The present invention relates to a magnetic pole position estimation apparatus for a synchronous motor which serves to estimate the rotor magnetic pole position of a double salient pole electric motor such as a permanent magnet motor, a synchronous reluctance motor, etc., in which a rotor and a stator of an alternating current synchronous electric motor have electric saliency.
In synchronous motors (hereinafter simply referred to as “electric motors”) such as permanent magnet motors, synchronous reluctance motors, etc., it is necessary to supply an appropriate current to a stator in accordance with the position of a rotor magnetic pole, and hence a rotor magnetic pole position sensor is fundamentally required for driving such a motor. In the case of using such a rotor magnetic pole position sensor, however, there are problems such as an increase in the cost, reduction in reliability and durability, an increase in electric wiring, etc., so a sensorless control system is desired which uses no rotor magnetic pole position sensor. In order to solve these problems, there has been disclosed, for example, a technique as described in a first patent document (Japanese patent No. 3312472).
A conventional apparatus disclosed in the first patent document includes an alternating voltage impression section that impresses an alternating voltage to an electric motor, a current detection section that detects a motor current, a vector conversion section that divides the detected motor current into a parallel component and a quadrature component with respect to the alternating voltage to be impressed, and a magnetic pole position estimation section that estimates the rotor magnetic pole position of the electric motor based on at least one of the parallel component and the quadrature component of the motor current.
In the above-mentioned conventional apparatus, when there exists a phase difference (phase difference angle θ in the first patent document between the direction in which the alternating voltage is impressed and the direction of magnetic poles, for example, as shown in expression 8 in the first patent document, the position of a rotor magnetic pole is estimated by using a phenomenon that an alternating current with an amplitude proportional to sin 2 θ in a direction (a qc axis direction in the first patent document) orthogonal to the impressed alternating voltage (in a dc axis direction in the first patent document).
The reason for the occurrence of such a phenomenon is that in general, in electric motors with saliency, the inductance in the rotor magnetic pole direction becomes maximum (positive saliency) or minimum (inverse saliency). However, in actual electric motors, even if the direction in which the alternating voltage is impressed and the actual magnetic pole direction coincide with each other, there might be generated an alternating current in a direction orthogonal to the alternating voltage.
In
The reason for the generation of this phenomenon is that in an actual electric motor, the direction of the rotor magnetic pole position and the direction of a minimum inductance (or a maximum inductance) do not coincide with each other, and the amount of deviation therebetween varies according to the rotor magnetic pole position.
Here, let us consider the change in inductance of the electric motor according to the axis of observation separately with respect to the stator and the rotor.
First of all, considering the inductance change in case of the absence of saliency in the rotor of the electric motor of
In
In contract to this, the inductance on an observation axis γ=0 and an inductance on an observation axis γ=π/6(=30 degrees) do not necessarily become equal to each other because the relative positional relations between these observation axes and the core of the stator are different from each other.
Here, let us assume that the inductance in the observation axis direction varies on the observation axis γ=0 and on the observation axis γ=π/6(=30 degrees), and that the inductance in the observation axis direction changes monotonously from γ=0 to γ=π/6(=30 degrees) and from γ=π/6(=30 degrees) to γ=π/3(=60 degrees). At this time, it is considered that the change in the inductance according to the observation axis in the model shown in
Although various contrivances are made in the motor design so as to reduce such variation as much as possible, it is particularly difficult to decrease this variation to zero in a concentrated winding armature as shown in
It is considered that the stator of an electric motor with a large inductance change as stated above has saliency, and, the electric motor of the structure as shown in
Next, when considering the change in inductance in case of the absence of saliency in a stator, as shown in
In
In contract to this, the inductance on an observation axis δ=0 and an inductance on an observation axis δ=π/2(=90 degrees) do not necessarily become equal to each other because the relative positional relations between these observation axes and the core of the stator are different from each other.
