Device for driving an auxiliary unit

Information

  • Patent Grant
  • 9273564
  • Patent Number
    9,273,564
  • Date Filed
    Tuesday, November 13, 2012
    12 years ago
  • Date Issued
    Tuesday, March 1, 2016
    9 years ago
Abstract
A device for driving an auxiliary unit, in particular a high-pressure pump is provided. The device includes a rotatably supported drive shaft of an internal combustion engine coupled to a unit shaft of the auxiliary unit by a coupling. The unit shaft has a first bearing on the side facing away from the coupling, and a second bearing formed by the coupling. The device provides a coupling solution for connecting, for example, a high-pressure pump camshaft to an available intake or exhaust camshaft.
Description
BACKGROUND AND SUMMARY OF THE INVENTION

The invention relates to a device for driving an auxiliary unit, particularly a high-pressure pump wherein a rotatably disposed drive shaft of an internal-combustion engine and a unit shaft of the auxiliary unit are in a mutually operative position by way of a coupling.


Concerning the technical background, reference is made, for example, to German Published Patent Application DE 10 2007 029 651 A1, from which a high-pressure fuel pump arrangement having a pump housing is known for operating a self-igniting internal-combustion engine. This high-pressure fuel pump arrangement has a low-pressure and a high-pressure circulation system and a valve camshaft disposed in a cylinder head of the internal-combustion engine, by which valve camshaft the high-pressure fuel pump arrangement can be driven. The valve camshaft further has a polygonal construction, and components of the high-pressure fuel pump arrangement are advantageously integrated in the cylinder head of the internal-combustion engine.


Furthermore, reference is made to German Published Patent Application DE 10 2008 024 532 A1, on which the present invention is based.


From German Patent Document DE 10 2008 024 532 A1, a device is known for driving an auxiliary unit, particularly a high-pressure pump of an internal-combustion engine. For this purpose, the device has a rotatably disposed driveshaft, preferably a camshaft of the internal-combustion engine. The driveshaft and a unit shaft of the auxiliary unit are in a mutually operative connection by way of a coupling. In a preferred and known manner, this coupling is a jaw coupling.


Such a device of the above-mentioned type for driving an auxiliary unit is, however, acoustically conspicuous, i.e. loud, sensitive to tolerance, expensive, and subject and sensitive to wear in the case of high alternating torques.


It is therefore an object of the present invention to avoid the above-mentioned disadvantages of the known devices.


This and other objects are achieved by a device for driving an auxiliary unit, particularly a high-pressure pump wherein a rotatably disposed drive shaft of an internal-combustion engine and a unit shaft of the auxiliary unit are in a mutually operative position by way of a coupling. The unit shaft has a first bearing on the side facing away from the coupling, and the coupling forms a second bearing for the unit shaft.


The further development according to the invention represents a cost-efficient, acoustically inconspicuous coupling solution that is insensitive to tolerance for connecting, for example, a high-pressure pump camshaft to an existing intake or exhaust camshaft or any other shaft.


In a further development, the coupling consists of a shaft end with an interior profile which engages a complementary shaft end of the unit shaft with an exterior profile. Particularly preferably, the interior profiling and the exterior profiling are polygonal profiles. These further developments are particularly preferred embodiments which can be manufactured in a simple and cost-effective manner and are very advantageous acoustically.


In a further development, at least one of the drive shaft and the unit shaft has at least one cam that generates an alternating torque during operation of the device. The polygonal profile corresponds to the alternating torque. These further development again has a particularly advantageous effect on the acoustic features.


By means of a further development wherein the shaft end with the exterior profile has a circumferential radius in the axial direction, an axial and angular tolerance compensation becomes possible for the unit shaft.


Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of one or more preferred embodiments when considered in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a sectional view of a device according to an embodiment of the invention for driving an auxiliary unit; and



FIG. 2 is a three-dimensional top view of an exemplary coupling element on the driveshaft side.





DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 1 is a sectional view of an exemplary device 1 according to the invention for driving an auxiliary unit 2. A driveshaft 3—in the present embodiment, a camshaft of an internal-combustion engine (not shown)—is provided for driving the auxiliary unit 2. In the present embodiment, the camshaft is hollow with a shrunk-on cam. Further embodiments may, for example, involve a crankshaft or any other driveshaft of the internal-combustion engine.


