The invention relates to a device for ejecting droplets of an electrically non-conductive fluid at high temperature.
A device for ejecting droplets of a fluid, for example an ink jet printer, is well known in the art, see for an overview for example Stephen F. Pond, Inkjet Technology and Development Strategies, Torrey Pines Research, 2000. In such a device, droplets are ejected through an orifice by applying a force on a fluid. The device comprises at least one orifice provided with an electromechanical transducer. The best known examples of electromechanical transducers are thermal transducers and piezoelectric transducers. In the piezoelectric ink jet technique, a piezoelectric element deforms under the influence of an electric pulse. The bending deformation of the piezoelectric element generates a pressure in a fluid chamber, which may eventually lead to the ejection of a droplet of a fluid through the orifice. In thermal ink jet, the fluid is locally heated, such that the fluid is locally converted into a vapor. This evaporation of a part of the fluid generates a force, which may eventually lead to the ejection of a droplet of a fluid through the orifice.
However, both techniques are not suited for operation at high temperature. Thermal ink jet is only suited for ejecting fluids, having a relatively low boiling point, because this technique requires the evaporation of a part of the fluid to generate a force in the fluid. Piezoelectric elements cannot operate at very high temperatures and are therefore not suited for ejecting droplets of a fluid at high temperature.
WO 2010063576 describes a device for jetting droplets of a fluid at a high temperature, wherein the fluid is actuated by generating a Lorentz force in the fluid. The device is suited to eject droplets of fluid at a high temperature. A Lorentz force is generated in the fluid, by applying an electrical pulse to the fluid, the fluid being positioned in a magnetic field. A Lorentz force can only be generated if the fluid is an electrically-conductive fluid. In WO 2010063576, a device for jetting droplets of an electrically-conductive fluid, is disclosed. However, the device disclosed in WO 2010063576 is not suited to jet droplets of an electrically non-conductive fluid. In this device, the actuation means, provided for actuating the electrically conductive fluid is positioned in close proximity to the orifice. As a consequence, droplets of an electrically non-conductive fluid cannot be jetted by the device according to WO 2010063576.
It is an object of the invention to provide a device for ejecting droplets of an electrically non-conductive medium having a high melting point at high temperature.
The above object is achieved in a device for ejecting droplets of an electrically non-conductive fluid at a temperature of 360° C. or above, the device comprising;
a fluid chamber body having a fluid chamber for containing the electrically non-conductive fluid at a temperature of 360° C. or above and for containing a conductive medium, the fluid chamber body being made of a heat resistant material, the fluid chamber body comprising an orifice extending from the fluid chamber to an outer surface of the fluid chamber body, the fluid chamber being defined such that when the fluid chamber comprises the conductive medium and the electrically non-conductive fluid, the electrically non-conductive fluid and the conductive medium are substantially non-mixed, and at least a part of the electrically non-conductive fluid is positioned in the fluid chamber closer to the orifice than the conductive medium;
actuation means for actuating the conductive medium, the actuation means comprising at least an electrode for providing an electric current through the conductive medium and a magnet, for providing a magnetic field in the conductive medium;
heating means for providing heat to an electrically non-conductive medium to melt, forming the electrically non-conductive fluid and heating the electrically non-conductive fluid to a temperature of 360° C. or above.
The device according to the present invention comprises a fluid chamber body defining a fluid chamber and having an orifice extending from the fluid chamber to an outer surface of the fluid chamber element. The fluid chamber is configured to comprise both the electrically non-conductive medium and the conductive medium. The fluid chamber is made of heat-resistant material, because it is configured to comprise a fluid at a temperature of 360° C. or above and has to withstand these high temperatures. The fluid chamber body comprises an orifice, the orifice extending from the fluid chamber to an outer surface of the fluid chamber body. Hence, a droplet of fluid may be ejected from the fluid chamber body via the orifice. The electrically non-conductive fluid is a fluid having an electric conductivity that is too low to generate a Lorentz force that is strong enough to eject a droplet of the molten medium through the orifice, upon applying a certain current, in a given magnetic field and geometry of the fluid chamber body. Thus, the person skilled in the art will be able to judge whether a fluid is electrically conductive or electrically non-conductive in accordance with the present invention, based on his/her judgment on what current and magnetic field may be applied and on what the geometry of the fluid chamber body is.