Here, it is considered that assuming that the inductance in the observation axis direction changes monotonously from δ=0 to δ=π/2(=90 degrees) and from δ=π/2(=90 degrees) to δ=π(=180 degrees), the change in the inductance according to the observation axis in the model shown in
The characteristic of the inductance change according to the observation axis of the electric motor shown in
In the state of
In contrast to this,
It is found that in the state of
As is clear from
In addition, as can be seen from
Thus, it is considered that, as in the experiments of
Accordingly, the present invention is intended to obviate the problems as referred to above, and provide a magnetic pole position estimation apparatus for a synchronous motor which is capable of estimating the magnetic pole position of a rotor in a precise manner even in an electric motor with so-called double saliency by removing an influence resulting from the double saliency of the electric motor, i.e., an influence of a deviation of the axis of an alternating current due to the rotor magnetic pole position on the estimation of the magnetic pole position.
A magnetic pole position estimation apparatus for a synchronous motor according to one aspect of the present invention includes: an alternating voltage impression section for impressing, an alternating voltage to an electric motor; a current detection section for detecting a current flowing through the electric motor in response to the alternating voltage; a reference direction generation section for adding a predetermined amount of deviation corresponding to a rotor magnetic pole position of the electric motor to the rotor magnetic pole position thereby to output a reference direction; a vector conversion section for separating the motor current detected by the current detection section into a parallel component and a quadrature component with respect to the reference direction; and a magnetic pole position estimation section for estimating an actual rotor magnetic pole position of the electric motor based on at least one of the parallel component and the quadrature component of the motor current.
In addition, a magnetic pole position estimation apparatus for a synchronous motor according to another aspect of the present invention includes: an alternating voltage impression section for impressing an alternating voltage to an electric motor; a current detection section for detecting a current flowing through the electric motor in response to the alternating voltage; a reference direction generation section for adding a predetermined amount of deviation corresponding to a rotor magnetic pole position of the electric motor and a stator current thereof to the rotor magnetic pole position thereby to output a reference direction; a vector conversion section for separating the motor current detected by the current detection section into a parallel component and a quadrature component with respect to the reference direction; and a magnetic pole position estimation section for estimating an actual rotor magnetic pole position of the electric motor based on at least one of the parallel component and the quadrature component of the motor current.
Moreover, a magnetic pole position estimation apparatus for a synchronous motor according to a further aspect of the present invention includes: an alternating voltage impression direction generation section for adding a predetermined amount of deviation corresponding to a rotor magnetic pole position of an electric motor to the rotor magnetic pole position thereby to output a reference direction corresponding to an alternating voltage impression direction; an alternating voltage impression section for impressing an alternating voltage to the electric motor in the alternating voltage impression direction of the electric motor; a current detection section for detecting a current flowing through the electric motor in response to the alternating voltage; a vector conversion section for separating the motor current detected by the current detection section into a parallel component and a quadrature component with respect to the rotor magnetic pole position; and a magnetic pole position estimation section for estimating an actual rotor magnetic pole position of the electric motor based on at least one of the parallel component and the quadrature component of the motor current.
Hereinafter, preferred embodiments of the present invention will be described in detail while referring to the accompanying drawings.
In
The oscillator 1 generates a d axis signal Vd in the form of an alternating voltage (dq axes) impressed to the electric motor 5, and the coordinate converter 2 serves to perform coordinate transformation of the alternating voltage (Vd, Vq) of a two axis rotation coordinate system (dq axes) into a voltage (Vu, Vv, Vw) of a three phase fixed coordinate system UVW), and output it as an output voltage command.
The drive circuit 3 impresses a three phase output voltage corresponding to the output voltage command to the electric motor 5, and the current sensor 4 detects a three phase motor current (iu, iv, iw) supplied to the electric motor 5 in accordance with the three phase output voltage.
The coordinate converter 6 constitutes a vector conversion section that serves to separate the motor current into a parallel component and a quadrature component (α, β) with respect to a reference direction (minimum inductance direction θ′), and it coordinate transforms the motor current (iu, iv, iw) into a current vector (iα, iβ) on two phase fixed coordinates (α, β).
The axis deviation table 7 stores in advance the relation between a rotor magnetic pole position θ and a deviation angle ζ, and outputs the deviation angle ζ corresponding to an input value (estimated value) of the rotor magnetic pole position θ.
The adder 8 adds the deviation angle ζ and the rotor magnetic pole position θ to each other to provide a minimum inductance direction θ′, and the vector generator 10 calculates a unit reference vector (α, β) in the minimum inductance direction θ′.
