The invention relates to a device for extending and shortening tubings used to transport drill cuttings and stripped material.
Various methods have become known for the underground winning of minerals. A method of this type, which is described in U.S. Pat. No. 5,380,127, proposes to separate the material to be won by the aid of high-pressure fluid jets, whereupon the material dissolved in the fluid is conducted away via tubings. Such a “jet boring system” is used, for instance, in ore deposits which occur below lakes and contain, for instance, uranium ores. In those cases a tunnel tube is driven to enable excavation, whereupon, after having provided appropriate bores and linings, a jet boring excavation tool is introduced into the guiding tubes or lining tubes, whereupon the mineral is extracted by the aid of high-pressure water and carried off into the tube network. Particularly during the winning of highly radioactive uranium ores and with high pressures applied for the extraction of such ores, accordingly pressure-proof tubings are required. If the material comprises radioactively radiating material, tubes having relatively high wall thicknesses must, moreover, be used in order to provide a shield against the radiation of the hauled material. It is impossible, particularly in such ore deposits and with such winning methods, to use flexible tubes within the duct system, and, therefore, it is necessary with such a winning method to constantly adapt the haulage duct to the changing site positions of the excavation tool.
The invention aims to provide a device of the initially defined kind, which enables the mechanized assembly and disassembly of tubes in order to enable thick-walled and heavy and appropriately shielded tubes to be each guided precisely to the required position, wherein mechanization to the largest extent possible is to enable the rapid extension or shortening of the tube system. To solve this object, the device according to the invention essentially consists in that a tube storage or tube magazine is provided on a frame capable of being supported on the floor, that at least one lifting means capable of being displaced in the height direction and intended to lift tubes into a storage position as well as at least one manipulator intended to position a tube removed from the tube storage into a position in alignment with a laid tube track are arranged on the frame, and that the frame comprises at least one longitudinal guide for a telescoping tube that is capable of being integrated in the tube track. The tube storage or tube magazine enables an appropriate number of tubes to be introduced into the tunnel and an accordingly large stock of tubes to be provided on as small a space as possible at relatively small tunnel tube dimensions. The lifting means, which can be displaced on the frame in the height direction, enables tubes to be moved into a storage position and fed on the upper side of the storage or removed on the lower side of the storage. In order to move such a tube upon removal from the storage into the correct mounting position, at least one manipulator is provided according to the invention, which is fixed to the frame of the tube storage and enables a tube taken from the tube storage to be placed in a position in alignment with a laid tube track. Since such thick-walled and relatively heavy tubes as are required in the context of the initially described excavation method have certain lengths, it is necessary in each case to bridge the respective distance that enables the installation of a further tube or the removal of a tube. Since, as mentioned in the beginning, flexible tubes cannot be employed on account of the high pressures applied and the peculiarities of the mineral to be hauled, it is proposed according to the invention that the frame comprises at least one longitudinal guide for a telescoping tube that is capable of being integrated in the tube track so as to bridge the respective distance between two consecutive installation positions of the device in an accordingly pressure-proof and radiation-shielded manner by means of such a telescoping tube capable of being integrated in the tube track.
In an advantageous manner, the configuration according to the invention is devised such that the tube storage comprises a plurality of rails, sliding or rolling surfaces extending in a manner inclined relative to the plane of the floor, which extend so as to be alternately inclined downwardly relative to a plane extending parallel with the plane of the floor, that a downwardly extending rail or surface each terminates above a downwardly extending rail or surface arranged therebelow, at a distance from the lateral delimitation of the tube storage, which distance is larger than the diameter of a tube, and that an ejection means is connected to the lowermost downwardly extending rail or surface for the separation and delivery of a tube into a removal position outside the tube storage and substantially parallel with the original position. Such a tube storage enables a plurality of tubes to be arranged in a mutually cascading manner in the height direction and transverse to the storage, whereby the sliding or rolling surfaces enable the tubes in the storage box to automatically roll off into the respective removal position. On their way from the feeding position into the removal position, the tube axes are guided in a serpentine-like manner, viewed in the longitudinal direction of the tube, and hence always arrive on downwardly inclined surfaces, thus automatically reaching the removal position. On the lower end, a simple separation means is provided for the ejection of a tube into a position from which the appropriate manipulation of the tube is rendered feasible in a fully mechanized mode of operation. In this respect, the configuration advantageously is devised such that the tubes, in the removal position, rest on the lifting means capable of being displaced in the height direction.
