The invention is directed at a device for equalizing pressure surges in the event of possible dust or gas explosions in closed systems, such as silos, pipelines, or the like, having a hinged lid that can pivot on an outlet connector or a case, which lid has a planar outer surface, whereby a deflecting plate for contact of the lid in the event of an explosion is provided on the outlet connector or case.
Such a device is known, for example, from WO95/10465. The hinged lid there, which opens in the event of an explosion, consists of metal sheets and is produced from aluminum, for example, in practice. In the event of an explosion, the hinged lid strikes against the deflecting plate, displacing the air that lies in between; the deflecting plate springs back, and the hinged lid is flung back into the closed position.
The known hinged lid already has a comparatively slight weight. Nevertheless, the technology propagated there can still be clearly improved, not only as far as the method of production and thus the production price are concerned, but also as far as the reduction in inertial mass is concerned, so that the goal of the invention, aside from efficient production, is, in particular, a clear weight reduction in the hinged lid, rapid replacement of the hinged lid in the event of damage, i.e. rapid first installation, and an improvement in the protective effect of the system.
This goal is achieved with a device of the type indicated initially, according to the invention, in that the hinged lid is formed from a carbon/glass fiber material.
Such materials are fundamentally known, but up to the present, they have not been used in the industrial sector in this manner.
Since the carbon/glass fiber material according to the invention can be processed in comparatively simple manner, and in particular, the desired shapes and/or profilings of such hinged lids can also be produced from such a material, the invention provides, in one embodiment, that the main lid body is formed from carbon/glass fiber mats that form the outer walls, with an enclosed body made of plastic, such as foam material, for example, forming the lid contour.
Additional embodiments of the invention are evident from the other dependent claims. In this connection, it can be provided, for example, that the plastic body enclosed by the carbon/glass fiber mats is configured as a sphere segment. Of course, similar spatial shapes are also possible here, for example polygonal cone stumps, bodies having an elliptical or parabolic cross-section, or more of the like.
To reinforce the lid, it can be provided that a plurality of carbon fiber rovings are provided between the carbon/glass fiber mats that form the outer walls of the lid, to form a support structure, and/or that the length of the carbon fiber rovings increases from the outer edge of the lid towards the lid interior.
Another method of construction of the lid can consist in forming at least a part of the enclosed foam material body from layers of carbon/glass fiber mats disposed on top of one another, whereby the glass fiber mats have a diameter that decreases per layer, towards the interior of the outlet connector or the case, in order to form a progression of the lid in an essentially hemispherical shape. Here again, carbon fiber rovings can be used, if necessary, which then pass through aligned bores in the mats, particularly if an alternation between glass fiber mats and foam material disks laid between them is provided.
Independent of its structure, it can also be provided, according to the invention, that a heat tape is laminated into a multi-layer carbon/glass fiber mat that faces out. The heat tape is particularly supposed to serve to prevent the lid from freezing up, if temperatures below the freezing point prevail in the surroundings of the lid.
According to the invention, it can also be provided that the carbon/glass fiber lid is configured essentially in circular shape, whereby the circular main lid body is positioned in a pivoting frame composed of carbon and glass fiber mats, whereby a foam material ring can be positioned between main lid body and pivoting frame, in one embodiment.
In order to guarantee that rainwater will bead off, the invention also provides, in another embodiment, that at least the lid surface is provided with a lotus effect coating.
Aside from the particularly light construction of the lid, the device according to the invention is also characterized in that a flame barrier body provided with a plurality of passage bores and/or structured as a honeycomb is positioned in the outlet connector, i.e. in the case, below the lid.
Aside from providing a honeycomb-structured flame barrier body, for example, within the outlet connector, it can also be provided, alternatively or additionally, according to the invention, that a flame barrier cage is positioned around the case and lid, whereby the flame barrier cage is formed from a support framework covered by a woven flame barrier fabric.