The multiplier 14 multiplies an α component of the reference vector (α, β) and a β component iβ of the current vector (iα, iβ), the multiplier 15 multiplies a β component of the reference vector and an α component iα of the current vector, and the subtracter 13 subtracts an output value of the multiplier 15 from an output value of the multiplier 14.
The multipliers 14, 15 and the subtracter 13 calculate an outer product of the reference vector (α, β) and the current vector (iα, iβ) on two phase fixed coordinates, and obtains a component of the current vector (iα, iβ) orthogonal to the reference vector (α, β).
The signal generator 9 generates a signal at the same frequency as that of the output voltage of the oscillator 1 with its phase being 90 degrees therebehind, and the multiplier 12 multiplies the output signal of the signal generator 9 and the output signal of the subtracter 13 with each other.
The controller 11 estimates the rotor magnetic pole position θ from the output value of the multiplier 12, and inputs the rotor magnetic pole position θ thus estimated to the coordinate converter 2, the axis deviation table 7 and the adder 8.
Next, reference will be made to the operation of this first embodiment of the present invention, as shown in
First of all, the alternating voltage Vd generated from the oscillator 1 is input to the coordinate converter 2 as a d axis signal, whereas a ground potential “0” is input to the coordinate converter 2 as a q axis signal Vq.
The coordinate converter 2 converts the input signal (the d axis signal Vd and the q axis signal Vq) in accordance with the rotor magnetic pole position θ (estimated value), and coordinate transforms it from the two axis rotation coordinate system (dq axes) into a voltage output value (Vu, Vv, Vw) of three phase fixed coordinates (UVW).
The transformed output (three phase output voltage commands Vu, Vv and Vw) of the coordinate converter 2 is input to the drive circuit 3 as a voltage command thereof, and the drive circuit 3 impresses a voltage corresponding to the output voltage command to the three phase winding terminals of the electric motor 5.
The motor currents (iu, iv, iw) flowing through the windings of the respective phases (UVW) of the electric motor 5 are detected by the current sensor 4, and a detection signal from the current sensor 4 is converted from the three phase fixed coordinates (UVW) into a current vector (iα, iβ) of two phase fixed coordinates (αβ axes) through the coordinate converter 6.
At this time, for instance, in case where the electric motor 5 is a double-salient electric motor (see
The amount of deviation is generated by the interaction of the rotor in the electric motor 5 and the saliency of the stator, and becomes a value which is determined in accordance with the electrical angle (rotor position) of the observation axis γ (see
The axis deviation table 7 beforehand stores, as a table, the relation between the rotor magnetic pole position θ and the deviation angle ζ between the rotor magnetic pole position θ and the minimum inductance axis, and uniquely determines the deviation angle ζ corresponding to the rotor magnetic pole position θ (estimated value).
Subsequently, the adder 8 adds the deviation angle ζ determined by the axis deviation table 7 and the rotor magnetic pole position θ to each other to provide the minimum inductance direction θ′.
Moreover, the vector generator 10 determines a unit reference vector (α, β) on two phase fixed coordinates (αβ axes) which becomes the minimum inductance direction θ′.
Then, the multipliers 14, 15 and the subtracter 13 obtain a component of the current vector (iα, iβ) orthogonal to the reference vector (α, β) by calculating an outer product of the reference vector (α, β) and the current vector (iα, iβ) on two phase fixed coordinates.
The signal generator 9 generates a signal which has the same frequency as the output frequency of the oscillator 1 with its phase being 90 degrees behind the phase thereof. Accordingly, the output signal of the signal generator 9 coincides in phase with the alternating current generated by the alternating voltage impressed to the electric motor 5.
The multiplier 12 multiplies the output signal of the signal generator 9 and the output signal of the subtracter 13, i.e., a component of the current vector orthogonal to the reference vector (α, β) (outer product value) thereby to obtain a component of the alternating current generated by the alternating voltage, orthogonal to the reference vector (α, β) (i.e., a component orthogonal to the minimum inductance direction θ′).
Here, note that if the estimated rotor magnetic pole position θ and the actual rotor magnetic pole position coincide with each other, the directions of the alternating current generated and the reference vector (α, β) coincide with each other, so the output value of the multiplier 12 becomes “0”.
