The present invention relates to a device for distributing a gas flow to a domestic cooking appliance, which may include a number of rotary taps integrated into the distribution pipe, for regulating the individual gas flow supplied to an outlet conduit of said tap.
There are known gas fuel distributors for a cooking appliance of the type mentioned above, such as that disclosed in WO 97/21960, which comprises various taps integrated in a distribution pipe, distanced from each other, and assembled with means for the airtight closure of the insertion holes on the tap body in the pipe.
Each of the gas taps disclosed therein includes a body portion comprising a fixed generally hollow frusto-conical casing positioned within the distribution pipe that has an inlet orifice for the inlet of gas from the distribution pipe. The gas tap also include a frusto-conical rotary plug member located within the casing having both a major orifice and a minor orifice. The plug member is rotatable by means of a control key such that the major and minor orifices of the plug member can be moved into and/or out of varying degrees of alignment with the inlet orifice of the casing to regulate or control the volume of gas flow through an outlet port of the tap. The major orifice is for variation of the gas flow from low to high flame in an associated burner and the minor orifice is for achieving a very low ‘simmer’ flame level. This device for gas distribution presents a problem in that the casing and the rotary plug member have substantially circular passage openings that cannot regulate an intermediate flow “Qgra” proportional to the angular path of the conical member. In addition, the distribution pipe of this known device for gas distribution has two flat opposing walls for the insertion and exit of the tap body, as a result of which the airtight closure of the coupling with the flat walls of the pipe is simple.
It is an object of present invention to provide a device for distributing a gas flow to a domestic cooking appliance, preferably with a number of regulation taps inserted between the walls of a common distribution pipe, wherein both the surface of the tap body and a rotary regulation member have passage openings that overlap each other for the regulation of an intermediate flow “Qgra” proportional to the angular displacement of the conical member, between two constant flows, the maximum “Qmax” and the minimum “Qmin”.
The passage opening in the tap body and in the rotary regulation member possess contours of a specific shape, such as the ones described in detail in the following section, both passage openings being formed by portions of a surface area adjacent to each other in succession, which cooperate by means of their overlapping in the direction of rotation to create said three flows, the intermediate flow “Qgra” also being variable in a linear manner.
In addition, for the purposes of using a cylindrical pipe for the assembly of the distributing device, the invention resolves the problem of the coupling between the tap body and the cylindrical pipe, by means of an airtight closure of both insertion holes on the tap body, which are not flat but which have the geometrical profile of the orthogonal intersection of two cylinders.
With reference to
Each of taps 3 comprise a tap body 4 and a internal regulation member 5 that may be conical, the part of the body 4a that cooperates with the regulation of the gas flow “Q” being housed inside the pipe 2. The gas supplied by the source circulates through the inlet hole 2b of the pipe 2, and reaches the tap 3 first of all through a regulation groove 11 on the surface of the body 4a, and then through a rotary passage opening 12 towards the interior of the conical member 5, from where the gas is led to an outlet conduit 3b in the tap body. Outside the distribution pipe 2, a nozzle 8 is threaded to the outlet end 4c of the tap for injecting the regulated flow “Q” to the intake of the mixture of the corresponding burner.
The gas flow “Q” circulating through the pipe 2 is distributed between the various integrated taps 3, each of them being capable of supplying, in this order, a maximum flow Qmax, an intermediate flow Qgra, and a minimum flow Qmin, by rotating the shaft 6 of the tap.
The conical member 5 is coupled to the drive shaft 6, the coupling of both to the tap body 4 being covered by a cap 7 which guides the rotation of the shaft 6 between two stops of an angular path of preferably 270° (
In one embodiment, the body 4 of the tap 3 comprises three substantially cylindrical body parts 4a, 4b and 4c of different diameters forming sections 9 and 10 in the axial direction towards the pipe 2, the intermediate part 4a forming a cylindrical wall that contains the stationary regulation groove 11 and which is inserted into the pipe intake hole 2b through a hole 13 in the cylindrical wall of the pipe 2a. This intermediate part of the body 4a has a machined internal hollow space with a conical surface 40, inside which the conical member 5 is fitted, pushed by the spring 24.
The first part 4b of greater diameter is outside the pipe 2, and forms a cross-section 9 as an insertion limit in the pipe 2, out of which axially project two arched lobes 15 with a transverse edge surrounding the hole 13 in the cylindrical wall of the pipe 2a, the shape of which follows the geometric line of intersection with a cylinder, thereby enabling its orthogonal coupling to the cylindrical wall of the pipe 2a. An airtight seal 22 of a specific shape is interposed with the cylindrical wall of the pipe 2, upon said transverse edge of these lobes 15, thereby surrounding the hole 13 in the pipe, through which the body 4 passes to ensure its airtight closure. The airtight seal 22 has a recess, on one of its faces, configured with a geometric surface equivalent to the intersection of two cylinders of different diameter, that of the intermediate part 4a of the inserted body, and that of the pipe 2, and it has a flat surface, on the other face, for its tightening against said cross-section 9, which is also flat. The external part of the body 4b has two pairs of peripheral ribs 27 that face each other, in which is connected a respective flap of the cover 7 to ensure the positioning and guidance of the cover 7 with the tap.
Part 4c of the body is a body end 16 with an external thread for fixing said injector nozzle 8 from the outside of the pipe 2. The body end 16 forms a second cross-section 10 in the body, being disposed inside the gas intake hole 2b, from which is created an outlet pipe 3b of the tap of flow “Q” which projects out of the pipe 2 for fixing the nozzle 8. The latter has a nut 17 for its coupling to the cylindrical wall of the pipe 2, and an injector hole 18 on the free end to supply the mixture fuel intake to the corresponding burner. An adaptor casing 19 and an airtight seal 23 (
With reference to
With reference to
With reference to
Number | Date | Country | Kind |
---|---|---|---|
200601861 U | Aug 2006 | ES | national |
This application claims priority to PCT/ES2007/070121 filed Jun. 19, 2007, which claims priority to Spanish Patent Application No. U200601861, filed Aug. 7, 2006.
Number | Name | Date | Kind |
---|---|---|---|
2723102 | Mueller | Nov 1955 | A |
2902253 | Page | Sep 1959 | A |
2951501 | Thylefors | Sep 1960 | A |
3001547 | Brumbaugh | Sep 1961 | A |
3173448 | Jones | Mar 1965 | A |
4947891 | Genbauffe | Aug 1990 | A |
5009393 | Massey | Apr 1991 | A |
5551467 | Booth et al. | Sep 1996 | A |
6520481 | Harneit | Feb 2003 | B2 |
6808162 | Tranovich et al. | Oct 2004 | B2 |
6845966 | Albizuri | Jan 2005 | B1 |
6880571 | Lin | Apr 2005 | B2 |
20020033464 | Harneit | Mar 2002 | A1 |
Number | Date | Country |
---|---|---|
181114 | Feb 1974 | ES |
272670 | Dec 1983 | ES |
1059642 | May 2005 | ES |
2171695 | Sep 1973 | FR |
831809 | Mar 1960 | GB |
914107 | Dec 1962 | GB |
1261141 | Jan 1972 | GB |
8110039 | Apr 1996 | JP |
WO9721960 | Jun 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20090140193 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/ES2007/070121 | Jun 2007 | US |
Child | 12367373 | US |