. L TM-8647AC, Lite-On Electronics, Inc. publication BNS-OD-C131/A4 downloaded Mar. 2011 (7 pages). |
Data-sheet PF226-04 Epson 7910 series ‘Multi-Melody IC’ Seiko-Epson Corporation, Electronic Devices Marketing Division dated 1998 (4 pages). |
Data-sheet ‘YMF721 OPL4-ML2 FM + Wavetable Synthesizer LSI’, Yamaha Corporation Catalog No. LSI-4MF721A20, Jul. 10, 1997 (41 pages). |
Data-sheet “General Purpose Timers”, Maxim Integrated Products, Inc. publication No. 19-0481 Rev.2 11/92, 1992, (9 pages). |
Data-sheet Quadruple digits, seven-segments, LED display Part No. L TC-361 OG, Lite-On Electronics, Inc. publication BNS-OD-C131/A4 downloaded Mar. 2011 (5 pages). |
Partial International Search of PCT/182012/052618 dated Feb. 11, 2013. |
Data-sheet Rev. 1.00 Holtek Semiconductor Inc. HT3834 CMOS VLSI Integrated Circuit (IC) ‘36 Melody Music Generator’ dated Nov. 2, 2006 (16 pages). |
User's Manual Revision 1.0 Magnevation LLC Magnevation SpeakJet chip ‘Natural Speech & Complex Sound Synthesizer’ Jul. 27, 2004 (17 pages). |
Data-sheet LS 13561C Bowin Electronic Company Hong-Kong, LSI-LS1356 ‘4 Digit Time with Colon Default’ Version 1.2 (Oct. 24, 2003) (6 pages). |
Data-sheet ML2215 FEDL2215-01 OKI Semiconductor ‘Speech synthesizer plus Music LSI with On-Chip 3 Mbit Mask ROM’ May 2001 (26 pages). |
Data-sheet LIS302DL STMicroelectronics N.V., ‘MEMS motion sensor 3-axis- ±2g/±8g smart digital output “piccolo”accelerometer’, Rev. 4, Oct. 2008 (42 pages). |
Data-sheet SQ-SEN-200 SignaiQuest, Inc., ‘Datasheet SQ-SEN-200 Omnidirectional Tilt and Vibration Sensor’ Updated Aug. 3, 2009 (6 pages). |
Data Book OPTi 82C931 ‘Plug and Play Integrated Audio Controller’, No. 912-3000-035 Revision: 2.1 published on Aug. 1, 1997 (64 pages). |
Data-sheet ‘True Random Number Generation IC RPG1 00 I RPG1 OOB’, FDK Corporation No. HM-RAE001-0509, Last update Sep. 2005 (4 pages). |
Integrated-Circuits Application-Note AN170 ‘NE555 and NE556 applications’, Philips Semiconductors, Dec. 1988 (19 pages). |
Data-sheet “General Purpose Timers”, Maxim Integrated Products, Inc. publication No. 19-0481 Rev.2 11/92 (8 pages). |
Data-sheet Multi Color LED Part No. 08L5015RGBC, Electronix Express I RSR Electronics, downloaded Mar. 2011 (2 pages). |
Data-sheet Pulse Counters, electronic, LCD Module 192, Fritz Kubler GmbH catalog page 77 Jun. 2009 (1 page). |
Data-sheet Pulse Counters, electronic, LCD Pulse Counters-Codix 130, Fritz Kubler GmbH catalog pp. 56-57 Feb. 2011 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20220219047 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
61467615 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14987782 | Jan 2016 | US |
Child | 15456538 | US | |
Parent | 13427150 | Mar 2012 | US |
Child | 14301544 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17175646 | Feb 2021 | US |
Child | 17706709 | US | |
Parent | 16726891 | Dec 2019 | US |
Child | 17175646 | US | |
Parent | 15716834 | Sep 2017 | US |
Child | 16726891 | US | |
Parent | 15456538 | Mar 2017 | US |
Child | 15716834 | US | |
Parent | 14301544 | Jun 2014 | US |
Child | 14987782 | US |