On the other hand, if there is an error or deviation between the estimated rotor magnetic pole position θ and the actual rotor magnetic pole position, the direction of the alternating current generated deviates from the direction of the reference vector (α, β), as a result of which the output value of the multiplier 12 becomes a value corresponding to the error or deviation of the rotor magnetic pole position θ, which is then input to the controller 11.
The controller 11 performs an accurate estimation calculation by carrying out appropriate control in accordance with an error signal output from the multiplier 12 thereby to make the estimated rotor magnetic pole position θ coincide with the actual rotor magnetic pole position without receiving the influence of the deviation angle ζ between the magnetic pole and the minimum inductance axis (see
Thus, even when the electric motor 5 has so-called double saliency, the rotor magnetic pole position θ can be excellently estimated.
In the above-mentioned first embodiment (
In addition, though in the above-mentioned first embodiment, the deviation angle ζ of the minimum inductance axis with respect to the rotor magnetic pole position θ is stored in the axis deviation table 7, a calculation section using a formula with the rotor magnetic pole position θ employed as an input parameter may be provided in place of the axis deviation table 7.
Moreover, though the outer product value is calculated from the current vector (i60, iβ) so as to extract a component orthogonal to the reference vector (α, β), another vector calculation method (e.g., coordinate transformation, etc.) having a similar function may instead be used.
Further, though the magnetic pole position is estimated by impressing an alternating voltage to the electric motor 5 and detecting and processing an alternating current generated, the magnetic pole position may be estimated by supplying an alternating current to the electric motor 5 and detecting and processing the alternating voltage generated, as described in the aforementioned first patent document, for example.
In the above-mentioned first embodiment, the axis deviation table 7 is provided that processes in consideration of only the periodic deviation angle ζ (the amount of deviation) corresponding to the electrical angle generated between the rotor magnetic pole direction θ (i.e., the rotor inverse-salient pole direction) of the electric motor 5 in the form of the double-salient electric motor (see
In this case, since the change in the mode of the amount of deviation is uniquely decided by the motor current, if the relation of the change in the amount of deviation due to the motor current is obtained beforehand, a direction θ′ in which the inductance in the present state is minimized can uniquely be obtained from the motor current and the rotor magnetic pole position θ.
In
The magnetic pole position estimation apparatus for a synchronous motor according to the second embodiment of the present invention includes, in addition to an oscillator 1, a coordinate converter 2, a drive circuit 3, a current sensor 4, an electric motor 5, a coordinate converter 6, an axis deviation table 7A, an adder 8, a signal generator 9, a vector generator 10, a controller 11, a multiplier 12, a subtracter 13 and multipliers 14, 15, a current controller 16 and an adder 17 which are associated with the drive circuit 3 and the axis deviation table 7A.
In
The current controller 16 is used for ordinary motor control, and serves to generate, as output signals, a motor current (id, iq) on a two axis rotation coordinate system (dq axes) and a voltage command on three phase fixed coordinates (UVW) from a motor current (iu, iv, iw), a rotor magnetic pole position θ and a current command (id*, iq*) in a two axis rotation coordinate system (dq axes) as input signals.
Specifically, the current controller 16 generates the voltage command on the three phase fixed coordinates (UVW) from the motor current (iu, iv, iw) on the three phase fixed coordinates (UVW) according to the current command (id*, iq*), and inputs the motor current (id, iq) in the two axis rotation coordinate system (dq axes) to the axis deviation table 7A.
The adder 17 adds the voltage command from the current controller 16 and an alternating signal for magnetic pole position estimation from the coordinate converter 2 to each other, and inputs the thus added result to the drive circuit 3 as an output voltage command (Vu, Vv, Vw).
At this time, the frequency of the alternating voltage used for magnetic pole position estimation is set higher than the current response frequency of the current controller 16 so as riot to cause interference between the current controller 16 and the magnetic pole position estimation according to the alternating voltage. Alternatively, there may be provided, as another countermeasure to avoid such interference, a filter in the current controller 16 for removing a high frequency component of the current signal.