The electrically non-conductive medium and the conductive medium are positioned such, that at least a part of the electrically non-conductive medium is positioned closer to the orifice than the conductive medium. As a consequence, if a droplet of fluid is ejected through the orifice, a droplet of electrically non-conductive fluid is ejected and the conductive medium stays within the fluid chamber. The electrically non-conductive fluid and the conductive medium are substantially non-mixed. If they would be mixed, a droplet, consisting of a mixture of the electrically non-conductive fluid and the conductive medium could be ejected and the electrically non-conductive fluid, ejected from the orifice, would be contaminated with the conductive medium.
The device further comprises actuation means for actuating the conductive medium. As mentioned above, actuation of a fluid by applying a Lorentz force is a suitable method of actuation, also at higher temperatures. Since a Lorentz force cannot be applied to actuate the actual electrically non-conductive medium, a conductive medium is used. The conductive medium is positioned in a magnetic field, the magnetic field being provided by a magnet. Also electrodes are provided for providing an electric current through the conductive medium. By applying an electric current to the conductive medium that is positioned in a magnetic field, a Lorentz force is generated in the conductive medium, as the Lorentz force is related to the electric current and the magnetic field vector;
Furthermore, the device comprises heating means for providing heat to an electrically non-conductive medium to melt, forming the electrically non-conductive fluid and heating the electrically non-conductive fluid to a temperature of 360° C. or above.
In an embodiment, the fluid chamber body is made of a heat conductive material. The advantage of the fluid chamber body being made of a heat conductive material is that heat may be more easily supplied to the electrically non-conductive medium via the fluid chamber body to keep the electrically non-conductive medium at the desired temperature. Moreover, it is also more easy to melt the electrically non-conductive medium, thereby forming the electrically non-conductive fluid if the fluid chamber body is made of a heat conductive material. Please note that also the geometry and the thickness of a wall of the fluid chamber body may be suitably selected in order to optimize the heat conductivity of the fluid chamber body.
In an embodiment, the device is adapted to eject droplets of an electrically non-conductive fluid at a temperature of 500° C. or above. It will be obvious to the person skilled in the art that to eject fluid at a temperature of 500° C. or above, the requirements to the device and in particular, to the fluid chamber body with respect to e.g. heat resistance are more stringent than for a device, in which a fluid is ejected at 360° C. Therefore, it will be clear to the person skilled in the art that suitable adjustments have to be made to the device adapted to eject droplets of an electrically non-conductive fluid, in order to be able to jet the droplets of said fluid at a temperature of 500° C. or above.
In an embodiment, the electrically non-conductive medium is molten glass. Ejection of droplets of molten glass provide the possibility to apply small particles of glass, for example small spheres of glass, onto a receiving medium.
Glass consists of silica (SiO2). The melting point of pure silica is over 1700° C. However, usually other components (additives) are added to the silica when making glass. These additives change the melting temperature of the glass. Therefore, the melting temperature of glass depends on the nature and the amount of the additives added to the silica. Sodium carbonate and calcium carbonate are often used as additives. The melting point of common types of glass is usually 800° C. at minimum. Furthermore, the melting point of the common types is glass is usually not higher than 1700° C. However, also glass types having a lower or higher melting point are known. For example, fused quartz has a melting point of about 1750° C. In order to eject droplets of glass, the glass has to be molten. As a consequence, it is necessary to keep the glass at a temperature at least equal to the melting temperature of the glass.
In an embodiment, the conductive medium is a molten metal. A molten metal, onto which a Lorentz force is generated is a suitable actuation means for actuating the electrically non-conductive medium. Metals are electrically conductive. Consequently, by placing the metal in a magnetic field and applying an electric current to the metal, a Lorentz force may be generated in the metal. When the metal is molten, the molecules of the metal are free to move with respect to one another. Therefore, the metal mass may be easily deformed in case the metal is molten. By applying a Lorentz force onto the molten metal, the metal may deform. This deformation may apply a force onto another object adjacent to the molten metal. This object may be an electrically non-conductive medium. The force, applied to the electrically non-conductive medium by the deformation of the mass of fluid metal, may generate a movement within the electrically non-conductive medium which may result in ejection of a droplet of the electrically non-conductive medium through the orifice.
