This application is a 371 U.S. National Stage of International Application No. PCT/DE2015/000393, filed Jul. 30, 2015, which claims the benefit of and priority to German Patent Application No. 10 2014 011 611.5, filed Aug. 1, 2014. The disclosures of the above applications are incorporated herein by reference.
The invention relates to a device for filling air conditioning systems with a refrigerant during final vehicle assembly.
The mobile air conditioning systems in vehicles, typically referred to by the English term “Mobile Air Conditioning System/MAC”, comprise connection valves on the low pressure side and on the high pressure side. The air conditioning systems are pressure tested, evacuated, and filled using these connection valves. Furthermore, these valves allow necessary maintenance operations in the further life cycle of the air conditioning system. The geometrical contours of the connection valves are of different designs. This prevents confusion between the high pressure side with the low pressure side and at the same time ensures that only the respective approved refrigerant is filled into the air conditioning system. Prevention of mix-ups with respect to filling with the wrong refrigerant is particularly required on the side of the high-pressure adapter, since it is used to fill most air conditioning systems.
Various devices for filling containers, circuits, and similar components of vehicles with fuel, lubricants, refrigerants, and other operating fluids are known from prior art, for example from U.S. Pat. No. 6,848,670 B2, U.S. 2007 / 0 256 742 A1, or WO 2007/106 486 A1. In particular, the connection geometries of the filling system and the assembly to be filled must be matched to one another.
The geometries of the various connection valves on air conditioning systems are defined in the internationally binding SAE standard J 639. The exact dimensions and differences of the connection valves for the media R134a and R1234yf that are typically used as refrigerants can be seen in
The air conditioning systems are filled with refrigerant for the first time during final vehicle assembly. This process of initial filling is performed using filling systems that need a high pressure and a low-pressure adapter for each type of air conditioning system to be filled. Where two different air conditioning systems are installed in final vehicle assembly, which also must be filled with different refrigerants (e.g. R134a and R1234yf), a total of four adapters are required at the associated filling system. Note that the filling system uses different components for the different refrigerants. Such designs in which the filling system is divided according to the media used increase the investment required, incur costs for later maintenance and require considerable installation space at the final assembly location, which limits the space available for potential extensions of the filling system.
It would be beneficial for avoiding such disadvantages to reduce said installation space, investment and operating costs without compromising any required mix-up prevention features with respect to different refrigerants. Thus, the structure of a conventional filling system according to
It is therefore the object of the invention to provide a device that allows filling two different refrigerants with just two adapters (one adapter for the low-pressure side and one adapter for the high-pressure side) and still ensures that a proper refrigerant is filled into the respective air conditioning system. This requires that the high-pressure adapter and the low-pressure adapter can be mounted and tightly fitted onto different vehicle connection valves. At the same time, the system must detect the air conditioning system that is currently connected to be able to select the proper refrigerant for filling. For this purpose, it must identify the connection valves onto which the high-pressure adapter is currently mounted, which means that the differences between the connection valve geometries must be detected.
This problem is solved by a device having the technical features of claim 1. Accordingly, just one high-pressure adapter and low-pressure adapter are provided for two different refrigerants, namely R134a and R1234yf. The high-pressure adapter via which the air conditioning system is filled includes mechanical components which interact to prevent an unexpected vehicle valve from being opened for filling. The high-pressure adapter can detect a correct and/or incorrect vehicle port using an associated path measuring system.
The invention provides a device for filling air conditioning systems with a refrigerant during final vehicle assembly, wherein the air conditioning system to be filled comprises a connection valve both on its low pressure and on its high pressure sides, via which the air conditioning system can be pressure tested, evacuated, and filled and which facilitates maintenance operations in the further life cycle of the air conditioning system, wherein said connection valves have a different geometrical contour to prevent confusion between the high pressure side and the low pressure side and to ensure at the same time that only the respective approved refrigerant is filled into the air conditioning system, and wherein the filling is performed using a filling system which is brought via adapters into an operative connection with the connection valves on the low pressure and the high pressure sides.
The device comprises a clamping system that includes a slider with a magnet, a stop piston with an integrated plunger, a path measuring system, and clamping balls. The slider takes different positions based on the respective geometrical design of the connection valves, which are detected by the magnet via the path measuring system. The slider is designed so that, in its normal position, it closes the adapter with a gasket designed as an O-ring. In accordance with a preselected type on the filling system, the stop piston can be placed in positions for the one refrigerant R134a (lower position) and/or the other refrigerant R1234yf (upper position), wherein these two positions cause movement of the slider in these predetermined end positions only. The plunger that is integrated in the stop piston can perform a defined stroke to open the connection valves of the vehicle port, wherein the respective stroke movement is performed depending on the respective position of the stop piston starting from the preset position for the one or the other refrigerant. The clamping balls are held by a pin due to the required unobstructed clamping path. The high-pressure adapter comprises a separate filling line with a filling valve for each refrigerant, and the low-pressure adapter is designed to be mounted on both media-specific connection valves of the vehicle air conditioning system.
Thus a device is available that allows filling with two different refrigerants using just two adapters and still ensures that a proper refrigerant is filled into the respective air conditioning system. Accordingly, just one set of the assemblies and components required for the filling of both refrigerants is needed for similar process steps such as pressure testing and evacuating. This means that only one container per console part of a filling system is required for filling two refrigerants.