The axis deviation table 7A stores the relation between the rotor magnetic pole position θ and the deviation angle ζ between the rotor magnetic pole position θ and the minimum inductance axis with respect to the motor current (id, iq), and obtains and outputs a deviation angle ζ from the motor current (id, iq) output from the current controller 16 and the rotor magnetic pole position θ output from the controller 11.
Hereinafter, similarly as described above, by performing the estimation calculation processing using the deviation angle ζ, the rotor magnetic pole position can be estimated to a high degree of precision without receiving the influence of the inductance change due to the motor current (iu, iv, iw).
In the above-mentioned first and second embodiments, the deviation angle ζ (the amount of deviation) is processed in consideration of the double saliency of the electric motor 5 on the basis of the rotor magnetic pole direction of an alternating current that is generated by an alternating voltage impressed in the rotor magnetic pole direction of the electric motor 5, but it may be possible to perform processing so as to make an alternating current, which is generated upon impression of an alternating voltage in a direction deviated from the rotor magnetic pole direction of the electric motor 5, coincide with the rotor magnetic pole direction by using a deviation angle of the alternating voltage.
In
The magnetic pole position estimation apparatus for a synchronous motor according to the third embodiment of the present invention includes an oscillator 1B, a coordinate converter 2B, a drive circuit 3, a current sensor 4, an electric motor 5, a coordinate converter 6B, a voltage deviation table 7B, an adder 8B, a signal generator 9, a controller 11, and a multiplier 12B, similarly as stated above.
In this case, an alternating voltage Vd′ (d axis signal) output from the oscillator 1B is impressed to the electric motor 5 in a direction deviated from the rotor magnetic pole direction.
The coordinate converter 2B coordinate transforms an input signal in the two axis rotation coordinate system (a d axis signal Vd′ and a q axis signal Vq′) into a voltage output value of three phase fixed coordinates in accordance with an alternating voltage impression direction calculated from the deviation angle ζ′ and the rotor magnetic pole position θ.
The coordinate converter 6B constitutes a vector conversion section that serves to separate the motor current detected by the current sensor 4 into a parallel component and a quadrature component (dq) with respect to the rotor magnetic pole position θ, and outputs a two phase current vector (id, iq.
The multiplier 12B multiplies a q axis component iq of the current vector and the output signal of the signal generator 9 with each other, and inputs the result obtained to the controller 11. The other d axis component id of the current vector is used in an unillustrated control system.
The controller 11 obtains the rotor magnetic pole position θ from the multiplied value of the multiplier 12B, and inputs it to the voltage deviation table 7B, the adder 8B, and the coordinate converter 6B.
The axis deviation table 7 stores, as a table, the relation between the rotor magnetic pole position θ and the deviation angle ζ′ between the rotor magnetic pole position θ and the alternating voltage impression direction, and outputs the deviation angle ζ′ in accordance with the rotor magnetic pole position θ (estimated value).
The adder 8B constitutes an alternating voltage impression direction generation section, and obtains the alternating voltage impression direction θ′B by adding the deviation angle ζ′ and the rotor magnetic pole position θ to each other and inputs it to the coordinate converter 2B as a reference direction.
Here, in case where the electric motor 5 is a double-salient electric motor (see
At this time, it is evident that by appropriately shifting the direction of the alternating voltage to be impressed to the electric motor 5 to a direction opposite to a shift direction due to the deviation angle ζ, it is possible to make the direction of the alternating current and the rotor magnetic pole direction θ coincide with each other. Accordingly, from the relation between the rotor magnetic pole direction (the rotor magnetic pole position θ) and the minimum inductance direction θ in the above-mentioned double-salient electric motor, a deviation angle ζ′ of the alternating voltage impression direction that makes the direction of the alternating current and the rotor magnetic pole direction (the rotor magnetic pole position θ) coincide with each other is uniquely decided by the rotor magnetic pole position θ.
Accordingly, the voltage deviation table 7B stores the relation between the rotor magnetic pole position θ and the deviation angle ζ′ of the alternating voltage impression direction, and the adder 8B obtains: an alternating voltage impression direction θ′B by adding the deviation angle ζ′ and an estimated rotor magnetic pole position θ to each other, whereby the coordinate converter 2B coordinate transforms the alternating voltage generated by the oscillator 1B in accordance with the alternating voltage impression direction θ′B.