On a face end, the driveshaft 3 has a driveshaft-side coupling element 8, which is non-rotatably connected with the driveshaft 3. In a further embodiment, the driveshaft-side coupling element 8 may also be formed by the driveshaft 3 itself. The driveshaft-side coupling element 8 represents one side of a coupling 5, with a shaft end having an interior profile, a unit shaft 4 of the auxiliary unit 2 having an exterior profile complementary to this interior profile. Particularly preferably, the interior and the exterior profiling is a polygonal profile.


In the present embodiment, the auxiliary unit 2 is a high-pressure pump, which has a bearing 6 for the unit shaft 4. The bearing 6 is arranged on the side opposite the driveshaft 3, which, in the present embodiment, is a deep-groove ball bearing. In addition, the unit shaft 4 has a cam 7 for operating the high-pressure pump.


The unit shaft 4 has the first bearing 6 on the side facing away from the coupling 5, which coupling 5 is a second bearing for the unit shaft 4.


Accordingly, a static redundancy will therefore be avoided as a result of the bearings 5, 6.


In the present embodiment, the unit shaft 4 has the cam 7, which generates an alternating torque during the operation of the device, in which case, particularly preferably, the polygonal profile corresponds with this alternating torque. This means that the polygonal profile is oriented such that the alternating torque is eliminated as much as possible.


In a further embodiment, only the driveshaft 3 may have a cam, in which case, the polygonal profile also corresponds with this alternating torque.


Particularly preferably, the shaft end having the exterior profile has a circumferential radius in the axial direction, whereby a tolerance compensation in the axial direction or an angular tolerance compensation becomes possible. In the particularly preferred embodiment, the auxiliary unit 2 is a high-pressure fuel pump.


A coupling solution having a polygonal profile is therefore provided for coupling a driveshaft 3, for example, an intake or exhaust camshaft, a crankshaft, etc. and a unit shaft 4, such as a driveshaft of a high-pressure pump, in which case the coupling simultaneously takes over the bearing of one side of the unit shaft 4.


The unit shaft 4 is normally shaped as a camshaft. The lateral forces arising at the cam 7 are absorbed by the separate bearing 6 and the coupling 5. By means of the lateral forces, the coupling that is subject to play is always pressed onto a defined contact stop, which has acoustic advantages. In the case of a simultaneous radial loading, for example, by means of a pump tappet, onto a cam provided on the shaft, an acoustically advantageous rolling movement takes place during the change of the torque within the scope of the play between the driveshaft-side coupling element 8 and the unit shaft 4. The bearing 5 may have a polygonal profile with three, four or two corners, preferably corresponding to the number of pump lobe elevations or to a different number. This embodiment can preferably be combined with the simultaneous radial loading of the driven shaft by the construction of the polygonal profile by two tangentially adjoining radii. The coupling 5 thereby becomes tolerant with respect to the offset angle of the shafts 3, 4 as a result of a preferably crowned construction by means of the circumferential radius.



FIG. 2 is a three-dimensional top view of the driveshaft-side coupling element 8 with a shaft end 9 having an interior profile, in this embodiment having a polygonal profile, into which the corresponding exterior polygonal profile of the unit shaft 4 can be inserted. Furthermore, in this embodiment, the driveshaft-side coupling element 8 has three raised areas 11, on the basis of which a sensor, which is not shown, can detect the absolute angular position of the driveshaft 3. On the side facing away from the shaft end 9 with the interior profile, the driveshaft-side coupling element 8 has an exterior profile 10 which is used as an anti-twist protection between the driveshaft-side coupling element 8 and the driveshaft 3.


By means of the further development according to the invention, a cost-effective, acoustically inconspicuous, tolerance-insensitive coupling solution is achieved for using, for example, a high-pressure pump camshaft on an existing intake or exhaust camshaft or any other shaft.


LIST OF REFERENCE NUMBERS


1 Device



2 Auxiliary unit



3 Driveshaft



4 Unit shaft



5 Coupling



6 Bearing



7 Cam



8 Driveshaft-side coupling element



9 Shaft end having an interior profile



10 Exterior profile



11 Raised area


The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.