An exemplary embodiment is described below with reference to the drawing. Wherein:
The device shown in the drawing is designed for filling air conditioning systems (so-called MACs) with a refrigerant during final vehicle assembly. The air conditioning system to be filled comprises one connection valve 20, 22 each on its low-pressure side and on its high-pressure side via which the air conditioning system can be pressure tested, evacuated, and filled and which allows the performance of maintenance operations in the further life cycle of the air conditioning system. The geometrical contours of the connection valves are of different designs to prevent mix-ups between the high-pressure side and the low-pressure side and at the same time to ensure that only the respective approved refrigerant is filled into the air conditioning system. The filling process is performed using a filling system, which is brought into an operative connection with the connection valves 20, 22 on the low-pressure side and on the high-pressure side via adapters 24.
The main aspect of the device per the invention is that only one high-pressure adapter and one low-pressure adapter are provided for two different refrigerants R134a and R1234yf. The high-pressure adapter via which the air conditioning system is filled includes mechanical components which interact to prevent an unexpected vehicle valve from being opened for filling. Furthermore, the high-pressure adapter can detect a correct or incorrect vehicle port using an associated path measuring system 6.
The slider 1 takes different positions depending on the dimensions (measure L1 from SAE J639), which can be detected by the integrated magnet 4 via the path measuring system 6.
The stop piston 2 is set in accordance with the preselected type on the filling system to either the positions R134a (lower position, e.g.,
The slider 1 is further designed so that it closes a fluid path 30 in the adapter 24 in its normal position; for this purpose, an O-ring gasket 5 is provided on the slider 1.
The following operations are performed in a complete filling cycle:
The type of vehicle to be filled is selected manually by the worker or automatically at the filling system. Then the stop piston 2 travels to the respective position for the refrigerant R134a or the refrigerant R1234yf.
The worker places the adapter over the vehicle port, in which process the slider 1 is moved in accordance with the dimensions of the vehicle port, and tries to tighten the adapter 24.
There are four scenarios to be mentioned, which will be explained in greater detail below with reference to
As a result of the vehicle type selection, the stop piston 2 is in position R134a (bottom). The vehicle port for R134a is present. The slider 1 with the magnet 4 is shifted to the R134a position. The path measuring system 6 confirms the position. The adapter 24 can successfully be tightened. The slider 1 opens the fluid path 30. The plunger 3 can open the vehicle connection valve 22. Filling is therefore possible.
As a result of the vehicle type selection, the stop piston 2 is in position R1234yf (top). The vehicle port for R1234yf is present. The slider 1 with the magnet 4 is shifted to the R1234yf position. The path measuring system 6 confirms the position. The adapter 24 can successfully be tightened. The slider 1 opens the fluid path 30. The plunger 3 can open the vehicle connection valve 20. Filling is therefore possible.
As a result of the vehicle type selection, the stop piston 2 is in position R134a (bottom). The vehicle port for R1234yf is present. The slider 1 with the magnet 1 is limited to the position for R134a by the stop piston 2. The adapter 24 cannot be tightened successfully. There is no positive locking connection, and the vehicle port is pressed out during clamping. The path measuring system 6 detects the incorrect position. The slider 1 goes to its normal position and closes the fluid path 30.
The plunger 3 cannot open the vehicle connection valve 20 because clamping was not successful. Filling is therefore not possible.
As a result of the vehicle type selection, the stop piston 2 is in position R1234yf (top). The vehicle port for R134a is present. The slider 1 with the magnet 4 is limited to the position for R1234yf by the stop piston 2 and is only shifted to the position for R134a. The adapter can be tightened successfully, there is a positive locking connection. The path measuring system 6 detects the incorrect position. The slider 1 opens the fluid path 30. The plunger 3 cannot open the vehicle connection valve 22 because the stroke of the plunger 3 is not sufficient to open the connection valve 22 in the vehicle. Filling is therefore not possible.
It should further be considered that the adapter 24 must be clamped in a positive locking, vacuum and pressure tight manner. This is achieved through clamping balls 32 being engaged in a circumferential groove 10 of the vehicle port that can be seen in
In a clamping system 26 that is fitted to a refrigerant port, these clamping balls 32 can be held in a carrier 34 due to the positive locking connection and will not fall out during clamping/unclamping, see
If the clamping system 26 is to be extended to different vehicle ports, the clamping balls 32 must be held by a different design to provide the required greater freedom of actuating travel. A suitable variant is shown in
The present technical solution provides a clamping system that uses mechanical stops and locks and a high degree of prevention of mixing-up filling refrigerants and prevention of filling refrigerant into the wrong vehicle port despite having significantly fewer components compared to prior art. At the same time, a path measuring system indicates the vehicle port (R134a or R1234yf) onto which the adapter has been placed.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 011 611 | Aug 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2015/000393 | 7/30/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/015706 | 2/4/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4869300 | Gudenau | Sep 1989 | A |
5139049 | Jensen et al. | Aug 1992 | A |
5244010 | Barjasteh | Sep 1993 | A |
RE34426 | Weaver | Nov 1993 | E |
5349998 | Gonfiantini | Sep 1994 | A |
6257285 | Robinson | Jul 2001 | B1 |
6298886 | Robinson | Oct 2001 | B1 |
6450199 | Haunhorst | Sep 2002 | B1 |
6848670 | Haunhorst et al. | Feb 2005 | B2 |
7404414 | Robinson | Jul 2008 | B2 |
7588059 | Robinson | Sep 2009 | B2 |
7841357 | Rankin | Nov 2010 | B2 |
20030226598 | Swinford | Dec 2003 | A1 |
20070209716 | Rankin | Sep 2007 | A1 |
20070256742 | Robinson et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
2250073 | May 1992 | GB |
WO-2007106486 | Sep 2007 | WO |
Entry |
---|
International Search Report and Written Opinion of the ISA for PCT/DE2015/000393, ISA/EP, Rijswijk, NL, dated Dec. 18, 2015. |
Number | Date | Country | |
---|---|---|---|
20170210199 A1 | Jul 2017 | US |