In addition to such a lifting means, which naturally could also assume the basic function of a manipulator at an accordingly pivotable configuration of the lifting means, the configuration advantageously is devised such that the manipulator(s) intended to position the removed tube comprise(s) gutter- or claw-shaped supporting elements for the tubes, which elements are extractable in the height direction and transverse to the height direction by hydraulic or pneumatic cylinder-piston units. The tube extracted from the storage in this manner can be moved obliquely upwards into a position in which the appropriate connection and integration into the existing tube track is feasible immediately and likewise in a mechanized manner. In order to enable the precise adjustment of the positioning means or manipulator, the configuration advantageously is devised such that the hydraulic or pneumatic cylinder-piston units are pivotable and connected with the frame of the tube storage so as to be fixable in their pivoted position.
The respective tube which is each telescoping to bridge a predetermined length advantageously can also be suspended from the device, to which end the configuration advantageously is devised such that the longitudinal guide for the telescoping tube is comprised of at least one sliding or rolling rail which cooperates with at least one sliding or rolling element connected with the telescoping tube. The frame used for the tube storage must exhibit an appropriate stability on account of the weight of the plurality of tubes and is well apt to take up the forces acting on such guides, lifting elements or manipulator.
In order to displace the device in the respectively appropriate position for the installation of a tube, the configuration advantageously is devised such that the frame comprises at least one guide roller and supports capable of being lowered below the running surfaces of the guide rollers, which supports can be extended during manipulation and, thus, substantially facilitate the mechanized approach of a precise mounting position. In procedural terms, the device according to the invention can be further developed in a manner that the frame is coupleable to, or connected with, a moving mechanism, in particular a crawler mechanism.
A particularly simple means for the ejection of a tube and separation of a tube is feasible in that the ejection means is comprised of a pivotable stirrup which is substantially C-shaped in cross section and whose clear width is selected to be smaller than, or equal to, the diameter of a tube deposited in the storage.
In the following, the invention will be explained in more detail by way of an exemplary embodiment schematically illustrated in the drawing. Therein,
In
The frame 1, furthermore, carries a longitudinal rail 5, from which the end 6 of a telescoping tube 7 is suspended. The end 6 of this telescoping tube 7 is suspended alongside of the rail 5 via rolling slide supports 8 such that a full tube length can be bridged on account of the telescopability of the tube.
From the top view according to
From the illustration according to
The means for the manipulation of a tube, which has already been indicated by 13 in
From
Number | Date | Country | Kind |
---|---|---|---|
A 8632000 | May 2000 | AT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTAT01/00145 | 5/15/2001 | WO | 00 | 4/7/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0188325 | 11/22/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3792783 | Brown | Feb 1974 | A |
3913753 | Swartz et al. | Oct 1975 | A |
3916500 | Brown | Nov 1975 | A |
4202653 | Moller | May 1980 | A |
4362435 | Henry | Dec 1982 | A |
4426182 | Frias et al. | Jan 1984 | A |
4438902 | Latimer | Mar 1984 | A |
4439091 | Frias | Mar 1984 | A |
4445579 | Bello | May 1984 | A |
4684314 | Luth | Aug 1987 | A |
5122023 | Mochizuki | Jun 1992 | A |
5423390 | Donnally et al. | Jun 1995 | A |
5886314 | Sims | Mar 1999 | A |
5931238 | Gilmore et al. | Aug 1999 | A |
5941324 | Bennett | Aug 1999 | A |
6533519 | Tolmon et al. | Mar 2003 | B1 |
6543551 | Sparks et al. | Apr 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20030147735 A1 | Aug 2003 | US |