The present invention relates to a device for drying optical glass.
It is known to use a drying device composed of an enclosure intended to receive the optical glass or glasses. According to the state of the art, a heating element emitting infrared rays causes a temperature increase in the enclosure. The high temperature in the enclosure drives the drying process. According to the state of the art, the minimum heating temperature has to be over 80° C.
The surface treatment of an optical glass is conducted in several steps. The optical glass undergoes several dryings during the process of surface treatment, particularly after the washing, after application of a first layer of varnish and after application of a possible second layer of varnish.
During the drying carried out after the washing, the increase in temperature allows degassing of the optical glass. The dryings carried out after the application of a first layer of varnish and after the application of a second layer of varnish have the role of pre-polymerizing the varnish.
However, obtaining a uniform heating temperature throughout the entire surface of the optical glass is not evident with a device having an infrared ray emitter. According to the state of the art, less heated areas may appear, in particular for the furthest part of the glass from the infrared emitter.
During the drying carried out after the application of the first layer of varnish, there may be areas where the varnish is not fully pre-polymerized. This phenomenon is characterized by the formation of a white haze in the layer of varnish.
During the drying carried out after the application of the second layer of varnish, fingerprints may arise at the time of the removal of the glass out of the device. Surface irregularities are likely to appear on the glass, which may extend to cracking of the varnish.
As a consequence, if one of these defects appear, the glass has severely degraded optical properties.
The present invention aims to overcome all or some of the drawbacks mentioned above.
For this reason, the present invention relates to a drying device for at least one optical glass, comprising:
the drying device being characterized in that it presents:
The manifold and the circulation circuit carry out a partial recycling of the drying air stream.
According to one aspect of the invention, the device further comprises a support of the at least one optical glass, the support being disposed inside the enclosure and being arranged so that the incident and emergent surfaces of each optical glass present each an area of contact with the air contained by the enclosure.
According to one aspect of the invention, each inlet of the enclosure has a diffuser arranged to generate an air flow that is homogeneous and tangential to the incident and emergent surfaces of each optical glass.
The drying is uniform on the incident and emergent surface of the optical glass in order to prevent the occurrence of a defect.
According to one aspect of the invention, the enclosure has a first and a second inlet arranged so that the flow of the first inlet is parallel and opposite to the flow of the second inlet.
The obtained symmetric structure allows rapid and uniform drying of the optical glass.
According to one aspect of the invention, each diffuser includes a planar outlet perforated with a plurality of holes, the distance between the centers of two adjacent holes being comprised between one and three times the hole diameter, the diameter of each hole being comprised between 0.5 and 3 mm.
The plurality of holes at the outlet of each diffuser has an aeraulic effect aimed at achieving a homogeneous flow.
According to one aspect of the invention, means for regulating the flow rates of the external air stream and of the return air stream are arranged so as to modify the proportion of the external air stream, relative to the set including the external air and return air streams, between 0 and 100%.
The drying residues originating from the optical glass or glasses are again mixed with the drying air. A high concentration of residues can make the air inflammable. The addition of external air in the circuit limits the concentration of residues.
According to one aspect of the invention, means for regulating the temperature of the drying air stream include a probe for measuring the temperature and a heating element in contact with the drying air stream.
The temperature should be comprised within a defined field in order to allow proper drying of the optical glass or glasses, typically between 80 and 110° C.
According to one aspect of the invention, a system for opening the enclosure is arranged in order to allow passage of an optical glass.
According to one aspect of the invention, the exhaust port of the enclosure of the drying device is comprised in the opening system.
According to one aspect of the invention, the opening system comprises at least one flap, the exhaust port being disposed at the periphery of the flap.
According to one aspect of the invention, a surface treatment bench of said at least one optical glass includes:
The stream exhausted from the drying device in the extraction area is suctioned by the hood and extracted out of the treatment bench. The air loaded with steam, possibly inflammable, does not stagnate in the treatment bench.
In any case, the invention will be understood from the following description with reference to the accompanying schematic drawings representing, by way of non-limiting example, an embodiment of this device.
According to an embodiment described in
As shown more particularly in
According to an embodiment described in
The air circulation circuit 9 is connected in fluid communication with two air inlets 19 and 21 to the enclosure 7. Each air inlet 19 and 21 has a diffuser 23 and 25 respectively. According to an embodiment, the diffusers have a planar outlet with a plurality of holes 27 as shown more particularly in
According to an embodiment described in
According to an embodiment described in
According to an embodiment described in
According to an embodiment described in
According to a mode of operation, the flaps 15 and 17 are raised in order to allow the introduction of an optical glass 48 previously varnished in the enclosure 7. As illustrated in
According to a mode of operation described in
According to a mode of operation, the optical glass 48 disposed in the enclosure 7 of the drying device 3 is exposed to a drying air stream at a determined temperature for a determined period in order to become completely dry. The optical glass 48 is then removed from the enclosure 7.
It goes without saying that the invention is not only limited to the sole embodiment of this device, described above by way of example, it encompasses on the contrary all the alternative embodiments.
Number | Date | Country | Kind |
---|---|---|---|
12/54805 | May 2012 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2013/051116 | 5/23/2013 | WO | 00 |