Fundamentally, it is known to provide such cases or outlet connectors having lids with an installation ring flange on the lower edge side, which flange has a plurality of bores by means of which the corresponding flange screw connections are then positioned. As an alternative to this, the invention provides that the outlet connector that carries the lid is provided with a bandage closure for quick installation.
A particularly advantageous embodiment of such a bandage closure consists in that this bandage closure is formed from at least one steel strip having at least one quick closure, whereby a plurality of clamping claws, having an approximately U shape in cross-section, particularly composed of a plastic material that can withstand great stress, are positioned on the steel strip, spaced apart from one another.
In order to particularly simplify transport of the device, it is also provided, according to the invention, that the spring-loaded deflection plate is held in the transport position by means of safety wires that are stepped in length, whereby safeguarding of the transport position of the spring-loaded deflection plate with stepped safety wires is seen in that when the safety wires are cut, the deflection plate first travels along a certain path, and is then held again on the next step of the safety wire. Once this wire is cut, another pivoting occurs, again followed by safeguarding with another step, and finally, complete cutting takes place, if applicable, in order to allow the deflection plate to pivot into its working position, thereby preventing the deflection plate from pivoting open over its entire angle range if a transport safeguard device is accidentally cut open, which can lead not only to destruction of objects in the immediate vicinity, but also to injuries to any persons who might be situated in the vicinity.
Additional characteristics, details, and advantages of the invention are evident from the following description and on the basis of the drawing. This shows, in
a a fundamental representation of the layer structure of an embodiment of the lid,
b a fundamental representation of the layer structure of a different embodiment of the lid,
The device indicated in general with 1, shown in an exploded representation in
A pair of pivot pins 6 is also attached to the flanges 5, which springs act on hinge brackets 7 that carry a deflection plate 8, against which the device lid 3 can strike in the event of an explosion, so that it is braked by the air displacement connected with this.
As is also evident from
The hinged lid 3 is reproduced in an exploded representation in
The surface 13 of the lid, which faces into the interior of the case 2, is also formed from a composite material, whereby a foam material body 14 is positioned between the two outer layers 12 and 13, specifically in the shape of a spherical segment as essentially shown in
To connect the outer surface 12 with the inner surface 13, a plurality of carbon fiber rovings 15 is provided, which pass through corresponding recesses in the foam material body 11, and have a firm connection between the outer surface 12 and the inner surface 13, to stabilize the light construction lid 2.
The main lid body 3a is also formed from carbon fibers and glass fibers, in a pivot frame 16, whereby a foam body 18 and corresponding carbon fiber rovings 15a are also provided in the pivot frame.
As is evident from
As is shown in
The layer 13, which faces inward and follows the domed contour of the foam material body 14, is formed by three carbon fiber layers 18a to 18c, in the example shown, which are laminated onto one another, whereby the carbon fiber layer 18a that faces inward is also firmly connected with the carbon fiber rovings 15.
b shows a modified exemplary embodiment of the lid construction, whereby here, the carbon fiber rovings 15 as well as the outer and inner carbon fiber layer 18 are laminated on with a synthetic resin, i.e. cast in, surrounded by this resin. These regions are indicated with 28 in
As is evident from
In this connection, the honeycomb-shaped structure forms gas passage channels 22, as indicated in
This outside bead, which results in this manner, can be covered by clamping strips that are U-shaped in cross-section, as is evident from
If a flame barrier body 21 within the case 2 is not desired, or if additional protection is supposed to be achieved, the device 1 as a whole can also be provided, as shown in
Of course, the exemplary embodiment of the invention as described can still be modified in many different ways, without departing from the fundamental idea. For example, the wires that prevent unintentional pivoting open of the deflection plate can be replaced with perforated strips, and more of the like.
Number | Date | Country | Kind |
---|---|---|---|
20 2006 018 244.6 | Dec 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/010265 | 11/27/2007 | WO | 00 | 5/19/2009 |