Claims
  • 1. A device for driving an auxiliary unit by a rotatably disposed drive shaft of an internal-combustion engine, the device comprising: a unit shaft supported at least partially in an auxiliary unit housing of the auxiliary unit;a coupling by which the drive shaft and the unit shaft are coupled, the coupling being formed by coupling elements that are at least one of coupled to at least one of the drive shaft and the unit shaft and integrally formed with at least one of the drive shaft and the unit shaft; anda first bearing arranged on an end of the unit shaft opposite an end of the unit shaft at which the coupling is located,wherein the coupling further serves as a second bearing of the unit shaft at the end of the unit shaft adjacent to the coupling, andthe unit shaft has at least one cam located between the first bearing and the coupling.
  • 2. The device according to claim 1, wherein the auxiliary unit is a fuel pump.
  • 3. The device according to claim 1, wherein the coupling comprises a first shaft end having an interior profile and a second shaft end having an exterior profile, wherein the first shaft end interior profile and the second shaft end exterior profile are complementary to one another.
  • 4. The device according to claim 3, wherein the complementary interior and exterior profiles are generally polygonal profiles.
  • 5. The device according to claim 4, and said generally polygonal profiles are arranged on the first and second shaft ends such that at least one corner of the generally polygonal exterior profile is oriented such that an alternating torque generated by said at least one corner minimizes the alternating torque of the at least one cam.
  • 6. The device according to claim 3, wherein the shaft end with the exterior profile has a circumferential radius in an axial direction.
  • 7. The device according to claim 4, wherein the shaft end with the exterior profile in axial cross-section has a radius in an axial direction.
  • 8. The device according to claim 5, wherein the shaft end with the exterior profile in axial cross-section has a radius in an axial direction.
Priority Claims (1)
Number Date Country Kind
10 2010 020 578 May 2010 DE national
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT International Application No. PCT/EP2011/001746, filed Apr. 8, 2011, which claims priority under 35 U.S.C. §119 from German Patent Application No. 10 2010 020 578.8, filed May 14, 2010, the entire disclosures of which are herein expressly incorporated by reference.

US Referenced Citations (18)
Number Name Date Kind
2829630 K. Ziesche et al. Apr 1958 A
5078114 Haag et al. Jan 1992 A
5558456 Nakase et al. Sep 1996 A
6330876 Spinnler et al. Dec 2001 B1
6425749 Lettner et al. Jul 2002 B1
6641322 Narasimhan et al. Nov 2003 B2
6709234 Gilbert et al. Mar 2004 B2
6766716 Lee Jul 2004 B1
6769413 Ishimoto Aug 2004 B2
6866025 Maass Mar 2005 B1
7007574 Wu Mar 2006 B1
7051706 Tanaka et al. May 2006 B2
7152585 Tanaka Dec 2006 B2
7284537 Kleinbeck et al. Oct 2007 B2
7628142 Hayman et al. Dec 2009 B2
20090010708 Kroener Jan 2009 A1
20090084360 DePayva et al. Apr 2009 A1
20100101539 Meier et al. Apr 2010 A1
Foreign Referenced Citations (18)
Number Date Country
201236730 May 2009 CN
101636579 Jan 2010 CN
579 859 Jul 1933 DE
917 520 Sep 1954 DE
1 091 381 Oct 1960 DE
2 121 275 Dec 1971 DE
198 02 031 Jul 1999 DE
199 14 269 Oct 2000 DE
102 14 790 Oct 2003 DE
10 2007 029 651 Jan 2009 DE
10 2007 029 965 Jan 2009 DE
10 2008 024 532 Nov 2009 DE
10 2008 056 773 May 2010 DE
0 985 815 Mar 2000 EP
729015 Apr 1955 GB
730644 May 1955 GB
8-226451 Sep 1996 JP
WO 8600665 Jan 1986 WO
Non-Patent Literature Citations (3)
Entry
English translation of Chinese Office Action dated Mar. 3, 2014 {Two (2) pages}.
English translation of Chinese Office Action dated Nov. 15, 2014 (Six (6) pages).
English translation of Chinese Office Action dated May 21, 2015 (six pages).
Related Publications (1)
Number Date Country
20130071233 A1 Mar 2013 US
Continuations (1)
Number Date Country
Parent PCT/EP2011/001746 Apr 2011 US
Child 13675595 US