The motor current detected by the current sensor 4 is transformed from three phase fixed coordinates (UVW) into two phase rotation coordinates (dq axes) on the basis of the estimated rotor magnetic pole position θ in the coordinate converter 6B.
The multiplier 12B obtains a component of the motor current generated by the alternating voltage orthogonal to the rotor magnetic pole direction θ by multiplying the output signal from the signal generator 9 and the q axis component iq of the motor current output from the coordinate converter 6B, and inputs it to the controller 11.
Here, note that if the estimated rotor magnetic pole position θ and the actual rotor magnetic pole position coincide with each other, the direction of the generated alternating current and the rotor magnetic pole direction (rotor magnetic pole position θ) coincide with each other, so the output value of the multiplier 12B becomes “0”.
On the other hand, when an error or deviation exists between the estimated rotor magnetic pole position θ and the actual rotor magnetic pole position, the output value of the multiplier 12B will have a value corresponding to the error or deviation.
Accordingly, by inputting an error signal from the multiplier 12B to the controller 11 thereby to perform appropriate control, the rotor magnetic pole position θ is made to coincide with the actual rotor magnetic pole position thereby to estimate and calculate the rotor magnetic pole position θ to a high degree of precision, as in the above-mentioned first and second embodiments.
In addition, in case of
As described above, according to a magnetic pole position estimation apparatus for an alternating current synchronous electric motor of the present invention, provisions are made for an alternating voltage impression section for impressing an alternating voltage to an electric motor, a current detection section for detecting a current flowing through the electric motor in response to the alternating voltage, a reference direction generation section for adding a predetermined amount of deviation corresponding to a rotor magnetic pole position of the electric motor to the rotor magnetic pole position thereby to output a reference direction, a vector conversion section for separating the motor current detected by the current detection section into a parallel component and a quadrature component with respect to the reference direction, and a magnetic pole position estimation section for estimating an actual rotor magnetic pole position of the electric motor based on at least one of the parallel component and the quadrature component of the motor current. With such an arrangement, an influence resulting from the double saliency of the electric motor (i.e., an influence of a deviation of the axis of an alternating current due to the rotor magnetic pole position θ on the estimation of the magnetic pole position) can be eliminated, thus making it possible to estimate the magnetic pole position of the double saliency electric motor with a high degree of precision.
The present invention can be used as a magnetic pole position estimation apparatus for a synchronous motor which serves to estimate the rotor magnetic pole position of a double salient pole electric motor such as a permanent magnet motor, a synchronous reluctance motor, etc., in which a rotor and a stator of an alternating current synchronous electric motor have electric saliency.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP03/09031 | 7/16/2003 | WO | 00 | 10/27/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/008879 | 1/27/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4388577 | Blaschke et al. | Jun 1983 | A |
4626761 | Blaschke | Dec 1986 | A |
4680526 | Okuyama et al. | Jul 1987 | A |
4763058 | Heining et al. | Aug 1988 | A |
4884023 | Schmidt et al. | Nov 1989 | A |
5481172 | Minowa et al. | Jan 1996 | A |
5936370 | Fukao et al. | Aug 1999 | A |
6396229 | Sakamoto et al. | May 2002 | B1 |
6531843 | Iwaji et al. | Mar 2003 | B1 |
6628099 | Iwaji et al. | Sep 2003 | B1 |
6639377 | Iwaji et al. | Oct 2003 | B1 |
6650081 | Iwaji et al. | Nov 2003 | B1 |
6700343 | Masaki et al. | Mar 2004 | B1 |
6844697 | Masaki et al. | Jan 2005 | B1 |
20020060548 | Iwaji et al. | May 2002 | A1 |
20030020428 | Masaki et al. | Jan 2003 | A1 |
20030020429 | Masaki et al. | Jan 2003 | A1 |
20040257027 | Matsuo et al. | Dec 2004 | A1 |
20060192510 | Okazaki et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
07-245981 | Sep 1995 | JP |
10-341599 | Dec 1998 | JP |
2000-152687 | May 2000 | JP |
2001-095281 | Jun 2001 | JP |