In a particular embodiment, the molten metal is selected based on its properties, such as boiling point, melting point, the electrical conductivity, etc. The melting point of the metal is below the jetting temperature. The metal should preferably be chosen such, that the melting point of the metal is below the melting point of the electrically non-conductive medium. The boiling point of the metal is preferably above the jetting temperature of the electrically non-conductive fluid. The electrical conductivity of the metal should be high. The higher the electrical conductivity of the metal, the more efficient a Lorentz force can be generated in the metal.
Furthermore, the interaction between the electrically non-conductive fluid and the molten metal is important. The electrically non-conductive fluid and the molten metal should be substantially non-mixed during jetting.
In a particular embodiment, the molten metal and the electrically non-conductive medium are separated by a suitable membrane. The non-electrically fluid and the molten metal should be substantially non-mixed, as explained above. A membrane may be a suitable means for preventing the electrically non-conductive medium and the molten metal to mix, because the membrane prevents the two fluids from contacting one another. On the other hand, the membrane is flexible and may be deformed. It may for example be deformed by the forces applied onto the membrane by the deformation of the molten metal upon generation of a Lorentz force within the molten metal. The deformation of the membrane may provide a force within the electrically non-conductive medium, which causes a pressure wave within the electrically non-conductive medium. Because of the pressure wave, generated in the fluid, a droplet of the fluid may be ejected through the orifice. In summary, the suitable membrane should at least be heat resistant, be deformable at high temperatures and be resistant to both the conductive medium and the electrically non-conductive fluid, also at the elevated temperatures at which the device is operated. The person skilled in the art may suitably select a suitable membrane, based on these criteria and based on the nature of the conductive medium and the electrically non-conductive medium used, for example in a text book. An example of a suitable membrane may be a thin layer of silicon. Alternatively, the membrane may be a fluid membrane, the fluid membrane consisting of a fluid that does not mix with the molten metal and does not mix with the electrically non-conductive fluid, either. A fluid membrane, because of its fluid character, is easily deformable by the force applied by the molten metal and consequently, the electrically non-conductive fluid may be actuated.
In an embodiment, the fluid chamber body is electrically conductive and the heating means comprise an induction coil generating an induction current in the fluid chamber body for heating the body and thereby heating the electrically non-conductive medium. The electrically non-conductive medium, positioned within the fluid chamber body, should be at a temperature of at least 360° C. To keep the electrically non-conductive medium at this high temperature and optionally to melt the electrically non-conductive medium, forming the electrically non-conductive fluid, heat needs to be applied to the medium. The higher the temperature difference between the fluid and the environment, the more energy is lost to the environment and the more heat needs to be applied to the fluid to keep the fluid at the desired temperature. An electrically non-conductive object cannot be heated using induction directly. However, the electrically non-conductive medium may be heated indirectly using inductive heat by providing the fluid chamber body with heating means, the heating means comprising an induction coil generating an induction current. Provided that the fluid chamber body is electrically conductive, the fluid chamber body may be heated by the induction current generated by the inductive coil and the fluid chamber body, comprising the electrically non-conductive medium, may transfer the heat to the electrically non-conductive medium, thereby heating the fluid.
In an embodiment, the heating means comprises at least an induction coil, the coil being positioned around at least a part of the fluid chamber body for providing inductive heat to the conductive medium, the induction coil being configured to carry an electrical current for inducing an inductive current in the material of the conductive medium for heating the material of the fluid. The conductive medium may not only be used to generate a force in the electrically non-conductive medium, it may also be used to heat the fluid. In case an inductive coil is positioned around at least a part of the fluid chamber body where the conductive medium is positioned, then, upon applying a current to the induction coil, an inductive current is generated in at least a part of the conductive medium. When the conductive medium is heated to a higher temperature than its environment, the conductive medium dissipates heat to its environment. If the electrically non-conductive medium is close to the conductive medium, the conductive medium may heat up the electrically non-conductive medium. The conductive medium may be a metal. Metals are not only good electric conductors, they are also good thermal conductors. Thus, warming the conductive medium may be an efficient way of providing heat to the non-electrically conductive fluid, keeping the electrically non-conductive medium at the right temperature.
These and further features and advantages of the present invention are explained hereinafter with reference to the accompanying drawings showing non-limiting embodiments and wherein:
In the drawings, same reference numerals refer to same elements.
The device for ejecting droplets 1 is provided with an orifice 4 through which a droplet of the fluid may be ejected. The orifice 4 is a through hole extending through a wall of a fluid chamber body 3. In the fluid chamber body 3 a fluid chamber is arranged. The fluid chamber 3 is configured to hold the conductive medium and the electrically non-conductive medium at a temperature of 360° C. or above. Furthermore, the fluid chamber 3 is arranged to, when containing both the electrically non-conductive fluid and the conductive medium, contain the electrically non-conductive medium and the conductive medium in a substantially non-mixed state. Moreover, at least a part of the electrically non-conductive medium is positioned in the fluid chamber body 3 at a position closer to the orifice 4 than the conductive medium. In the embodiment of the jetting device 1 shown in
As explained above, conventional techniques for actuating the electrically non-conductive medium, such as thermal inkjet or piezoelectric inkjet are not suited for jetting at high temperatures, such as temperatures of 360° C. or above. Therefore, in accordance with the present invention, the electrically non-conductive medium is actuated by a conductive medium, to which a Lorentz force is applied. For applying a Lorentz force in the conductive medium, the jetting device 1 is provided with two permanent magnets 8. Optionally, the magnets 8 may be arranged between two magnetic field concentrating elements (not shown), for example magnetic field concentrating elements made of a magnetic field guiding material such as iron. The jetting device 1 is further provided with two electrodes 10a, 10b (hereinafter also referred to as electrodes 10) both extending into the fluid chamber body 3 through a suitable through hole such that at least a tip of each of the electrodes 10 is in direct electrical contact with the conductive medium present in the fluid chamber 3. The electrodes 10 are supported by suitable electrode supports 14 and are each operatively connected to a suitable electrical current generator (not shown) such that a suitable electrical current may be generated through the electrodes 10 and the conductive medium present between the tips of the electrodes 10. Optionally, the magnets 8 may be cooled by suitable cooling means.
The electrodes 10 are made of a suitable material for carrying a relatively high current, while being resistant against high temperatures. The electrodes 10 may be suitably made of tungsten (W), although other suitable materials are contemplated.
The device 1 is further provided with heating means 12 for heating the electrically non-conductive medium at a temperature of 360° C. or above and/or keeping the fluid at a temperature of 360° C. or above. The heating means 12 may heat the electrically non-conductive medium directly or may heat the fluid chamber body 3, containing the electrically non-conductive medium, as shown in
Moreover, the heat of the conductive medium may be transferred to the electrically non-conductive medium and as a consequence, the warm conductive medium, heated by means of the induction coil 16 may be used as a heating means for heating the electrically non-conductive medium to the desired temperature. It will be clear to the person skilled in the art that heating means may be combined to efficiently heat the electrically non-conductive medium, for example both the conductive medium and the fluid chamber body 3 may be heated, thereby indirectly heating the electrically non-conductive medium.
Please note that the magnitude of the pressure that is build up in the electrically conductive medium by generating a Lorentz force depends on the geometry of the second part 6 fluid chamber body 3. The smaller the dimensions of the second part 6 of the fluid chamber body 3, in particular the smaller the length of the second part 6 of the fluid chamber body 3 in a direction parallel to the direction of the magnetic field, the larger the pressure that is build up. Thus, it will be clear to the person skilled in the art that the magnitude and geometry of both the first part 5 and the second part 6 of the fluid chamber body have to be suitably selected in order to optimize the performance of the jetting device 1 in accordance with the present invention.
Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually and appropriately detailed structure. In particular, features presented and described in separate dependent claims may be applied in combination and any combination of such claims are herewith disclosed. Further, the terms and phrases used herein are not intended to be limiting; but rather, to provide an understandable description of the invention. The terms “a” or “an”, as used herein, are defined as one or more than one. The term plurality, as used herein, is defined as two or more than two. The term another, as used herein, is defined as at least a second or more. The terms including and/or having, as used herein, are defined as comprising (i.e., open language). The term coupled, as used herein, is defined as connected, although not necessarily directly.
Number | Date | Country | Kind |
---|---|---|---|
10190109.8 | Nov 2010 | EP | regional |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2011/068162 | Oct 2011 | US |
Child | 13785249 | US |